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1 INTRODUCTION

Rendering and geometric algorithms in computer graphics and geometric modeling
make extensive use of both the implicit and parametric representations of curves and
surfaces. Implicit representation is often preferred for problems such as point classi-
fication, whereas parametric representation is usually more convenient for rendering
[6, 9].

Rational parametrisation has become the de facto industry standard for para-
metric representations — the reasons for this include: rational parametrisation re-
quires the evaluation of polynomial functions only, it allows interactive control of
the geometry and is complete in the sense that approximation to any tolerance can
be achieved and exact rational representation is often possible.

This paper introduces an augmented linear algebra of paths as a means of induc-
ing rational parametrisations of curves and surfaces defined in terms of ‘primitive’
paths for which rational representations exist. Parametrisations are induced on the
circle and other ‘standard’ curves. The applications presented include the model-
ing of a rotary engine combustion chamber, the rational representation of classical
analytic airfoils and a family of rational alternatives to the Fermat curves and the
super-ellipses.

2 CURVES AND PATHS

2.1 Definitions

The C∞ function f : R2 → R is said to be regular at (x0, y0) if ∇f(x0, y0) 6= 0. If f is
regular everywhere then the set of points Cf = {(x, y) : f(x, y) = 0} defines a regular
curve in R2. The relationship f(x, y) = 0 is known as the implicit representation of
the curve Cf .

If I is a closed and bounded interval of R, then a regular path in the plane is
a C1 function p : I → R2 with p′ 6= 0. The set of paths on I is denoted PI .

If p ∈ PI is such that p(t) ∈ Cf for all t ∈ I then p is said to be a (local)
parametrisation of the curve Cf .

Paths p ∈ PI and q ∈ PI parametrise the same curve (or are equivalent) if and
only if there is a C1 function φ : I → I such that q = p ◦ φ and φ′ 6= 0 on I .
Equivalent paths have identical graphs in R

2.
Similarly a surface may be defined implicitly in terms a suitably regular function

f : R3 → R by {(x, y, z) : f(x, y, z) = 0} and (locally) parametrised by a surface
‘patch’ s : I1 × I2 → R3.

2.2 Rational Curves

A curve Cf is said to be rational if it is possible to parametrise it by rational functions;
i.e., if there is a path of the form p = 1

Q
(P1, P2), where Q, P1 and P2 are polynomial

functions, that parametrises Cf .
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It can be shown by elementary means that the functional equation

f1(t)
2 + f2(t)

2 = 1

has no non-trivial polynomial solutions for f1 and f2. It follows that no exact
polynomial representations of the circle {(x, y) : x2 + y2 − 1 = 0}, or any circular
arc, exist. However, polynomial solutions of the functional equation

ξ1(t)
2 + ξ2(t)

2 = ξ3(t)
2

do exist, and their generic form is known [12]. Hence explicit rational parametrisa-
tions of circles and circular arcs can be constructed.

However, rational parametrisations do not exist for all curves; for example, it
can be shown by elementary means [15] that the Fermat curves

{(x, y) : xn + yn − 1 = 0}
are not rational for any n ≥ 3. For even n the paths are closed.

3 RATIONAL PATHS IN GEOMETRIC MODELING

The interval I = [0, 1] and the Bézier-Bernstein basis bn,k(t) = (nk)t
k(1− t)(n−k) are

usually preferred in applications. The general rational polynomial path of degree n
may then be expressed in the form

pB(t) =

∑n

k=0 bn,k(t)ωkvk
∑n

k=0 bn,k(t)ωk

for 0 ≤ t ≤ 1. The scalars ω0, . . . , ωn are called the weights of the path and the
vectors v0, . . . , vn are the vertices. The Bézier-Bernstein representation imparts the
convex-hull and other desirable properties - provided the weights ω0, . . . , ωn are all
positive [5]. Figure 1 shows the graph of a typical rational Bézier path of degree 10
with the vertices and ‘polygon’ displayed.

Fig. 1. Rational Bézier path



436 H. E. Bez, T. J. Wetzel

4 PATH ALGEBRA

4.1 Path Algebra Operations

For any path p we can define a path λp, for λ ∈ R by (λp)(t) = λ(p(t)) and the sum
p+ q of paths p and q in PI by (p+ q)(t) = p(t) + q(t). Under these operations PI

is a vector space over R. A binary operator ∗ can be defined on PI by

p ∗ q = (p1q1 − p2q2, p1q2 + p2q1),

where p = (p1, p2) and q = (q1, q2). The ∗ operator is commutative and corresponds
to the multiplication of complex-valued functions defined on a real domain.

The fundamental algebraic properties of PI , under the operations defined, are
summarised in the following proposition.

Proposition 1. Under scalar multiplication, + and ∗, the set PI is a commutative
(linear) algebra with identity over C.

For the purposes of this paper, the following further algebraic operations on PI

are required:

1. let CI denote the set of all C1 functions f : I → R. The set CI is a vector
space under addition and scalar multiplication. A (left) multiplication of CI

on PI can be defined as follows: for f ∈ CI and p ∈ PI we define fp ∈ PI

by (fp)(t) = f(t)p(t),

2. let ΦI denote the set of C1, onto functions from I to I (not necessarily one-to-
one) then a (right) ‘multiplication’ of ΦI on PI can be defined by

◦ : (p, φ) → p ◦ φ,

where p ∈ PI and φ ∈ ΦI ,

3. the affine group A2 of R2 acts as a (left) transformation group on PI ; define for
each g ∈ A2 and p ∈ PI the path gp by (gp)(t) = Ap(t) + a, where the pair
g = (A, a) is an element A2. Here A is an invertible linear transformation of R2

and a ∈ R2.

Definition 1. We call the linear algebra PI , together with the associated (left)
multiplications of CI and A2 and the (right) multiplication of ΦI , the algebra of
planar paths on I .

4.2 Fundamental Properties

For φ′ 6= 0 on I , right-multiplication by φ produces an equivalent parametrisation
of the same curve. Later in the paper, the role of right-multipliers in the process
of inducing rational representations will be discussed and illustrated; the following
properties are fundamental to this:



Induced Parametrisation and its Applications in Geometric Computation 437

(i) for some non-rational paths p ∈ PI , a right-multiplier φ ∈ ΦI can be found such
that p ◦ φ is rational, and

(ii) the homomorphic property of right-multiplication; i.e., if

e(p, ..., f, ..., A, ..., ψ, ...) ∈ PI

is a path algebra expression, where p ∈ PI , f ∈ CI , A ∈ A2 and ψ ∈ ΦI then
for all φ ∈ ΦI we have

e(p, ..., f, ..., A, ..., ψ...) ◦ φ = e(p ◦ φ, ..., f ◦ φ, ..., A, ..., ψ ◦ φ, ...).

If φ′ 6= 0 on I then the paths e(p, ..., f, ..., A, ..., ψ) and e(p, ..., f, ..., A, ..., ψ) ◦ φ
are equivalent.

If e(p, q, f, A) = fp ∗ q+A(p ∗ p) then using the homomorphic property of right
multiplication and the definition of functional composition, we have:

e(p, q, f, h, A) ◦ φ = (fp ∗ q + A(p ∗ p)) ◦ φ
= (f ◦ φ)(p ◦ φ) ∗ (q ◦ φ) +A((p ◦ φ) ∗ (p ◦ φ))
= e(p ◦ φ, q ◦ φ, f ◦ φ, A).

4.3 The Denotation of Path Algebra Expressions

Care is required in the denotation of expressions in the extended algebra as, for
example, neither the ∗ operator nor the right multiplication of CI associate with the
left multiplication of ΦI on PI ; i.e., although the algebraic expressions such as

f(p ◦ φ) and (fp) ◦ φ

are both valid and determine well-defined paths for all f and φ, they are not equal.
Similarly

(p2) ◦ φ and p ∗ (p ◦ φ).
Brackets, or binary tree structures, must therefore be used in such expressions to
convey meaning. The (left) affine action associates with ◦ but not with ∗; i.e., we
have

(Ap) ◦ φ = A(p ◦ φ)
for all affine A and φ ∈ ΦI , but

A(p ∗ p) 6= (Ap) ∗ p.

In the remainder of the paper we refer to PI , with the operations defined, as a ‘Con-
structive Path Algebra (or CPA)’ and unambiguous constructions in PI as CPA
expressions. A binary tree for the CPA expression A(p ∗ p) + f(p ◦ φ) is shown in
Figure 2.
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Fig. 2. Binary tree for CPA expression

4.4 Subalgebras Generated by Particular Paths

If p = (p1, p2) ∈ PI we say a path q ∈ PI is rationally related to p if q has the form

q =
1

Q(p1, p2)
(P1(p1, p2), P2(p1, p2))

where Q, P1 and (P2) are polynomial functions in two variables. We denote by {p}r
the set of all paths rationally related to p. It can be shown that {p}r is a subalgebra
of PI generated from p by restricting the left multipliers to the form H ◦ p where
H = K

L
and K and L are polynomial functions of two variables and only allowing

trivial right multiplication - i.e., by φ(t) = t [1, 2].

5 INDUCED PARAMETRISATIONS

5.1 The Principle of Induced Parametrisation

Path algebra may be used to express a path q as a function e(p) of a ‘primitive’
path p for which rational parametrisations are known - i.e., p ◦ φ is a rational
parametrisation of p for some right-multiplier φ. If e(p) ∈ {p}r it follows that
a rational parametrisation may then be ‘induced’ on q by applying φ to e(p); i.e.,
for all e(p) ∈ {p}r,

e(p) ◦ φ = e(p ◦ φ) is a rational parametrisation of e(p).

We note that the right multiplier φ will be trivial, i.e., φ(t) = t for all t ∈ I , in the
case where the parametrisation of the inducing primitive, p, is apriori rational.

The remainder of this section shows how a known series of rational parametri-
sations of the circle can, within the context of path algebra, be induced by suitably
chosen straight line primitives and how rational parametrisations of the non-circular
conic sections can be induced by the circle.
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5.2 Induced Rational Parametrisations of the Circle

Consider, for n ≥ 1 the straight line segment ln between the points (1, 0) and
(cos π

n
, sin π

n
). Parametrise ln on I = [0, 1] by

Ln(t) = (1− t)(1, 0) + t
(

cos
π

n
, sin

π

n

)

,

this is a degree one, and hence a rational, parametrisation. Denoting the Euclidean
norm on R2 by ‖ · ‖, we construct within the path algebra {Ln}r the path e(Ln),
where

e(Ln) =
1

‖Ln‖2n
L2n
n

for L2n
n = Ln ∗ Ln ∗ · · · ∗ Ln. It follows that ‖e(Ln)(t)‖ = 1 for all t ∈ [0, 1] and

that e(Ln) is a degree 2n rational parametrisation of the complete circle p(t) =
(cos(2πt), sin(2πt)) on 0 ≤ t ≤ 1. The parametrisation e(Ln) of the circle is induced
by the parametrisation Ln of the line ln. This is an example for which the right
multiplier φ is trivial, as the parametrisation Ln of the inducing path ln is rational.

The series e(Ln) of even degree rational parametrisations constructed above is
equivalent to that described in [16].

The following proposition is easy to prove.

Proposition 2. For n ≥ 3 the weights of the induced rational parametrisation e(Ln)
of the circle are positive.

As each of the paths e(Ln) is equivalent to p(t) = (cos(2πt), sin(2πt)), it follows
that there exist right multipliers, φn : [0, 1] → [0, 1], such that on [0, 1] we have

p ◦ φn = e(Ln),

i.e. φn ‘transforms’ p from transcendental to rational form. The explicit form of φn

can be shown to be

φn(t) =
n

π
tan−1

(

2t− 1

γn

)

,

where

γn =
1 + cos π

n

4 sin π
n

.

It is easy to show that as n increases the rational parametrisations p ◦ φn approach
the ‘ideal’ (i.e., arc length) parametrisation of the circle.

5.3 Induced Rational Parametrisations of Circular Arcs

Positive weight, rational parametrisations of partial circles are also useful in appli-
cations and can be constructed using the same technique. For example, from

L4(t) = (1− t)(1, 0) + t
(

cos
π

3
, sin

π

3

)
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Fig. 3. Induced degree 6 rational parametrisation of the circle

we can construct

e(L4) =
1

‖L4‖2
L2
4,

which is a positive weight, degree 2, rational parametrisation of the unit circular arc
subtending 0 to 2π

3
on the parametric interval 0 ≤ t ≤ 1.

For the general degree-one function

L(t) = (1− t)(x0, y0) + t(x1, y1),

where t ∈ I , the corresponding quadratic rational function L2

‖L‖2
has weights:

ω0 = x20 + y20, ω1 = x0x1 + y0y1, ω2 = x21 + y21

and vertices, defined for ωi 6= 0, by:

v0 =
(x20 − y20, 2x0y0)

ω0
, v1 =

(x0x1 − y0y1, x0y1 + x1y0)

ω1
, v2 =

(x21 − y21, 2x1y1)

ω2
.

Hence if
(x0, y0) · (x1, y1) > 0

the weights are positive.

5.4 Induced Rational Parametrisations of the Non-Circular

Conic Sections

In the previous section it was shown how rational parametrisations of the circle
can be induced from rational (actually polynomial) parametrisations of straight line
segments. The circle may also be used as a primitive for inducing parametrisations
of curves. For example the ellipse, parabola and hyperbola may be written, in
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a suitable polar coordinate system, as a function of the circle p. Writing p = (p1, p2)
where p1(t) = cos(2πt) and p2(t) = sin(2πt) the hyperbola with implicit form

x2

a2
− y2

b2
− 1 = 0,

shown in Figure 4, has the parametric form

a(ǫ2 − 1)

1− ǫ cos(θ)
(cos(θ), sin(θ)) + (aǫ, 0) for 0 ≤ θ ≤ 2π.

−θ ε

θ 

θ 

θ ε

θ  = 0 θ  = π

θ ε

θ 

−θ ε

θ 

Fig. 4. Graph of the hyperbola x2

a2
− y2

b2
− 1 = 0

The left branch, h, has the parametric domain −θǫ < θ < θǫ where ǫ =
(a2+b2)

1

2

a

and θǫ = cos−1
(

1
ǫ

)

.

Hence h can be written as a path algebra function of the circular arc primitive
pǫ(θ) = (cos θ, sin θ), −θǫ ≤ θ ≤ θǫ as

eh(pǫ) =
a(ǫ2 − 1)

1− ǫpǫ1
pǫ + (aǫ, 0)

where pǫ = (pǫ1, pǫ2). This representation provides a means of inducing rational
parametrisations of h from rational parametrisations of pǫ.

A quadratic rational parametrisation of pǫ can be built in path algebra from the
degree one path

Lǫ(t) = (1− t)(1, 0) + t (cos θǫ, sin θǫ)

and the rotation transformation R−θǫ through −θǫ; we define it as a path algebra
function of Lǫ by

e(Lǫ) =
R−θǫ (Lǫ ∗ Lǫ)

‖Lǫ‖2
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and, writing e(Lǫ) =
1
Q
(P1, P2), we have

P1(t) = (1− t)2 cos θǫ + 2(1− t)t+ t2 cos θǫ,

P2(t) = −(1− t)2 sin θǫ + t2 sin θǫ,

Q(t) = (1− t)2 + 2(1− t)t cos θǫ + t2.

The rational quadratic arc e(Lǫ), which is defined on [0, 1] and shown in Figure 5,
satisfies

pǫ ◦ φǫ = e(Lǫ)

for some right-multiplier φǫ : [0, 1]→ [−θǫ, θǫ].

 θ ∈
x

y

− θ ∈

Fig. 5. Bézier arc pǫ ◦ φǫ for inducing a rational parametrisation of h

Applying φǫ to eh(pǫ) gives

eh(pǫ) ◦ φǫ = eh(pǫ ◦ φǫ)

=

(

a(ǫ2 − 1)

1− ǫpǫ,1 ◦ φǫ

)

p ◦ φǫ + (aǫ, 0)

=
a(ǫ2 − 1)(P1, P2) + (Q− ǫP1)(aǫ, 0)

Q− ǫP1
.

Using the relationships cos θǫ = a
c
, and sin θǫ = b

c
, where c =

√
a2 + b2, and the

expressions for P1, P2 and Q derived above we obtain the following quadratic rational
parametrisation of h on the interval 0 ≤ t ≤ 1:

eh(pǫ ◦ φǫ)(t) =
(1− t)2(−a, b) + 2t(1− t)(0, 0) + t2(−a, − b)

2(1− t)t
.

Whilst this not a standard rational Bézier form, due to the zero weights associated
with the basis polynomials (1−t)2 and t2, this rational representation of h is required
for one of the applications discussed later in the paper.
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6 APPLICATIONS IN GEOMETRIC MODELING

6.1 A Rotary Engine Combustion Chamber

The combustion chamber of the Wankel rotary engine has an epitrochoidal cross
section [7] of the form

pw(t) = (6 cos(2πt) + cos(6πt), 6 sin(2πt) + sin(6πt)); for 0 ≤ t ≤ .

The internal components of the engine and the cross section of the combustion
chamber are shown in Figure 6.

a) b)

Fig. 6. The Wankel rotary engine
a) The internal components
b) Chamber cross-section

The path pw can be written in the path algebra of the circle primitive p(t) =
(cos 2πt, sin 2πt) as

ew(p) = 6p+ p ∗ p ∗ p.

6.1.1 Global Parametrisations of pw

Now p is such that p◦φn = e(Ln), hence φn can be used to transform pw to a rational
form on [0, 1]; we have:
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ew(p) ◦ φn = (6p+ p ∗ p ∗ p) ◦ φn

= 6(p ◦ φn) + (p ◦ φn) ∗ (p ◦ φn) ∗ (p ◦ φn)

= 6e(Ln) + e(Ln) ∗ e(Ln) ∗ e(Ln)

=
6Ln

2n‖Ln‖4n + Ln
6n

‖Ln‖6n

which provides, for n ≥ 3, a positive-weight, degree 6n, rational representations of
the epitrochoid pw on the interval [0, 1].

The vertices vi = (xi, yi) and associated weights ωi for pw ◦φn can be calculated
by standard basis-conversion methods. The degree 18 path, corresponding to n = 3
and its Bézier polygon are shown in Figure 7. This example demonstrates that
global rational representations tend to be of high degree and can give rise to control
polygons having a generally non-intuitive shape.

Fig. 7. The single-segment, degree 18 path with Bézier vertices shown

A degree 6 global parametrisation of pw is possible and this can be induced using
the well-known quadratic parametrisation of the circle defined by 1

1+t2
(1 − t2, 2t)

on (−∞,∞). However, this parametrisation of pw has a number of disadvantages
from the point of view of geometric computation; for example (i) the parametric
domain is not finite, and (ii) zero weights occur. A degree 15 parametrisation can
be induced from Chou’s quintic parametrisation of the circle [3], and this is probably
the lowest possible degree parametrisation of pw without these drawbacks.
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6.1.2 Local Parametrisation of pw

By exploiting the geometric symmetry of the epitrochoid, a lower-degree rational
representation of pw may be constructed using the path algebra. Using L4 we in-
duce the positive-weight rational parametrisation e(L4) of the 1

4
-circle in the first

quadrant. Applying the associated rational-conversion function φ to pw we obtain

ew(p) ◦ φ = 6(p ◦ φ) + (p ◦ φ)3

= 6e(L4) + e(L4) ∗ e(L4) ∗ e(L4),

which is a degree 6 positive-weight rational representation of the 1
4
-epitrochoid - as

shown in Figure 8. For this 1
4
-path solution, the control polygon more clearly reflects

the shape of the path. Sánchez-Reyes [17] has obtained a similar parametrisation
of this 1

4
-path from a different perspective, however the methods used appear to

preclude the construction of global parametrisations.

Fig. 8. The 1
4 -path of degree 6 with Bézier vertices shown

6.2 Joukowski Airfoils

The classical definition of the Joukowski airfoil takes the form [13]

J(z) =
1

2

(

z +
k2

z

)

,

where z is constrained to a circle C in the complex plane passing through the point
z = −1 and such that the point z = 1 lies inside C. The circle C is related to the
unit circle p by an affine transformation, written g, comprising a combination of
scale and translation transformations such that the conditions on C are satisfied.
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The function J can be written

J(z) =
1

2

(

z +
k2z̄

‖z‖2
)

from which it follows that the Joukowski profiles have the CPA form

eJ(p) =
1

2

(

gp +
k2

‖gp‖2Agp
)

in the circle algebra {p}r. Here A is the affine transformation A(x, y) = (x,−y) and
the transformation g of R2 has the form gξ = λξ + a, for ξ ∈ R2, λ > 0 and a ∈ R2.
Hence

eJ(p) =
1

2

(

λp + a +
k2A(λp+ a)

2λp · a+ λ2 + ‖a‖2
)

and, applying the right-multiplier φn, we obtain

eJ(p) ◦ φn = eJ(p ◦ φn)

=
1

2

(

λe(Ln) + a+
k2A(λe(Ln) + a)

2λe(Ln) · a+ λ2 + ‖a‖2
)

.

Substituting e(Ln) = L2n
n

‖Ln‖2n
gives the explicit form a degree 4n, exact, positive

weight (for n ≥ 3), rational representation of the Joukowski profile eJ(p) on the
interval [0, 1]. Figure 9 shows the profile, together with its Bézier vertices and
the geometric separation of points for equal parametric separation, for the circle
corresponding to λ = 1.13344855, a = (0.125, 0.13813263) and for k = 1 and n = 3.

That the weights of eJ(p) are positive for all n ≥ 3 is a consequence of the
following proposition.

Proposition 3. If p ◦ φ is a positive-weight rational parametrisation of the unit
circle then eJ(p) ◦ φ is a positive-weight rational parametrisation of the Joukowski
airfoil.

Proof. By hypothesis

p ◦ φ =
(X, Y )

Q

for some polynomials X, Y,Q where Q(t) =
∑

i(
n
i )(t

i)(1 − t)n−iωi with ωi > 0 and

0 ≤ t ≤ 1. Since Q ≥ 0 on [0, 1] it follows from ‖ (X,Y )
Q

‖ = 1, or equivalently

‖(X, Y )‖ = |Q|, that ‖(X, Y )‖ = Q on [0, 1]. We therefore have, denoting the angle



Induced Parametrisation and its Applications in Geometric Computation 447

Fig. 9. Joukowski airfoil showing defining circle and Bézier vertices

between (X, Y ) and a as δ,

eJ(p) ◦ φ =
1

2

(

λp ◦ φ+ a+
k2A(λp ◦ φ + a)

2λ(p ◦ φ) · a+ λ2 + ‖a‖2
)

=
1

2

(

λ
(X, Y )

Q
+ a+

k2QA(λ(X, Y ) + a)

2λ(X, Y ) · a+Q(λ2 + ‖a‖2)

)

=
1

2

(

λ
(X, Y )

Q
+ a+

k2QA(λ(X, Y ) + a)

Q(2λ‖a‖ cos δ + λ2 + ‖a‖2)

)

=
1

2

(

λ
(X, Y )

Q
+ a+

k2QA(λ(X, Y ) + a)

Q((λ+ ‖a‖ cos δ)2 + ‖a‖2(1− cos2 δ))

)

.

2

Writing µ = (λ+ ‖a‖ cos δ)2 + ‖a‖2(1− cos2 δ) it is clear that µ > 0 and, as Q
has positive weights, it follows that the denominator 2µQ of eJ(p) ◦ φ has positive
weights. Hence result.

Recent work with Joukowski foils includes that of [10, 11] and [19].

6.3 Hyperbola Airfoils

The inverse of a path q, with respect to a circle C of radius r and centre ξ = (ξx, ξy),
can be written

q∗ = ξ + r2
(q − ξ)

‖q − ξ‖2 .
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A family of airfoils can be generated by inverting a branch of a hyperbola with
respect to a circle having centre at, or near to, the focus of the other branch [14].
In the notation of Section 5.4 it follows that the inverse, h∗, of h with respect to C
can be written in path algebra form as

h∗ = ξ + r2
(h− ξ)

‖h− ξ‖2 .

Earlier it was shown that h can be expressed as a path algebra function eh(pǫ)
in {pǫ}r; it follows that h∗ can be written as

eh∗(pǫ) = ξ + r2
(eh(pǫ)− ξ)

‖eh(pǫ)− ξ‖2 .

Applying the right multiplier φǫ gives

eh∗(pǫ) ◦ φǫ = ξ + r2
(eh(pǫ) ◦ φǫ − ξ)

‖eh(pǫ) ◦ φǫ − ξ‖2 .

Writing the rational function eh(pǫ) ◦ φǫ as
H
Qh

, computed explicitly in Section 5.4,
yields

eh∗(pǫ) ◦ φǫ =
ξ‖H −Qh ξ‖2 + r2(H −Qh ξ)Qh

‖H −Qh ξ‖2
,

which is a quartic rational parametrisation of the inverted path h∗.
The Bézier vertices vi = (xi, yi) and the normalised weights ωi of the foil are

given, as functions of the hyperbola and the inverting circle, in the following table:

i : xi yi ωi

0 : ξx ξy 1

1 : 2aξ2x−2bξxξy−ar2

2(aξx−bξy)

2aξxξy+br2−2bξ2y
2(aξx−bξy)

aξx−bξy
a2+b2

2 :
ξx(a2−b2+2(ξ2x+ξ2y)−2r2)

a2−b2+2(ξ2x+ξ2y)

ξy(a2−b2+2(ξ2x+ξ2y)−2r2)

a2−b2+2(ξ2x+ξ2y)

a2−b2+2(ξ2x+ξ2y)

3(a2+b2)

3 : 2aξ2x+2bξxξy−ar2

2(aξx−bξy)

2aξxξy−br2+2bξ2y
2(aξx−bξy)

aξx+bξy
a2+b2

4 : ξx ξy 1.

Table 1. Vertex and weight data for the hyperbola foil h∗

Hence a rational parametrisation of the circular arc pǫ induces a rational pa-
rametrisation of the left branch h of a hyperbola, which in turn induces a rational
parametrisation of the hyperbola foil via the path algebra expression eh∗(pǫ). These
general formulae for the vertices and weights, contained in the table, enable the
foils to be constructed directly from specified values of a, b, ξ and r — obviating
the requirement to invoke the inversion procedure explicitly. Figure 10 shows the
graph of the airfoil h∗, the Bézier polygon of the induced quartic parametrisation,
the hyperbola h, the inverting circle and corresponding points on h and h∗.
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Fig. 10. The induced quartic rational parametrisation of h∗

6.4 Rational Alternatives to the Fermat Curves and the Super-Ellipses

6.4.1 The Fermat Curves

For even values of n the curves are closed and bounded and are of increasing ‘fullness’
as n→ ∞, as shown in Figure 11.

–1

–0.5

0.5

1

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1x

Fig. 11. The Fermat curves for n = 4, 6, 8, 10, 12

For odd values of n a set of closed ‘Fermat’ curves may be defined by the implicit
equations

|x|n + |y|n − 1 = 0.

The graphs of these curves are similar to the even integer cases and are of
class Cn−1.
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6.4.2 The Super-Ellipses

The super-ellipses are more general than the Fermat curves and have the implicit
forms

|x
a
|k + |y

b
|k − 1 = 0

for a, b ∈ R \ 0 and where k ∈ R with k > 2.
If k is rational then it can be shown [18] that the functional equation x(t)k +

y(t)k = 1 has rational solutions for x and y if and only if k = 2/q for q ∈ Z and
q ≥ 1.

It follows, for example, that no rational parametrisations of the super-ellipses
can exist.

6.4.3 Alternative Paths with Global Rational Parametrisations

The Fermat and super-ellipse curves are primitives for geometric modeling [8]. The
Piet Hein super-ellipse corresponds to the choice k = 5/2 and has been applied in
road design and architecture [20].

The family of curves defined by

pF,n(θ) =
1

n− 1
[n(cos 2πt, sin 2πt)− (cosn 2πt, sinn 2πt)] ; for 0 ≤ t ≤ 1,

for integer n ≥ 3 have graphs similar to those of the Fermat curves - as shown in
Figure 12; however, rational parametrisations of pF,n can be constructed.

Fig. 12. A family of global rational curves

In path algebra notation we have

eF,n(p) =
1

n− 1

[

np− 1

2
(pn + A(pn), pn −A(pn))

]

on 0 ≤ t ≤ 1,



Induced Parametrisation and its Applications in Geometric Computation 451

where p(t) = (cos(2πt), sin(2πt)). The global rational parametrisation, eF,n(p) ◦ φ3,
of pF,n is therefore of degree 6n. The degree 18 path eF,3(p) ◦ φ3 and the 1

4
-path

local rational parametrisation eF,3(p)◦φ of degree 6 is shown in Figure 13. A similar
family of rational paths may be defined as alternatives to the super-ellipses.

a) b)

Fig. 13. Rational parametrisations of pF,3
a) Global degree 18 path
b) Local degree 6 path

7 SUMMARY AND CONCLUSIONS

The paper has described an elegant induction procedure for the explicit determina-
tion of rational parametrisations of many curves and surfaces. The representations
are exact and do not require the direct input of vertex or weight information. The
examples given have shown how many paths, specified in terms of transcenden-
tal functions, may be converted to a rational form compatible with most current
computer graphics and geometric computation systems. Using traditional sweep-
ing, lofting and scaling techniques enables exact rational surface patches to be
constructed from the rational profiles constructed in the paper. Some examples
are shown in Figure 15; the engine chamber wall is defined by the rational patch
sw : [0, 1] × [0, 1] → R3, where sw(t, u) = (ew ◦ φ3(t), h u) and h is the height of
the wall, and the wing is constructed by scaling the rational airfoil profile along the
rational longitudinal path shown in Figure 14.

The paper concludes by considering alternatives to the Fermat paths - for which
it is known that rational parametrisations do not exist. The alternatives suggested
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Fig. 14. Degree 7 rational longitudinal path for construction of Joukowski surface

a) b)

Fig. 15. Sample rational surfaces rendered from the induced parametrisations
a) Rotary engine chamber wall
b) Joukowski wing

have global rational parametrisations, are intrinsically C∞ with C∞ parametrisa-
tions.
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