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Abstract. We present very sharp separation results for Turing machine subloga-
rithmic space complexity classes which are of the form: For any, arbitrarily slow
growing, recursive nondecreasing and unbounded function s there is a k ∈ N and
an unary language L such that L ∈ SPACE(s(n) + k) \ SPACE(s(n − 1)). For
a binary L the supposition lim s = ∞ is sufficient. The witness languages dif-
fer from each language from the lower classes on infinitely many words. We use so
called demon (Turing) machines where the tape limit is given automatically without
any construction. The results hold for deterministic and nondeterministic demon
machines and also for alternating demon machines with a constant number of alter-
nations, and with unlimited number of alternations. The sharpness of the results
is ensured by using a very sensitive measure of space complexity of Turing compu-
tations which is defined as the amount of the tape required by the simulation (of
the computation in question) on a fixed universal machine. As a proof tool we use
a succint diagonalization method.
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1 INTRODUCTION

One of the basic tasks of the theory of computational complexity is separation of
complexity classes. For a given computational device and for a given complexity
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measure which controls the computational resource in question it is necessary to find
the smallest enlarging of the complexity bound which strengthens the computational
power. In the 60’s and 70’s this question arose for classical Turing machines and
for time and space complexity measures (e.g. [2, 12, 13, 14] — and newly [7]).
Whenever a new computational device or a new complexity measure are defined it
is quite natural (and necessary) to solve this question.

In the 90’s such a situation arose in the theory of computations on Turing
machines with sublogarithmic tape ([1, 3, 4, 5, 8, 9, 10, 15]). However, in the context
of this theory there was a disagreable technical difficulty, namely the impossibility
to construct the space bounds deeply below logn. This difficulty was solved in a
radical manner; in [11] the authors introduced so-called demon machines — a new
type of Turing machines with sublogarithmic tape where the space bound is given
in advance and gratis. The demon machines are treated also in [15, 6]. Due to this
approach we can work with arbitrarily small limit functions and we can concentrate
only on the computability within these bounds. Thus it is easier to prove some
separation results also below log. Geffert solves this problem and among others
in [6, 7] he proves some separation results of the classical form: If the separation
condition lim s2(n)/s1(n) = ∞ holds, then SPACE(s2(n)) ⊃ SPACE(s1(n)).

We want to prove some separation results with a finer separation condition. Of
course, we must use a modified, more sensitive, space complexity measure which
involves also the number of symbols which machines may write on their worktapes
and, moreover, the amount of their finite control states. The complexity of a com-
putation of a Turing machine is given by the amount of the tape required by its
simulation on a fixed universal machine. This approach gives us the possibility to
prove the results mentioned in the Abstract. Moreover, the fact that the results also
hold for alternating demon machines is not without any interest since the situation
with space complexity classes for alternating machines below log is quite different
from that over log [1, 4, 5, 10, 15].

As a proof tool we use a general diagonalization method. Its ancestor — a re-
latively cumbersome construct — was used for separating space complexity classes
in [16] and for separating complexity classes defined by the amount of information
yielded by an oracle in [17, 18]. The final version of this diagonalization method is
very succint and clear. It was used in [19] for time complexity classes and now for
the first time it is used for space complexity. Due to its generality the presented
proofs can be interpreted as the proofs for a number of various Turing machines (e.g.,
deterministic, nondeterministic, alternating Turing machines, Turing machines with
an auxiliary pushdown store, and with an oracle).

2 THE BASIC COMPUTATIONAL MODEL

As a standard model (acceptor) of computation we shall consider nondeterministic
Turing machine having a two-way read-only input tape and a separate semi-infinite
two-way read-write worktape.
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Definition 2.1 ([6]). For any function s, a demon s-tape bounded machine begins
its computation with a special tape limit marker placed exactly s(n) positions away
from the initial position of the worktape, for every input of length n. The tape
marker can be detected (and cannot be moved). The machine rejects if it ever tries
to use more than s(n) tape.

Alternating demon s-tape bounded machines may have their computation trees
infinite since for small functions s(n) below log the demon machines have difficulties
to avoid cycles in their computations. For the evaluation of an infinite computation
tree we effectively construct its reduced finite version. We cut each its branch at
the moment when some configuration is repeated for the first time. The leaves of
this kind are marked as rejecting. Then we evaluate the tree in the usual way.

We fix a universal machine U . On the input tape, U reads only the symbols 0, 1
and the endmarkers. On the worktape, U works with 0, 1, b and the endmarkers. The
programs of demon machines are well-structured strings of 0’s and 1’s. U starts its
computation in the situation when the program of the simulated machine is placed
in the leftmost part of the worktape. U has the property that for each demon
s(n)-tape bounded machine M using on the worktape only the symbols 0, 1, b and
the endmarkers, U simulates M on the tape of the length s(n) + |pM | where pM is
the program of M . (Moreover, for each m ≥ 4 there is a constant km such that
the U -simulation of the machines which use m worktape symbols increases the tape
complexity only by the multiplicative konstant km).

For tape bounded deterministic and nondeterministic demon machines and also
for alternating machines with a fixed number of alternations and for machines with
unlimited number of alternations we define complexity classes as follows.

Definition 2.2. Let p be a program of a machine and s be a function. By Ls(p) we
mean the language of words x which are accepted by U when U starts with the pro-
gram p in the leftmost part of its worktape and with its worktape endmarker on the
position s(|x|) + |p|. Further we define SPACE(s(n)) =df {Ls(p)|p is a program of
a machine}.

Let s, s1 be functions, s1(n) < s(n). We say that s1 is s-constructible iff there
is a deterministic s(n)-tape bounded demon machine M such that on the inputs of
length n M ends with 1 on the s1(n)-th position (all other positions till s(n)− 1 are
blank).

3 THE DIAGONALIZATION THEOREM

The principle of our diagonalization can be formulated without any notions con-
cerning computability or complexity.

For languages L1, L2 we say that L1 is equivalent to L2 (L1 ∼ L2) iff L1, L2 differ
only on a finite number of words. For a class C of languages, by E(C) we mean the
class {L′|(∃L ∈ C)(L′ ∼ L)}.
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Theorem 3.1 (The d-theorem, [19]). Let L be a language and let C be a class of
languages indexed by a set S, C = {Lp : p ∈ S} . Let R be a language and let
F be a mapping, F : R → S, such that (∀p ∈ S)(∃∞r ∈ R)(F (r) = p). Let z be
a mapping, z : R → N , such that for each r ∈ R, z(r) satisfies the following two
conditions: (a) r1z(r) ∈ L ↔ r /∈ LF (r), (b) (∀j, 0 ≤ j < z(r))(r1j ∈ L ↔ r1j+1 ∈
LF (r)). Then L /∈ E(C).

Comment. In our application, C will be the complexity class to be diagonalized
over, and S will be the set of programs, R the set of their codes. Our task
is to construct a diagonalizer M which will accept a language L, L 6∈ E(C).
The features of M are well described by the conditions (a),(b). On the input
r1j, M will derive the program F (r) and then M will try whether the input
is fully padded (j = z(r); if so, then M will decide whether r ∈ LF (r) (cf. the
condition (a)). For inputs which are not fully padded, M will simulate the
program F (r) on the input with one additional ‘1’ (cf. the condition (b)). More
details can be found in the proofs of theorems below.

This diagonalization can be compared with the classical one from the point of
computational complexity. The classical diagonalization construct the desired L in
such a way that r ∈ L ↔ r /∈ LF (r). We know that the decision whether r ∈ LF (r)

requires a large amount of computational sources (space, time, . . . ), especially in
case of nondeterministic computations. In our diagonalization we use the fact that
the complexity is defined in relation to the length of inputs. To decide whether
r ∈ LF (r) we use very long inputs r1z(r); so the resulting complexity is very small and
negligible. The largest consumption of computational sources is now concentrated
in our condition b). Given an input of length n, we simulate a computation on the
input of length n+1. Even in case of nondeterministic computations the respective
increase of complexity is moderate.

Proof. By contradiction. Suppose L ∈ E(C). Hence L ∼ Lp for some p ∈ S.
Moreover, there is an r ∈ R such that F (r) = p and the languages L, LF (r) (=Lp)
differ only on words shorter than r; in particular for each j ∈ N, r1j ∈ LF (r) iff
r1j ∈ L. Hence by condition (b) r ∈ L ↔ r1z(r) ∈ L, and then by condition (a)
r1z(r) ∈ L ↔ r /∈ L. A contradiction. 2

4 THE SEPARATION RESULTS

We apply the previous theorem to the complexity classes induced by deterministic
and nondeterministic demon machines or by alternating demon machines with a fixed
number of alternations or by machines with unlimited number of alternations. For
each such type of machines the following two theorems hold.

Theorem 4.1. Let s be a recursive function, lim s(n) = ∞. Then there is a con-
stant k ∈ N and a language L ⊆ 1+0+1∗ such that L ∈ SPACE(s(n) + k)− E
SPACE(s(n− 1)).
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Proof. We shall apply our d-theorem. Let S be a recursive set of programs of
the machines in question.We put C =df SPACE(s(n − 1)). For p ∈ S we define
Lp = Ls(n−1)(p). Then C = {Lp|p ∈ S}. Further we define the set of program codes
R =df {1k0l| |bin(k)| ≤ s(k + l) − 1 ∧ bin(k) ∈ S ∧ (∀j)(s(k + l) ≤ s(k + l + j))},
and for r = 1k0l ∈ R, F (r) =df bin(k) (where bin(k) is the binary code of k). We
see that (∀p ∈ S)(∃∞r ∈ R)(F (r) = p).

Our diagonalizer M first checks whether the input is of the form 1+0+1∗. If
the input is of the form 1k0l1j then M tries to construct bin(k) on its worktape.
If bin(k) = p ∈ S, then, using a recursive procedure, M tries to decide whether
1k0l ∈ Lp. If M is able to decide whether 1k0l ∈ Lp, not using more space than
s(k+ l+j)−1, it accepts iff 1k0l /∈ Lp. Otherwise M simulates p on 1k0l1j+1 (as U).

Let r = 1k0l ∈ R. We define z(r) =df min{j|on r1j M can decide whether r ∈
LF (r)}. We see that r1z(r) ∈ L(M) iff r /∈ LF (r) (the condition (a) of the d-theorem).
Further, for j < z(r) r1j ∈ L(M) iff r1j+1 ∈ Ls(n−1)(F (r)) = LF (r) (the condition (b)
of the d-theorem). Hence, L(M) /∈ E (C) = E (SPACE(s(n− 1))).

Since the universal machine U uses only the symbols 0, 1, b and an endmarker,
we are able to construct our diagonalizer M in such a way that M uses only these
symbols as well. Hence, the U -simulation of the segment of length s(n) of the
worktape of M requires s(n) + |pM | cells only. Therefore, L ∈ SPACE(s(n) + k)
for some k ∈ N . 2

The proof for the case of unary witness language L is more complicated.

Theorem 4.2. Let s be a recursive function such that there is an s-constructible
nondecreasing and unbounded function s1. Then there is a constant k ∈ N and
a language L ⊆ 1+ such that L ∈ SPACE(s(n) + k)− E SPACE(s(n− 1)).

Proof. We prepare the situation for an application of the d-theorem. Let S be
a recursive set of programs of the machines in question, recognizing unary langu-
ages. For p ∈ S we define Lp =df Ls(n−1)(p). We put C =df SPACE(s(n − 1)) =
{Lp|p ∈ S}.

Our diagonalizer M will compute as follows. M first checks whether the input
is an unary string. Then, on its worktape, M constructs the value of s1(n), that is,
the corresponding position of the worktape is rewritten by the symbol “1”.

Within the first s1(n) − 1 cells of its worktape, M will perform an initial part
of a recursive process P which we shall describe. P will give us the possibility to
define R, F and z which we need for the application of the d-theorem.

P contains a generator of the programs p1, p2, . . . from S such that if {pi} is the
generated sequence then (∀p ∈ S)(∃∞i)(pi = p).

P starts with the generation of p1. At this moment some amount a1 of the
worktape has been used. Then P constructs n1 =df min{n|s1(n)− 1 ≥ a1}. Then P
decides whether 1n1 ∈ Lp1 or not.
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If P has generated pi, constructed 1ni and decided whether 1ni ∈ Lpi then (on
the non-used cells) P generates pi+1. At this moment some amount ai+1 of the
worktape has been used. Then P constructs
ni+1 =df min{n|s1(n)− 1 ≥ ai+1} and then P decides whether 1ni+1 ∈ Lpi+1

or not.
Now, we define ri =df 1ni, R =df {ri|i ∈ N}, F (ri) =df pi. Further, z(ri) is the

first m such that s1(|ri| +m) − 1 cells suffices for P to generate pi, to construct ri
and to decide whether ri ∈ Lpi.

We continue the description of M . When P is stopped because of the lack of
space on the worktape, P has used all s1(n) − 1 cells. Then “the result of P”
denotes the last generated pi and also the decision whether ri ∈ Lpi if this decision
is achieved. (Let i(n) be the index of the result (pi) of P when computing on the
input word of length n. Since s1(n) is a nondecreasing function the sequence {in}
is nondecreasing, too.)

If this decision is achieved, then the input is of the form ri1
j, j ≥ z(ri). M ac-

cepts iff ri /∈ Lpi . Let L be the language accepted by M . We have ri1
z(ri) ∈ L ↔

ri /∈ Lpi = LF (ri) — the condition (a) of the d-theorem is satisfied.
If the decision in question is not achieved, then M computes as the universal

machine U on the input 1n+1(= ri1
j+1) with the program pi on the leftmost part of

the worktape. We have ri1
j ∈ L ↔ ri1

j+1 ∈ Lpi = LF (ri) (the condition (b) of the
d-theorem is satisfied). We have proven L /∈ E SPACE(s(n− 1)).

Since the universal machine U uses only the symbols 0, 1, b and an endmarker,
we are able to construct our diagonalizer M in such a way that M uses only 0, 1, b,
and the endmarker, too. Hence, the U -simulation of the segment of length s(n) of
the worktape of M requires s(n)+ |pM| cells only. Therefore L ∈ SPACE(s(n)+k)
for some k ∈ N . 2

Remark 1. It does not seem to be possible to convert the separation results into
the hierarchy results of the form SPACE(s(n) + k) ⊃ SPACE(s(n− 1)) since
there are such recursive functions s that the sets {n|s(n) 6= s(n − 1)} are of
very high complexities. This is a negative consequence of the elegance of the
definition of the demon machines, and of their non-constructiveness. There is
an open question whether there is a reasonable class of small recursive functions
such that the result conversion mentioned above is possible.

Remark 2. We are also able to prove the hierarchy results for bounds over log(n).
In this case we can use the concept of constructible bounds s(n); the computation
starts by a deterministic part using only s(n) cells after which the endmarker
is posed on s(n)-th cell of the worktape. If such a machine M is simulated on
a universal machine U which has its own tape limit, the endmarker of M is
simulated as the first 1 to the left from the endmarker of U . In case of such
constructible bounds we are able to prove very sharp hierarchies. For linear and
sublinear bounds, enlarging of the bound by an additive constant increases the
computation power of the machines in question (cf. [16]).

Remark 3. Similar results can be proven for machines with one auxiliary push-
down store for both bounds below logn (demon bounds) and bounds over logn
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(constructible bounds). The structure of our proof remains unchanged. The
recursive procedure — used for sufficiently padded inputs r1z(r) — may be pow-
erful enough to decide whether r ∈ LF (r) also for machines with one auxiliary
pushdown. The second branch of computation of our diagonalizer — the simu-
lation — is easy also in case of machines with an auxiliary pushdown. Hence,
our separation (and hierarchy) results remain valid also for machines with an
auxiliary pushdown store.

Remark 4. Similar results can be proven for machines with a recursive oracle. Such
a machine has a special — oracle — write-only tape and three special states —
QUERY, YES, NO. If the machine enters the state QUERY then the next state
is YES iff the word written on the oracle tape belongs to the oracle, and NO

otherwise. After this action the oracle tape is erased. Our diagonalizer may
be powerful enough to decide the recursive oracle when computing on the fully
padded inputs. The second branch of its computation — the simulation — is
easy. Hence, also for machines with an oracle our separation results remain
valid.

Remark 5. The same proof structure is (probably) applicable for Turing machines
with an oracle where not only the space but also the use of oracle are mea-
sured (and bounded with respect to the length of inputs) as the computational
resources. E.g. the bounds on questions to the oracle can limit the number of
questions or the sum of lengths of questions or the maximal length of questions.
The necessity to measure two computational resources (space, oracle) would im-
ply some rearrangements in the statement of the possible theorem and in its
proof.
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