
Computing and Informatics, Vol. 21, 2002, 607–616

REFINEMENT OF THE ALTERNATING SPACE
HIERARCHY∗

Viliam Geffert, Norbert Popély

Department of Computer Science

P. J. Šafárik University

Jesenná 5, 041 54 Košice, Slovakia

e-mail: {geffert, popely}@kosice.upjs.sk

Manuscript received 2 May 2001; revised 27 June 2002

Communicated by Ladislav Hluchý

Abstract. We refine the alternating space hierarchy by separating the classes
Σk-SPACE(s(n)) and Πk-SPACE(s(n)) from ∆k-SPACE(s(n)) as well as from
∆k+1-SPACE(s(n)), for each s(n) ∈ Ω(log log n) ∩ o(log n), and k ≥ 2. We also
present unary (tally) sets separating Σ2-SPACE(s(n)) and Π2-SPACE(s(n)) from
∆2-SPACE(s(n)) as well as from ∆3-SPACE(s(n)).

Keywords: Computational complexity, sublogarithmic space, alternation

1 INTRODUCTION AND PRELIMINARIES

The problem of alternating space hierarchy has received a lot of attention in the last
decade. By inductive counting [8, 11], nondeterministic space classes NSPACE(s(n))
are closed under complement, for each s(n) ∈ Ω(logn). This implies that the hie-
rarchy of language classes recognizable by s(n) space bounded machines making
a constant number of alternations collapses to the first level, i.e.,

Σk-SPACE(s(n)) = Πk-SPACE(s(n)) = NSPACE(s(n)),

∗ This work was supported by the Slovak Grant Agency for Science (VEGA) under
contract #1/7465/20 “Combinatorial Structures and Complexity of Algorithms.”

608 V. Geffert, N. Popély

for each k ≥ 1 and each s(n) ∈ Ω(logn). Since the technique of inductive count-
ing uses the assumption s(n) ∈ Ω(logn), the above collapse does not extend to
sublogarithmic space bounds.

Later, in a series of independent papers [1, 6, 10], it was shown that the above
alternating hierarchy is infinite for s(n) ∈ Ω(log logn) ∩ o(logn), i.e., both
Σk-SPACE(s(n)) and Πk-SPACE(s(n)) are proper subsets of Σk+1-SPACE(s(n)),
as well as of Πk+1-SPACE(s(n)), for each k ≥ 1.

For s(n) ∈ o(log logn), the corresponding complexity classes contain only regular
languages, by [9].

Here we shall prove a more subtle structure of the alternating space hierarchy
for space bounds between log logn and logn. For each k ≥ 2, we shall present a lan-
guage Lk that can be accepted both by Σk+1-alternating and Πk+1-alternating ma-
chines in space O(log logn), but neither by a Σk-alternating nor by a Πk-alternating
machine in space o(logn). This gives, for each k ≥ 2 and s(n) ∈ Ω(log logn) ∩
o(logn), that ∆k-SPACE(s(n)) is a proper subset of both Σk-SPACE(s(n)) and
Πk-SPACE(s(n)), and, in turn, both Σk-SPACE(s(n)) and Πk-SPACE(s(n)) are
proper subsets of ∆k+1-SPACE(s(n)).

The situation is not so clear if we restrict the above classes to unary (tally)
languages, i.e., to languages over a single letter alphabet. Here we have, by [5],

unary–Σ1-SPACE(s(n)) = unary–Π1-SPACE(s(n)) = unary–∆1-SPACE(s(n)),

for each s(n), independent of whether s(n) ∈ Ω(logn), together with [4]

unary–Σ2-SPACE(s(n)) 6= unary–Π2-SPACE(s(n)),

i.e., the collapse at the first level does not imply the collapse at the higher le-
vels. Further, the classes at the second level are incomparable, from which we have
that unary–∆2-SPACE(s(n)) is a proper subset of both unary–Σ2-SPACE(s(n)) and
unary–Π2-SPACE(s(n)), and that the unary hierarchy does not collapse below the
level two, for s(n) between log logn and logn.

It is not known whether the alternating hierarchy is infinite in the unary case,
or if it consists of a finite number of distinct levels. Here we shall raise the alter-
nating hierarchy “half a level up”, by presenting a language that belongs to both
unary–Σ3-SPACE(log logn) and unary–Π3-SPACE(log logn), but that is contained
neither in unary–Σ2-SPACE(o(logn)), nor in unary–Π2-SPACE(o(logn)). Summing
up, we can separate unary–Σ2- and unary–Π2-SPACE(s(n)) both from unary–∆2-
SPACE(s(n)) and from unary–∆3-SPACE(s(n)).

We first briefly review some basic definitions and notations used throughout.

We shall consider the standard Turing machine having a finite control, a two-
way read-only input tape with the input enclosed in two endmarkers, and a separate
semi-infinite two-way read-write worktape, initially empty. The reader is assumed
to be familiar with the notion of an alternating Turing machine, which is, at the
same time, a generalization of nondeterminism and parallelism [1, 2, 6, 10].

Refinement of the Alternating Space Hierarchy 609

For s(n) : IN → IN, we call an alternating machine s(n) space bounded, if, for
each input of the length n, no reachable configuration uses more than s(n) cells on
the worktape.

The class of languages recognizable by machines making at most k − 1 alter-
nations between existential and universal configurations, starting from the initial
configuration that is existential (universal), and space bounded by O(s(n)), will be
denoted by Σk-SPACE(s(n)), or Πk-SPACE(s(n)), respectively.

Further, ∆k-SPACE(s(n)) denotes Σk-SPACE(s(n)) ∩ Πk-SPACE(s(n)).
By unary–Σk-SPACE(s(n)), unary–Πk-SPACE(s(n)), and unary–∆k-

SPACE(s(n)), we denote the corresponding space complexity classes restricted to
unary (tally) languages, i.e., to languages over a single letter alphabet.

The above definition corresponds to so-called strongly space bounded machines
(worst case cost). We shall not consider weakly space bounded machines here.
(Weak definition of space complexity considers the best cost of acceptance; for each
accepted input of the length n, there exists at least one accepting computation not
using more space than s(n)). For more differences, see [12].

2 ALTERNATING HIERARCHY IN BINARY CASE

Now we are ready to state and prove main theorems, refining the alternating space
hierarchy. We first introduce some known results presented in [6], separating the
complexity classes Σk-SPACE(o(logn)) from Πk-SPACE(o(logn)), for k ≥ 2. The
languages separating these classes have a simple block structure. The structure of
the blocks can be described by a sequence of regular languages R2, R3, R4, . . . Then
the separating languages Sk and Pk are defined, by induction on k ≥ 2.

Definition 1. Let {0, 1} denote a two-letter alphabet. Then

R2 = 1+,

Rk = 0(Rk−10)
+, for each k > 2.

Further, let
f(n) = the first number that does not divide n.

Then

S2 = {1n : f(n) ≤ max{f(1), . . . , f(n− 1)}},

P2 = {1n : f(n) > max{f(1), . . . , f(n− 1)}},

Sk = {w ∈ Rk : w = 0w10w20 . . . 0wℓ0,

∃j ∈ {1, . . . , ℓ} : wj ∈ Pk−1 & w1, . . . , wℓ ∈ Rk−1},

Pk = {w ∈ Rk : w = 0w10w20 . . . 0wℓ0,

∀j ∈ {1, . . . , ℓ} : wj ∈ Sk−1 & w1, . . . , wℓ ∈ Rk−1},

for each k > 2.

610 V. Geffert, N. Popély

Theorem 1 ([6]). Pk ∈ Πk-SPACE(log logn) and Sk ∈ Σk-SPACE(log logn), for
each k ≥ 2, but Pk 6∈ Σk-SPACE(s(n)) and Sk 6∈ Πk-SPACE(s(n)), for each k ≥ 2
and for each s(n) ∈ o(logn).

This implies that there exists an O(log logn) space bounded Σk-alternating ma-
chine NSk

recognizing Sk, as well as a Πk-alternating machine NPk
recognizing Pk.

Now we can present a language Lk, that separates ∆k+1-SPACE(log logn) from
the class Πk-SPACE(o(logn)) ∪ Σk-SPACE(o(logn)).

Definition 2. Lk = {w1$w2 : w1 ∈ (Sk ∪ {ε}) & w2 ∈ (Pk ∪ {ε})}.

In the next two lemmas, we will show that Lk ∈ ∆k+1-SPACE(log logn).

Lemma 1. For each k ≥ 2, Lk ∈ Πk+1-SPACE(log logn).

Proof. We have to show that there exists a Πk+1-alternating machine MPk+1
recog-

nizing Lk in O(log logn) space. Initially, the machine MPk+1
branches universally

into the following two processes:

1. The first process accepts, if w1 = ε. Otherwise, it alternates to the existential
phase and then it simulates the machineNSk

on the input w1, imitating the right
endmarker at the position of the special symbol “$”. The first process does not
use space above O(log logn), because the machine NSk

works in O(log logn)
space.

2. The second process moves its head to the right until it finds the symbol “$”,
which, from this point forward, represents the left endmarker for it. Then the
process checks whether w2 = ε. If yes, it accepts. Otherwise, without alter-
nation, it simulates the machine NPk

on the input w2. Clearly, this does not
require more space than O(log logn), because the machine NPk

recognizing the
language Pk works in O(log logn) space.

2

Lemma 2. For each k ≥ 2, Lk ∈ Σk+1-SPACE(log logn).

Proof. Now we have to present a Σk+1-alternating machine MSk+1
recognizing Lk.

This machine proceeds as follows. Initially, in an existential phase, MSk+1
checks

whether w1 = ε and whether w2 = ε.

1. If w1 = ε and w2 = ε, then MSk+1
halts and accepts.

2. If w1 = ε but w2 6= ε, the machine alternates to the universal phase and then
simulates the machine NPk

on the input w2.

3. If w1 6= ε and w2 = ε, the machine, without alternation, simulates NSk
on the

input w1.

Refinement of the Alternating Space Hierarchy 611

4. If w1 6= ε and w2 6= ε, the machine MSk+1
starts to simulateNSk

on the input w1

until the machine NSk
alternates for the first time. (Or until it halts in an

accepting configuration, making no alternation at all.) At this moment, the
machine MSk+1

branches universally into two parallel processes:

• The first process will carry on the simulation of NSk
on the input w1.

• The second process moves its input head to the right until it finds the sym-
bol “$”. Then it clears the worktape and starts to simulate the machine NPk

on the input w2.

It is easy to see that MSk+1
accepts if and only if both w1 ∈ Sk ∪ {ε} and w2 ∈

Pk ∪ {ε}, and hence L(MSk+1
) = Lk. Because neither NSk

nor NPk
use space above

O(log logn), this much space is sufficient for MSk+1
. Note also that, in each of the

cases 1–4, the machine MSk+1
does not alternate more than once before is starts to

simulate NPk
and it does not alternate at all before a simulation of NSk

. Hence, it
is a Σk+1-alternating device. 2

Theorem 2. For each k ≥ 2, Lk ∈ ∆k+1-SPACE(log logn).

Thus, we have proved that Lk ∈ ∆k+1-SPACE(log logn), for each k ≥ 2. We
have to prove that Lk can be recognized neither by a Σk-SPACE(o(logn)) machine
nor by a Πk-SPACE(o(logn)) machine. First, we need a simple lemma about the
functions s(n) and s(n+ 1), where s(n) ∈ o(logn).

Lemma 3. For each function s(n) ≥ 0, if s(n) ∈ o(logn), then s(n+ 1) ∈ o(logn).

Proof. Let s(n) ∈ o(logn), which means that lim
n→∞

s(n)
log n

= 0. Then

0 ≤ lim
n→∞

s(n+1)
log n

= lim
n→∞

s(n+1)
log(n+1)

· log(n+1)
log n

≤ lim
n→∞

s(n+1)
log(n+1)

· lim
n→∞

1+log n
log n

= 0 · 1 = 0.

Hence, 0 ≤ lim
n→∞

s(n+1)
log n

≤ 0, from which we get that s(n+ 1) ∈ o(logn). 2

Lemma 4. For each k ≥ 2, Lk 6∈ Σk-SPACE(o(logn)).

Proof. We shall show that there does not exist a Σk-alternating machineM working
in o(logn) space and recognizing the language Lk. Suppose, for contradiction, that
such machine does exist, i.e., Lk ∈ Σk-SPACE(s(n)), for some s(n) ∈ o(logn). Let
$Pk = {$w : w ∈ Pk} = Lk ∩ ${0, 1}+. Then $Pk must be in Σk-SPACE(s(n)). The
machine M′ recognizing $Pk first checks whether the input u is the form ${0, 1}+.
If not, M′ rejects the input. Otherwise it simulates the machine M on the input u.

Now it is easy to see that Pk ∈ Σk-SPACE(s(n + 1)). The corresponding
machine M⋆ for Pk simply simulates M′, pretending that the symbol “$” is in-
serted between the left endmarker and the first symbol of the real input. Thus,
the language Pk is in Σk-SPACE(s(n + 1)), i.e., Pk ∈ Σk-SPACE(s

′(n)), for some
s′(n) ∈ o(logn), by Lemma 3. But this contradicts Theorem 1. 2

612 V. Geffert, N. Popély

Lemma 5. For each k ≥ 2, Lk 6∈ Πk-SPACE(o(logn)).

Proof. The argument is almost the same as in the proof of Lemma 4. We only
have to replace “Σk-SPACE” everywhere by “Πk-SPACE”, the language $Pk by
Sk$ = {w$: w ∈ Sk}. Finally, M⋆ pretends that “$” is inserted between the last
symbol of the real input and the right endmarker, instead of the left endmarker. 2

Theorem 3. For each k ≥ 2, Lk 6∈ Πk-SPACE(o(logn)) ∪ Σk-SPACE(o(logn)).

Corollary 1. For each k ≥ 2 and each s(n) ∈ Ω(log logn) ∩ o(logn),

∆k-SPACE(s(n)) ⊂ Σk-SPACE(s(n)),

∆k-SPACE(s(n)) ⊂ Πk-SPACE(s(n)),

Σk-SPACE(s(n)) ⊂ ∆k+1-SPACE(s(n)),

Πk-SPACE(s(n)) ⊂ ∆k+1-SPACE(s(n)).

Here “⊂” denotes a proper inclusion. The first two inclusions follow from The-
orem 1. The separating languages are Sk, Pk, and Lk, introduced in Definitions 1
and 2, respectively. Figure 1 resumes such results.

Σ0 = Π0 = ∆0

?
⊆ ∆1

Σ1

Π1

∆2−‖?

Σ2

Π2

∆3−‖

Σ3

Π3

−‖
..

?

? ?

?

Fig. 1. Alternating space hierarchy. Here Πi (Σi, ∆i) represents the complex-
ity class Πi-SPACE(s(n)), for s(n) ∈ Ω(log log n) ∩ o(log n) (Σi-SPACE(s(n)),
∆i-SPACE(s(n)), respectively). Proper inclusions are indicated by “⊂”, incompa-
rable classes by “ 6=”. Finally, “⊆?” denotes an inclusion which is not known to be
proper.

3 ALTERNATING HIERARCHY IN UNARY CASE

Now we shall show the existence of a unary language L separating the complexity
class unary–∆3-SPACE(s(n)) from the complexity classes unary–Σ2-SPACE(s(n))
and unary–Π2-SPACE(s(n)), for each s(n) ∈ Ω(log logn) ∩ o(logn).

Definition 3. Let

L = {1n : f(n) = pi, and,

if i is even, then f(n) > max{f(1), . . . , f(n− 1)},

if i is odd, then f(n) ≤ max{f(1), . . . , f(n− 1)}}.

Here f(n) denotes the first number not dividing n, introduced in Definition 1, and
pi denotes the i-th prime.

Refinement of the Alternating Space Hierarchy 613

In the next two lemmas, we will show that L ∈ unary–∆3-SPACE(log logn).
Recall that the languages S2 = {1n : f(n) ≤ max{f(1), . . . , f(n − 1)}} and its
complement P2 = {1n : f(n) > max{f(1), . . . , f(n − 1)}} are in the classes Σ2-
SPACE(log logn) and Π2-SPACE(log logn), respectively, by Theorem 1.

Lemma 6. L ∈ unary–Π3-SPACE(log logn).

Proof. We want to show that there exists MP3
, a unary Π3-alternating machine

working in O(log logn) space, such that L(MP3
) = L. First, the machine MP3

deterministically computes the value of f(n) and checks whether f(n) = pi for some
prime pi. It should be clear that testing whether f(n) is a prime can be performed
in space O(log f(n)) ⊆ O(log logn), since log f(n) ∈ O(log logn). See, e.g., [3, 7]
or [12] (Lemma 4.1.2.) If, for some i, f(n) = pi, then MP3

also computes i mod 2.

• If (i mod 2) = 1, i.e. i is odd, then the machine MP3
, after one alternation,

simulates the machine NS2
, which recognizes the unary language S2.

• If (i mod 2) = 0, i.e. i is even, then the machine MP3
, without any alternation,

simulates the machine NP2
recognizing the unary language P2.

Thus L(MP3
) = L. Clearly, MP3

does not use space above O(log logn), since
both NS2

and NP2
are O(log logn) space bounded. The initial computation of f(n),

checking if f(n) = pi for some prime pi, and computing i mod 2 is also bounded by
space O(log logn). If f(n) is not a prime,MP3

does not alternate at all. If f(n) = pi,
for i odd, MP3

alternates twice, while for i being even it alternates only once. Since
the initial deterministic computation can be viewed as a part of a universal phase,
MP3

is a Π3-alternating device. 2

Lemma 7. L ∈ unary–Σ3-SPACE(log logn).

Proof. The machine MS3
uses the same algorithm as MP3

in Lemma 6, but this
time the initial deterministic computation of f(n), as well as checking if f(n) is
a prime, is performed as a part of the initial existential phase. Thus, MS3

does not
alternate at all, if f(n) is not a prime, it alternates twice, if f(n) = pi with i even,
and only once, if i is odd. Summing up, MS3

is a Σ3-alternating device. 2

Theorem 4. L ∈ unary–∆3-SPACE(log logn).

Now we have to prove that the unary language L can be recognized neither
by a unary Σ2- nor by a Πk-alternating machine in space o(logn). This requires
to show some basic properties about the least common multiple. In what follows,
lcm{1, 2, . . . , p− 1} denotes the least common multiple of numbers 1, . . . , p− 1.

Lemma 8. For each prime p > 2,

1. f(lcm{1, 2, . . . , p− 1}) = p,

2. for each ℓ ∈ {1, 2, . . . , lcm{1, 2, . . . , p− 1} − 1}, we have that f(ℓ) < p.

614 V. Geffert, N. Popély

Proof. Let k = lcm{1, 2, . . . , p− 1}.

1. If k = lcm{1, 2, . . . , p − 1}, then k is divisible by each ℓ ≤ p − 1, and it is not
divisible by the prime p. Thus we have that f(k) = f(lcm{1, 2, . . . , p− 1}) = p.

2. Because k is the least common multiple of the numbers 1, 2, . . . , p − 1,
no ℓ ≤ k − 1 is a common multiple of 1, 2, . . . , p−1. Thus, for each ℓ ≤ k−1, we
have at least one n ∈ {1, 2, . . . , p− 1} that does not divide ℓ. But then f(ℓ) ≤
n ≤ p−1 < p. Therefore f(ℓ) < p for each ℓ ∈ {1, 2, . . . , lcm{1, 2, . . . , p−1}−1}.

2

We also need a technical lemma describing some properties of the function f(n).

Lemma 9 ([6]). f(n) is unbounded, i.e., for each h ≥ 0, there exists n ≥ 0 such
that f(n) ≥ h, and f(n) = f(n+ n!), for each n ≥ 2.

S2 and P2 are languages separating the complexity class unary–Σ2-SPACE(s(n))
from unary–Π2-SPACE(s(n)) in [4]. We shall now recall a stronger statement.

Theorem 5 ([6]). For each s(n) ∈ o(logn),

1. if L ∈ Σ2-SPACE(s(n)), then there exists n′ > 0 such that, for each n ≥ n′,
1n ∈ L implies 1n+n! ∈ L,

2. if L ∈ Π2-SPACE(s(n)), then there exists n′ > 0 such that, for each n ≥ n′,
1n 6∈ L implies 1n+n! 6∈ L.

Lemma 10. For each s(n) ∈ o(logn), L 6∈ unary–Π2-SPACE(s(n)).

Proof. Suppose, for contradiction, that L∈unary–Π2-SPACE(s(n)). By Theorem 5,
we have that there exists n′ ∈ IN such that, for each n ≥ n′, if 1n 6∈ L then 1n+n! 6∈ L.
Let pi be the i-th prime, with i odd, and pi > max{n′, 4}. Since lcm{ℓ − 1, ℓ} =
(ℓ − 1) · ℓ for each ℓ > 1, we have k = lcm{1, . . . , pi − 1} ≥ lcm{pi − 2, pi − 1} =
(pi − 2) · (pi − 1) > pi, for each pi > 4, and hence k > pi > n′. By using Lemma 8,
we have f(k) = pi and f(k) > max{f(1), f(2), . . . , f(k − 1)}. Thus 1k 6∈ L. But,
by Lemma 9, f(k + k!) = f(k) = pi and hence f(k + k!) ≤ max{f(1), . . . , f(k), . . . ,
f(k + k! − 1)}. Therefore 1k+k! ∈ L, which contradicts the statement of the Theo-
rem 5, i.e., 1k+k! 6∈ L. 2

Similarly we can prove:

Lemma 11. For each s(n) ∈ o(logn), L 6∈ unary–Σ2-SPACE(s(n)).

Proof. Here we use the fact that, by Theorem 5, we have that for L ∈ unary–Σ2-
SPACE(o(logn)) there must exist n′ ∈ IN such that 1n ∈ L implies 1n+n! ∈ L, for
each n ≥ n′. The rest of argument mirrors Lemma 10; choosing pi > max{n′, 4}
with i even, we get 1k ∈ L, but 1k+k! 6∈ L. 2

Theorem 6. L 6∈ unary–Π2-SPACE(o(logn)) ∪ unary–Σ2-SPACE(o(logn)).

Refinement of the Alternating Space Hierarchy 615

Corollary 2. For each s(n) ∈ Ω(log logn) ∩ o(logn),

unary–∆2-SPACE(s(n)) ⊂ unary–Σ2-SPACE(s(n)),

unary–∆2-SPACE(s(n)) ⊂ unary–Π2-SPACE(s(n)),

unary–Σ2-SPACE(s(n)) ⊂ unary–∆3-SPACE(s(n)),

unary–Π2-SPACE(s(n)) ⊂ unary–∆3-SPACE(s(n)).

The first two inclusions follow from Theorem 1, using fact that P2 and S2 are unary
languages. See also Figure 2.

Σ0 = Π0 = ∆0

?
⊆ Σ1 = Π1 = ∆1

?
⊆ ∆2

Σ2

Π2

∆3−‖

Σ3

Π3?

?

Fig. 2. Alternating space hierarchy in unary case. Here Πi (Σi, ∆i) represents
the complexity class unary–Πi-SPACE(s(n)), for s(n) ∈ Ω(log logn) ∩ o(log n)
(unary–Σi-SPACE(s(n)), unary–∆i-SPACE(s(n)), respectively). The equivalence at

the first alternating level follows from [5].

Thus, we have a unary language that can be recognized both by Σ3- and
Π3-alternating machines in space O(log logn), but neither by Σ2- nor by Π2-
alternating machines in space s(n) ∈ o(logn).

This shows that, for the alternating sublogarithmic space hierarchy on unary
languages, the level “two and a half”, i.e., ∆3-SPACE, is separated from the second
level.

An interesting open problem is the position of ∆2-SPACE(o(logn)). By Theo-
rem 5, if L ∈ ∆2-SPACE(o(logn)), then 1n ∈ L if and only if 1n+n! ∈ L, for each
sufficiently large n. Thus, the characterization of unary–∆2-SPACE(o(logn)) is the
same as the characterization of DSPACE, Σ1-SPACE, or Π1-SPACE, which makes
the separation of these classes extremely difficult. As shown in [7], this question is
closely related to the separation of DSPACE(logn) from NSPACE(logn), one of the
fundamental open problems in complexity theory.

It is also not clear whether, in case of unary languages, the sublogarithmic
alternating space hierarchy consists of a finite number of distinct levels, or it is
infinite. We were only able to raise this hierarchy “from two to two and a half,”
despite the fact that, in binary case, we have a complete separation between each
two levels [1, 6, 10], including intermediate levels ∆k-SPACE(o(logn)) [this paper].

REFERENCES

[1] von Braunmühl, B.—Gengler, R.—Rettinger, R.: The Alternation Hierarchy
For Sublogarithmic Space Is Infinite. Comput. Complexity, 1993, No. 3, pp. 207–30.

616 V. Geffert, N. Popély

[2] Chandra, A. K.—Kozen, D. C.—Stockmeyer, L. J.: Alternation. J. Assoc.

Comput. Mach., 1981, No. 28, pp. 114–33.

[3] Chang, R.—Hartmanis, J.—Ranjan, D.: Space Bounded Computations: Re-
view and New Separation Results. Theoret. Comput. Sci., 1991, No. 80, pp. 289–302.

[4] Geffert, V.: Sublogarithmic Σ2–SPACE Is Not Closed Under Complement and
Other Separation Results. RAIRO Inform. Théor., 1993, No. 27, pp. 349–66.

[5] Geffert, V.: Tally Versions of the Savitch and Immerman-Szelepcsényi Theorems
for Sublogarithmic Space. SIAM J. Comput., 1993, No. 22, pp. 102–13.

[6] Geffert, V.: A Hierarchy That Does Not Collapse: Alternations in low level space.
RAIRO Inform. Théor., 1994, No. 28, pp. 465–512.

[7] Geffert, V.: Bridging Across the log(n) Space Frontier. Inform.&Comput., 1998,
No. 142, pp. 127–58.

[8] Immerman, N.: Nondeterministic Space Is Closed Under Complementation. SIAM
J. Comput., 1988, No. 17, pp. 935–38.

[9] Iwama, K.: ASPACE(o(log log n)) is Regular. SIAM J. Comput., 1993, No. 22,
pp. 136–46.

[10] Lískiewicz, M.—Reischuk, R.: The Sublogarithmic Alternating Space World.
SIAM J. Comput., 1996, No. 25, pp. 828–61.

[11] Szelepcsényi, R.: The Method of Forced Enumeration for Nondeterministic Au-
tomata. Acta Inform., 1988, No. 26, pp. 279–84.

[12] Szepietowski, A.: Turing Machines with Sublogarithmic Space. Lect. Notes Com-
put. Sci., Vol. 843. Springer-Verlag, 1994.

Viliam Geffert was born in 1955. He finished his studies at P. J. Šafárik University,
Košice, Slovakia, in 1979. He received his Ph.D. degree in computer science at Come-
nius University in Bratislava, in 1988. His main research interests are space bounded
computations, formal languages and finite automata, and in-place sorting algorithms.

Norbert Pop�ely was born in 1975. He finished his studies at P. J. Šafárik University,
Košice, Slovakia, in 1998, and received his Ph.D. degree at the same University in 2001,
in the area of alternating computational models.

