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Abstract. Given three partially overlapping views of the scene from which a set
of point or line correspondences have been extracted, 3D structure and camera
motion parameters can be represented by the trifocal tensor, which is the key to
many problems of computer vision on three views. Unlike in conventional typical
methods, the residual value is the only rule to eliminate outliers with large value,
we build a Gaussian mixture model assuming that the residuals corresponding to
the inliers come from Gaussian distributions different from that of the residuals
of outliers. Then Bayesian rule of minimal risk is employed to classify all the
correspondences using the parameters computed from GMM. Experiments with
both synthetic data and real images show that our method is more robust and
precise than other typical methods because it can efficiently detect and delete the
bad corresponding points, which include both bad locations and false matches.
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1 INTRODUCTION

Given three partially overlapping views of the scene from which a set of point or line
correspondences have been extracted, 3D structure and camera motion parameters
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can be represented by a 3× 3× 3 tensor, named trifocal tensor. And the associated
trilinear constraints are now considered as the fundamental equations for several
problems related to three views, such as motion analysis [1], self-calibration [2], and
view synthesis [3].

Therefore, the geometry of perspective projection for images and the trilinear
constraints have provoked much interest. First Spetsakis and Aloimonos[4], then
Weng el al. [5] pointed out that there is a constraint on the projected positions of
lines over three images, demonstrating how this might be used for reconstruction
in the calibrated case. Then Shashua [6] showed that the coordinates of three
corresponding points satisfied a set of algebraic relations of degree 3, called trilinear
constraints. It was later on pointed out by Hartley[7] that those trilinear constraints
were in fact arising from a tensor that governed the correspondences of lines among
three views, which he called the trifocal tensor. Different from the above methods,
Faugeras[8] et al. derived the trifocal tensor based on Grassmann-Cayley algebra;
they gave a set of algebraic constraints, which are satisfied by the 27 coefficients
of the trifocal tensor and allowed to parameterize it minimally with 19 coefficients.
Recently, Torr and Zisserman [9] have presented a robust algorithm for computing
a maximum likelihood estimation (MLE) of the trifocal tensor. And Gideon [10]
also investigates the linear degenerations of projective structure estimation from
line features across three views, when the scene is a Linear Line Complex (a set of
lines in space intersecting at a common line).

From all that has been presented above, we can see that the methods either
focus on the new geometrical interpretation of trilinear constraints or estimate the
trifocal tensor by starting with a line solution and improving it further through
employing a numerical Gauss-Newton style iterative procedure. However, in many
applications, image data not only are noisy, but also contain outlier data that are in
gross disagreement with a specific postulated model. Outliers, which are inevitably
included in an initial fit, can so distort a fitting process that the fitted parameters
become arbitrary. Nevertheless, the above methods either pay less or no attention
to the situation, or only use the residual value as the only rule to classify correspon-
dences into inliers and outliers, though it is possible that even a false match can
have a small residual value when robust algorithms such as M-estimators [12] and
RANSAC [13] (random sample consensus paradigm) are used.

In this paper, we present an approach to multiple-view geometry estimation
based on Gaussian mixture model (GMM) [15, 16]. GMM represents a statistical
pattern recognition approach to machine monitoring that enables optimal processing
of data both for training the classifier (EM algorithm) and for performing on-line
classification. In addition, while GMM possesses many of discriminant surface mo-
deling capabilities of more complex nonparametric classifiers, the GMM is paramet-
ric, making it more robust to the effects of a limited amount of training data. In our
work, Gaussian mixture model is built assuming that the residuals corresponding
to inliers comes from Gaussian distributions different from that of the residuals of
outliers. Then Bayesian rule of minimal risk is employed to classify all the corre-
spondences. Experiments with both synthetic data and real images show that our
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method is more robust than other typical algorithms and relatively unaffected by
outliers.

The rest of the paper is organized as follows. Section 2 provides a brief overview
of the trifocal tensor and several robust methods for estimation. In Section 3, a new
approach to multiple-view geometry estimation using GMM is presented in detail,
including problem formulation, model building and decision rule. Experimental
results with synthetic data and real images are described in Section 4. Finally,
conclusion is given.

Notations: we use the covariant-contravariant summation convention: a point
is an object whose coordinates are specified with superscripts, i.e., pi = (p1, p2,Λ).
These are called contravariant vectors. The element in the dual space (representing
hyper-planes — lines in P 2) is called a covariant vector and is represented by sub-
scripts, i.e., sj = (s1, s2,Λ). Indices repeated in covariant and contravariant forms
are summed over, i.e., pisi = (p1s1 + p2s2 + Λ + pnsn). This is known as contrac-
tion. An outer-product of two 1-valence tensors (vectors), aib

j, is a 2-valence tensor
(matrix) cji whose i, j, entries are aib

j —note that in matrix form C = baT .

2 TRIFOCAL TENSOR AND ROBUST METHODS

FOR ESTIMATION

Consider a single point X in space projected onto 3 views with camera matrices P,
P′, P′′, with image points p, p′, p′′, respectively. Note that X = (x, y, 1,Λ) for some
scalar λ. Consider P = [1|0] and P′ = [A|v′] where A is the 3× 3 principle minor
of P′ and v′ is the fourth column of P′. Consider p′ ∼= P′X and eliminate the scale
factor:

x′ =
aT
i x

aT
3 x

=
aT
1
p+ λv′

1

aT
3 x+ λv′

3

(1)

y′ =
aT
2
x

aT
3 x

=
aT
2
p+ λv′

2

aT
3 x+ λv′

3

(2)

where ai is the i-th row of A. These two equations can be written more compactly
as follows:

λs′Tv′ + s′TAp = 0 (3)

λs′′Tv′ + s′′TAp = 0 (4)

where s′ = (0,−1, y′) and s′′ = (0,−1, y′). Yet in a more compact form consider s′,
s′′ as row vectors of the matrix

s
µ
j =

[

−1 0 x′

0 −1 y′

]

, (5)

where j = 1, 2, 3 and µ = 1, 2. Therefore, the compact form we obtain is described
below:

λsµj v
′j + pis

µ
j a

j
i = 0 (6)
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where µ is a free index (i.e., we obtain one equation per range of µ). Similarly, let
P′′ = [B|v′′] for the third view p′′ ∼= P′′X and let rρk be the matrix,

r
ρ
k =

[

−1 0 x′′

0 −1 y′′

]

(7)

and likewise,
λrρkv

′′k + πir
ρ
kb

k
i = 0, (8)

where ρ = 1, 2 is a free index. We can eliminate λ from (6) and (8) and obtain a new
equation:

pisµj r
ρ
k

(

v′jbk
i − v′′ka

j
i

)

= 0 (9)

and the term in parenthesis is a trivalent tensor we call the trilinear tensor:

T
jk
i = v′jbk

i − v′′ka
j
i . (10)

Hence, we have four trilinear equations (note that µ, ρ = 1, 2). In more explicit
form, these trilinearities look like:



























x′′T13
i pi − x′′x′T33

i pi + x′T31
i pi −T11

i pi = 0

y′′T13

i pi − y′′x′T33

i pi + x′T32

i pi −T12

i pi = 0

x′′T23

i pi − x′′y′T33

i pi + y′T31

i pi −T21

i pi = 0

y′′T23
i pi − y′′y′T33

i pi + y′T33
i pi −T22

i pi = 0

(11)

Equation (11) was first introduced by Shashua in [6], from where we can see
that the trifocal tensor has 27 elements, but only their ratios are significant, leaving
26 coefficients to be specified. Each triplet of point correspondences can provide four
independent linear equations for the elements of the tensor. Therefore the tensor
can be computed from a minimum of 7 points using a linear algorithm (LA). But it
is too sensitive to noise and outliers.

However, the tensor has only 18 independent degrees of freedom, which can be
seen by considering three 3 × 4 projection matrices, less 15 projective degrees of
freedom, that is, 3×11−15 = 18. Then six points is enough to estimate the trifocal
tensor with computing an invariant of six points from three views [13, 11]. The
method involves the solution of a cubic, and correspondingly provides one or three
real solutions for the trifocal tensor. Consequently the best of them is selected as the
final solution, when measuring support for each from the full set of correspondences.

An alternative to the LA is M-estimator [12], whose aim is to follow maximum-
likelihood formulations by deriving optimal weighting for the data. The estimators
minimize the sum of a symmetric, positive-definite function ρ(di) of the di. That is,
the parameters are sought that minimize

n
∑

i

ρ(di) =
n
∑

i

(γidi)
2. (12)
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The form of ρ is derived from a particular chosen density function so that ρ is
some weighting, ρ(di) = (γidi)

2.

d2i = (p̂i − pi)
2 + (p̂′

i − p′

i)
2 + (p̂′′

i − p′′

i )
2, (13)

where p̂i, p̂
′

i, p̂
′′

i are estimated point correspondences, just like the measured point
correspondences pi ↔ p′

i ↔ p′′

i . A typical weighting scheme in the statistics litera-
ture is

γi =











1 di < δ
δ/|di| δ < di < 3δ
0 di > 3δ

(14)

where δ is the standard deviation of the error, estimated from the median δ = medidi
0.6745

.
The experiments show that M-estimator is robust to those outliers, which are

produced by bad location. It is, however, not robust to false matches, because it is
highly vulnerable to poor starting conditions, which makes the algorithm converge
to a local minimum.

Torr et al. [9] gave another highly robust fitting algorithm — the random sam-
ple consensus paradigm (RANSAC). Rather than using as many data as possible
to obtain an initial solution and then attempting to identify outliers, as small a
subset of data as feasible to estimate the parameters is used (e.g., seven triplet of
correspondences for a trifocal tensor), and this process is repeated enough times m
on different subset to ensure that there is a 95% chance that one of the subsets
will contain only good data points. As pointed out by Fischler and Bolles [13], the
number m of samples is chosen by making the probability

τ = 1− (1− (1− ε)q)m, (15)

where ε is the fraction of contaminated data, and q the number of features in each
sample. Outliers are typically discriminated from inliers by using

i ∈
{

set of inlier if di ≤ 1.96δ
set of outlier otherwise

, (16)

where δ = 1.4828
(

1 + 5

n−f

)√

medi|di|, n is the number of data, and f the dimen-
sionality of the parameter. Then the best solution is that which maximizes the
number of points whose residual is below a threshold. Experiments show that the
convergence of RANSAC is superior to that of M-estimator, and the solution is
typically more accurate. But RANSAC only uses random sample to search for the
optimal solution; when a large number of outliers are involved, the computation
efficiency will decrease significantly.

In [14], Torr and Zisseramn also addressed another robust estimator MLESAC
for epipolar geometry estimation, which is taken as generalization of the RANSAC
estimator. It adopts the same sampling strategy as RANSAC to generate putative
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solutions, but chooses the solution that maximizes the likelihood rather than just
the number of inliers.

First, the noise in the two images is assumed to be Gaussian with zero mean and
uniform standard deviation σ, and the outlier distribution is uniform with

[

−v
2
, v
2

]

being the pixel range within which outliers are expected to fall. Thus the error is
modeled as a mixture model

Pr =

(

γ
1√
2πσ2

exp

(

− e2

2σ2

)

+ (1− γ)
1

v

)

, (17)

where γ is the mixing parameter. It can be estimated by using expectation maxi-
mization (EM) algorithm.

Thus the error minimized is the negative log likelihood

−L =
∑

i

log





γ

(

1√
2πσ

)

′′

exp





−
∑

(

xji − xj
i

)2

+
(

yji − yji
)2

2σ2





+ (1− γ)
1

v





 .

(18)
So the output of MLESAC is an initial estimate, together with a likelihood that

each correspondence is consistent with the epipolar constraint. Then it is improved
using a gradient descent method. In this paper, we also employ MLESAC for trifocal
tensor estimation, and compare its results with those of our method.

3 ESTIMATION BASED ON GAUSSIAN MIXTURE MODEL

From the methods presented above, M-estimator and RANSAC both take outliers
into account, but they do not work well for some reasons. The M-estimator tries
to blindly compensate the effect of outliers by replacing the Gaussian distribution
assumption by a long tailed distribution. The performance of the M-estimator there-
fore depends on how well the new distribution corresponds to the actual residual
which is, however, unknown a priori. On the other hand, the RANSAC algorithm
does not perform well if a great number of outliers are involved in the estimation,
because it only employs a simple threshold to classify correspondences (inliers and
outliers), which are perturbed by different reasons (Gaussian image noise, or bad
locations and false matches).

Our solution to the multiple-view geometry estimation problem is based on the
fact that the residuals corresponding to inliers come from distributions different from
that of the residuals of outliers.

3.1 Problem Formulation

In the following, it is assumed for simplicity, but without loss of generality, that
the residuals of inliers are considered normally distributed, and those of outliers
are considered to follow other Gaussian distributions on each image coordinate in
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all three views. Thus the density model of residuals can be viewed as a type of
mixture model, which comprises a couple of component Gaussian functions, together
providing a multi-model density.

Let ui be a vector of the measured x, y coordinates in each image of a corre-
spondence i over three views, namely, ui = (xi, yi, x

′

i, y
′

i, x
′′

i , y
′′

i ), where i = 1,Λ, n
labels points. Thus given a true correspondence vector (perfect or noise free quan-
tity), ūi = (x̄i, ȳi, x̄

′

i, ȳ
′

i, x̄
′′

i , ȳ
′′

i , ), the residual of the correspondence vi = ui − ūi is
a six-dimensional feature vector and V = {v1,v2, K,vn} is the feature vectors set.
We use the following probability density function to describe the distribution of vi

P (vi|Θ) =
K
∑

m=1

αmPm(vi|θm) (19)

where K = 2 is the model order, or the number of components to be incorporated
into the mixture model. αm is the weight of each single Gaussian component. It
corresponds to the prior probability that feature vector vi is generated by compo-
nent θm and

K
∑

m=1

αm = 1, αm ≥ 0. (20)

Each model density Pm(vi|θm) is a K — variate Gaussian function of the form

Pm(vi|θm) =
1

(2π)
K

2 |Σm|
1

2

exp−1

2
(vi − µm)

TΣ−1

m (vi − µm) (21)

with mean vector µm and covariance matrix Σm.

3.2 GMM Building and Decision Rule

In practice, the true correspondences cannot be obtained directly from the image
data, therefore we use the estimated correspondence vector ûi = (x̂i, ŷi, x̂

′

i, ŷ
′

i, x̂
′′

i , ŷ
′′

i )
instead. Then the residual of correspondence vi is rewritten as

vi = ui − v̂i = (xi − x̂i, yi − ŷi, x
′

i − x̂′

i, y
′

i − ŷ′i, x
′′

i − x̂′′

i , y
′′

i − ŷ′′i ) (22)

From the experiment, we find that the range of vi is too wide to be employed
directly for mixture model estimation. Thus we normalize it with the following
equation

vi =

(

xi − x̂i

‖x− x̂‖ ,
yi − ŷi
‖y − ŷ‖ ,

x′

i − x̂′

i

‖x′ − x̂′‖ ,
y′i − ŷ′i

‖y′ − ŷ′‖ ,
x′′

i − x̂′′

i

‖x′′ − x̂′′‖ ,
y′′i − ŷ′′i

‖y′′ − ŷ′′‖

)

, (23)

where ‖w‖ = (
∑n

i=1w
2
i )

1

2 .
Because the feature vectors are assumed to be independent and each element

belongs to some Gaussian distribution, it is easy to derive that the normalizing
process will not destroy the Gaussian mixture model at all.
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Given V, our goal in the stage of building the mixture model is to estimate
the GMM parameters, including mean vectors, covariance matrices, and mixture
weights of each model. This way we get the maximum value of P (V|Θ)

P (V|Θ) =
n
∏

i=1

P (vi|Θ). (24)

To estimate Θ we apply log-function which is monotonically increasing to sim-
plify the problem. Thus the following equation is obtained:

f = ∇Θ(lnP (V|Θ)) = 0. (25)

Then parameter estimates can be obtained iteratively using an expectation and
maximization (EA) algorithm. EM is a well established maximum likelihood algo-
rithm for fitting a mixture model to a set of training data. On each EM iteration,
the re-estimation formulas are used which guarantee a monotonic increase in the
likelihood value of the model:

µm =

∑n
i=1(Pm,ivi)
∑n

i=1
Pm,i

(26)

∑

m

=

∑n
i=1 Pm,i(vi − µm)(vi − µm)

T

∑n
i=1 Pm,i

(27)

αm =

∑n
i=1

Pm,i

n
(28)

where the posterior probability for class m in the j-th partitioned region is given by

P i
m =

αmP (vi|θm)
P (vi|Θm)

. (29)

After the model building, to decide to which class a new-coming sample v be-
longs, we use the Bayesian rule of minimal risk which assigns v to the class that
maximizes the class posterior probability

Pr{class = m} =
αmP (vi|θm)

∑K
i=1

αiP (vi|θi)
(30)

where the prior of a particular class is estimated by the proportion of samples of
that class used for building.

3.3 Stages of Estimation Based on GMM

From the description presented above, the corresponding residuals are the only in-
formation we can use for mixture model building. Thus how well the trifocal tensor
is computed for initial is of great importance to building a more accurate mixture
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model. In our experiment, RANSAC is employed first to estimate the multiple-view
geometry, through which the residual of correspondence has perhaps more implicit
information for classification of the inliers and outliers. Then our proposed method
for the trifocal tensor estimation can be summarized as follows.

1. Compute an initial estimate for the multiple-view geometry with the RANSAC
algorithm. One thing we would like to emphasize is that we need not iterate
the search steps as much as the pure RANSAC method does. Because with the
following steps, we will get more statistical information of inliers and outliers,
which helps us classify all the correspondences, and the application of RANSAC
is only for initialization. Only about half of subsets (six correspondences for one
sample) that pure RANSAC has used are employed in the experiment and the
best solution that maximizes the number of inliers is selected.

2. Normalize the corresponding residuals vi with equation (23), in order to decrease
the range of vi.

3. Build the Gaussian mixture model using the normalized residuals. One advan-
tage of our method is its fast convergence: in our experiments the convergence
is usually obtained after not more than 20 iterations.

4. Use Bayesian rule to classify the correspondences into inliers and outlier with
GMM.

5. Re-estimate the trifocal tensor using the inliers provided by the last step.

4 EXPERIMENTAL RESULTS

In this section we will discuss the result of multiple-view geometry estimation based
on GMM, using both synthetic data and real images. In order to compare how well
these robust methods (M-estimator, MLESAC, GMM) will classify the correspon-
dences, they are employed first to detect outliers, then the inliers computed from
the above step are used to re-estimate the trifocal tensor with linear algorithm.

4.1 Experiments with Synthetic Data

In our experiments, the correspondences are randomly generated by space points
in the region of R3 visible to three positions of a synthetic camera: P = C[1|0]
(C stands for camera intrinsic matrix), P′ = C[R′|t′] and P′′ = C[R′′|t′′], where
the camera makes rotations R′, R′′ and translations t′, t′′. Here the total number
of space points is 300. As shown in Table 1, we select the first ten space points and
their projective correspondences.

The experiments can be divided into two parts:

<1> Six different groups of Gaussian noise are added to the projective correspon-
dences, whose means are 0 and variances vary from 0.5 to 3.0 (at 0.5 step).
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No. X p p′ p′′

1 (5.47, 1.78, 4.80) (239.4, 40.8) (509.7, 39.7) (316.4, 240.3)

2 (1.72, 7.82, 9.08) (39.8, 94.7) (150.9, 18.0) (54.8, 74.1)

3 (6.01, 4.33, 6.43) (196.2, 74.1) (355.6, 43.0) (173.1, 175.4)

4 (0.25, 7.40, 9.82) (5.4, 82.9) (128.0, 6.2) (55.9, 56.2)

5 (9.30, 8.23, 4.02) (486.2, 225.3) (418.4, 140.1) (75.1, 297.8)

6 (4.93, 6.28, 9.43) (109.8, 73.2) (243.8, 19.6) (114.8, 110.7)

7 (4.60, 8.34, 6.79) (142.5, 135.3) (210.3, 52.5) (48.4, 126.1)

8 (3.63, 7.12, 6.44) (118.5, 121.7) (201.2, 43.9) (58.2, 116.0)

9 (6.31, 7.90, 4.43) (299.0, 196.0) (282.9, 93.9) (45.1, 196.3)

10 (2.41, 3.30, 5.82) (86.9, 62.3) (228.8, 13.5) (135.7, 104.5)

Table 1. The first ten space points and their projective correspondences

<2> The means and variances of Gaussian noise are fixed to 0, 1, respectively; the
percentage of outliers disturbed by the bad locations and false matches varies
from 10% to 60% (at 10% step).

In order to compare the quality of the re-estimated trifocal tensor, the following
formula is used to compute the residuals of inliers only

E =
1

Nin

Nin
∑

i=1

(

(x− x̂)2+(y − ŷ)2+(x′ − x̂′)2+(y′ − ŷ′)2+(x′′ − x̂′′)2+(y′′ − ŷ′′)2
) 1

2

(31)
where Nin is the number of all the inliers.

Tables 2 and 3 show the residuals under various Gaussian noises and percentages
of outliers, respectively. They are illustrated in Figures 1 and 2 as well, the curves at
the bottom being the results of GMM. It can be seen in Table 2 that our method can
gain better results compared with other three algorithms, especially when the vari-
ances of noise are more than 2.0. In Table 3, as the percentage of outliers increases,
residual of GMM keeps increasing smoothly while at the same time it remains the
smallest of those derived from the four methods. In Experiment <1>, when the
variance is 0.5, the residuals of LA, M-estimator and MLESAC are 1.366, 1.102,
0.933 times, respectively, as much as that of GMM; when the variance increases to
3.0, they are 2.310, 1.409, 1.099 times, respectively. In Experiment <2>, when the
percentage of outliers equals to 10%, the residuals of LA, M-estimator and MLE-
SAC are 1.780, 1.195, 0.967 times, respectively, as much as that of GMM; when the
variance increases to 60%, they are 3.238, 1.832, 1.063 times, respectively.

4.2 Experiments with Real Images

Three different images of the same scene are employed to compare the four methods.
First we discard the correspondences, which are destroyed by false matches or bad
locations. Then the percentage of outliers increases from 10% to 60% (at 10% step)
by disturbing correspondences using false matches and bad locations.
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variance 0.5 1.0 1.5 2.0 2.5 3

LA 1.512 3.963 4.549 6.978 8.016 10.374

M-Estimator 1.307 2.044 2.729 3.576 5.436 6.328

MLESAC 1.117 1.434 1.954 2.770 4.511 4.934

GMM 1.186 1.423 1.847 2.531 4.168 4.490

Table 2. Residuals under various Gaussian noises

outlier percentage 10% 20% 30% 40% 50% 60%

LA 6.103 10.796 12.107 14.225 16.784 24.360

M-Estimator 4.099 7.119 9.260 10.928 12.464 13.785

MLESAC 3.317 5.164 5.737 5.992 7.047 7.996

GMM 3.429 5.015 5.458 5.516 6.870 7.523

Table 3. Residuals under various percentages of outliers disturbed by noise and false
matches

Table 4 shows the results of the experiment. When the percentage of outliers is
10%, the residuals of LA, M-estimator and MLESAC are 2.519, 1.764, 0.984 times,
respectively, as much as that of GMM; when the variance increases to 60%, they are
2.976, 2.494, 1.025 times, respectively. Figure 6 also shows the results of the four
algorithms under 30% percentage of outliers (the white crosses stand for the mea-
sured correspondences; the white blocks stand for the estimated correspondences;
the white line segments stand for the residuals between measured and estimated cor-
respondences). From the tables and images, we can see that our method is robust
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Fig. 1. The results of adding Gaussian noise to the correspondences, whose means are 0
and variances vary from 0.5 to 3.0 (at 0.5 step)
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Fig. 2. The results under various percentages of outliers, varying from 10% to 70% (at
10% step)

to noise and outliers; even when the percentage of outlier is great, the residuals of
GMM are less than those of others all the time.

From the above experiments, we can notice that the M-estimator depend too
much on the value of residuals and make too little use of the underlying information
it contains, i.e. multivariate Gaussian distribution, while that is just what we exploit
to construct Gaussian mixture model as the principle of classification.

outlier percentage 10% 20% 30% 40% 50% 60%

LA 11.816 14.307 16.844 23.927 26.787 32.405

M-Estimator 8.275 10.261 11.138 19.904 22.523 27.153

MLESAC 4.614 5.176 5.649 7.635 9.995 11.163

GMM 4.691 4.982 5.435 7.398 9.512 10.889

Table 4. Residuals under various percentages of outliers disturbed by noise and false
matches

5 CONCLUSION

In this paper, we propose a new robust estimation method for the multiple-view
geometry employing Gaussian mixture model. Unlike in other robust methods,
outliers are found only according to the great residual value obtained from the
trifocal tensor computation. We derive parameters from the Gaussian mixture model
constructed by the residuals. Then according to the parameters we get the posterior
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Fig. 3. The results of the four algorithms under 30% percentage of outliers; (a) the image
of the first view; (b) the image of the second view; (c) the result of LA in the third
view; (d) the result of M-estimator in the third view; (e) the result of MLESAC in
the third view; (f) the result of GMM in the third view
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probability, based on which classification is made. Experiments with both synthetic
data and real images show that our method is more robust and precise than other
typical methods (LA, M-estimator) because it can efficiently detect and delete bad
corresponding points, which include both bad locations and false matches.
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