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Abstract. In this paper, we consider memory-mapping problems in High-Level
Synthesis. We focus on the port mapping, bit-width mapping and word mapping,
respectively. A 0-1 Integer Linear Programming (ILP) technique is used to solve
the mapping problems, which synthesizes the source memory using one or more
memory modules from a target memory library at a higher level. This method can
not only perform bit-width mapping and word mapping, but it can also perform
port mapping at the same time. Experimental results indicate that ILP approach
is an effective method for memory reuse in high-level synthesis.
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1 INTRODUCTION

Current VLSI designs have reached complexities of millions of gates and they are
expected to grow even higher in the coming years. Systems of such complexity
are very difficult to design by handcrafting each transistor or by defining each sig-
nal in terms of logic gates, since human designers cannot do an effective job for
problems involving a large number of objects. For systems of such complexities,
even the traditional design automation tools such as logic synthesis and physical
design tools cannot provide good solutions in reasonable amounts of time. It is
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necessary to develop design methodologies that can handle systems of higher com-
plexity. Therefore, the idea of high-level design and design reuse [1] came into
being.

Technology mapping is a very important step in digital system design, which
transforms the technology independent structure description to the technology de-
pendent library. Based on the complexity of the cells used in mapping, the li-
brary mapping could be categorized into different levels. At the logic level, library-
mapping implements a logic level design by using logic level cells from a library [2,
3]. At the system level, mapping can be performed between system-level compo-
nents such as processors, memories and interface units. MICON [4] is a system that
tries to reuse the off-shelf system-level parts such as processors, memories and pe-
ripherals to build a single-board computer system. Smith [5] presented a polynomial
algorithm for arithmetic component matching at an abstract level.

Memory modules are commonly used in data intensive applications in the fields
of speech, image and video processing that require a significant amount of storage
capability. Thus, the memory subsystems become an important focus of design.
Hence, there is a need for efficient implementations of memory elements in these
designs. Memory mapping has been reached in the case of ASICs where the map-
ping consists of selecting memory components from a library and/or selecting where
the memory components are placed and the way in which they are connected to
the hardware logic. Several studies were carried on utilizing memory modules in
data path synthesis. FPGA on-chip memory banks are targeted in [6, 7]. Memo-
ry mapping for FPGAs with on-chip memories is addressed in [8]; however, only
single-ported memory banks are assumed.

In this paper we present a 0-1 ILP approach for memory mapping, which im-
plements a source memory module (s) from a set of memory modules from a target
library (T ). The approach is based on higher level of abstraction for memories:
given the high-level specification of the source and the library modules in terms
of word-count, bit-width and the port configurations, the approach implements the
source memory module by using target memory modules in an efficient manner so
as to optimize a user-given cost function.

2 PROBLEM DEFINITION

According to the definition in [9], at higher level of abstraction, a memory module
m can be characterized by its size (number of words and bit-width for each word)
and the amount of data access parallelism (port types and number of ports). Note
that the three parameters (words, bit-width and ports) are orthogonal to each other,
i.e. variation of one parameter is independent of others within a library of memory
modules. Thus we need to consider all these parameters together in selecting a set
of target memory modules to find a good implementation.

The memory-mapping problem is defined in terms of a source memory module s,
a set of target memory modules T from a library and a user-given cost function C.
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The memory mapping algorithm is a technique to implement a source memory mo-
dule s, which has rs read ports {rl} (1 ≤ l ≤ rs), ws write ports {wm} (1 ≤ m ≤ ws)
and rws read-write ports {rwn} (1 ≤ n ≤ rws), from a set of memory modules in
a target library T = {t1, t2, . . . , ti, . . . , tt} (1 ≤ i ≤ t) so as to optimize a user-given
cost function C. The source memory module s has bit-width of Bs and has word
count of Ns. Each ti has ri read ports {rix} (1 ≤ x ≤ ri), wi write ports {wiy}
(1 ≤ y ≤ wi) and rwi read-write ports {rwiz} (1 ≤ z ≤ rwi). Each ti has the
bit-width of Bi and has the word count of Ni. The implemented memory module
should satisfy the source module requirements, i.e. the ports, bit-width and word

count requirements.

Port Mapping. In order to meet the data access requirements of the source me-
mory, the port mapping specifies the necessary and sufficient conditions that the
target modules need to satisfy.

Bit-width Mapping. Bit-width mapping refers to the task of achieving the bit-
width requirement of the source memory component s by using a set (one or
more) of target memory modules from a library T . The whole bit-width of the
implementation should be no less than that of the source memory component.

Word Mapping. Word mapping refers to the task of accomplishing the word-count
requirement of the source memory components s by using a set (one or more)
of target memory modules from a library T . The whole word-counts of the
implementation should be no less than that of the source memory component.

Cost Function. The memory mapping algorithm is guided by the cost of the ge-
nerated design. The cost of the synthesized source memory module is given by
the combined cost of the various elements used in the design. These elements
include address decode logic, target memory modules and output mux. For the
sake of simplicity, we ignore the address decode logic and other costs. We refine
these terms to generate a specific cost measure.

Area Measure: The area measure for the target memory modules is given by the
sum of the area of all the target memory modules used in the designs; we take
equivalent 2-input NAND gate counts as area cost function.

Delay Measure: The worst-case delay path for the synthesized memory goes
through all the components in the design. The delay measure for the target
modules is given by the maximum access delay for all the modules used in the
design.

3 0-1 ILP MAPPING FORMULATION

Mapping Criteria. We present a 0-1 Integer Linear Programming (ILP) method
to perform memory mapping in High-Level Synthesis. The mapping of the
memory modules is based on the following observations:
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1. For each read port of s, there should be either a target read port or a target
read-write port of ti to implement. For each write port of s, there should
be either a target write port or a target read-write port of ti to implement.
For each read-write port of s, there should be either a target read-write
port or a combination of a target read port and a target write port of ti to
implement.

2. To each port of ti, there should be only one port of s to be mapped.

3. To the word mapping, the total words of the target memory should be no
less than the word count of s.

4. To the bit-width mapping, the total bit-width of the target memory should
be no less than the bit-width of s.

5. The cost of the implementation should be the least.

0-1 ILP Formulations. The following notations and variables are used in the for-
mulation:

1. ni is the number of ti used to implement s;

2. Ci is the cost associated with ti;

3. αlix is a 0-1 integer variable such that αlix = 1, if port rl of s is mapped to
port rix of ti, else αlix = 0;

4. βlkz is a 0-1 integer variable such that βlkz = 1, if port rl of s is mapped to
port rwkz of tk, else βlkz = 0;

5. γmjy is a 0-1 integer variable such that γmjy = 1, if port wm of s is mapped
to port wjy of tj , else γmjy = 0;

6. ρmkz is a 0-1 integer variable such that ρmkz = 1, if port wm of s is mapped
to port rwkz of tk, else ρmkz = 0;

7. ηnix,jy is a 0-1 integer variable such that ηnix,jy = 1, if port rwn of s is
mapped to port rix of ti and port wjy of tj , under this circumstance, port rix
is corresponding to port wjy, they are combined to be mapped to the port
rwn; else ηnix,jy = 0;

8. λnkz is a 0-1 integer variable such that λnkz = 1, if port rwn of s is mapped
to port rwkz of tk, else λnkz = 0;

Now the problem of implementing s using T can be formulated as
Minimize

k
∑

i=1

niCi (1)

Subject to

rs + rws −
k
∑

i=1

ni(ri + rwi) ≤ 0 (2)

ws + rws −
k
∑

i=1

ni(wi + rwi) ≤ 0 (3)
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rs + ws + rws −
k
∑

i=1

ni(ri + wi + rwi) ≤ 0 (4)

t
∑

j=1

niwi
∑

y=1

αlix +
t

∑

k=1

nkrwk
∑

z=1

βlkz = 1, ∀l (5)

t
∑

j=1

njwj
∑

y=1

γmjy +
t

∑

k=1

nkrwk
∑

z=1

ρmkz = 1, ∀m (6)

t
∑

i,j=1

niri
∑

x=1

njwj
∑

y=1

ηnix,jy +
t

∑

k=1

nkrwk
∑

z=1

λnkz = 1, ∀n (7)

rs
∑

l=1

αlix +
rws
∑

n=1

ηnix,jy = 1 (8)

rs
∑

l=1

βlkz +
rws
∑

n=1

λnkz = 1 (9)

ws
∑

m=1

γmjy +
rws
∑

n=1

ηnix,jy = 1 (10)

Bs −
k
∑

i=1

niBi ≤ 0 (11)

Ns −
k
∑

i=1

niNi ≤ 0 (12)

The objection function (1) states that we want to minimize the total cost of the
implementation. Constraints (2–4) guarantee that there are sufficient ports of ti to
be mapped to s. Constraints (5–7) map the ports of s to the ports of T , which is
described in criterion 1. Constraints (8–10) guarantee that each port of T can only
be mapped once, which is described in criterion 2. Constraints (11) and (12) make
use of mapping criteria 3 and 4 respectively.

4 ALGORITHM IMPLEMENTATION

As the three sub-problems of memory mapping are orthogonal to each other, i.e.,
variation of one parameter is independent of another within a library of memory
modules. We can consider these sub problems individually.

The bit-width mapping and word-mapping algorithm are given in Figure 1. Be-
cause they are similar, we integrated them into a concentrate function sub map(s, T,
constrain), where the constrain parameter is used to identify the mapping sub-
problem. An enumeration scheme for all possible compositions of each bit-width
or word-count was presented in a systematic fashion. In this algorithm the arrayed
variable part map keeps track of the best composition of target memory modules for
each bit-width. For each target memory module ti, we include ⌈opt(s)/opt(ti)⌉ in-
stances in Ts, since a good mapping would require at most these many instances of ti.



432 H. Zhou, Z. Lin, W. Cao

Finally, Li enumerates all possible bit-widths or word-counts that can be composed
using the first i memory modules from Ts.

The algorithm first initializes array variable part map, Ts and L0, and then
successively enumerates all possible bit-widths or word-counts that can be composed
using a subset of Ts. The function revise composes each element of L with a new
target memory module and if the resulting composition is not a suboptimal one,
the function stores the compositions in the new list and updates the local best
solution part map. The above algorithm uses the user-given cost function C to
determine the quality of the mapping composition.

The algorithm described in Figure 2 is a scheme to perform the port-mapping
task. The function tries to perform the mapping procedure in terms of mapping
a source read port to a target read port or a target read-write port, a source write
port to a target write port or a read-write port, and a source read-write port to
a target read-write port or a target read port and a target write port.

The algorithm shown in Figure 3 describes the whole mapping algorithm. The
algorithm generates the best bit-width mapping for each word-count num and cre-
ates a new memory module with the word-count of num. Then it performs the word
mapping on the new memory modules. The result of word mapping is then passed
to the port-mapping algorithm, which provides the final solution.

A Simple Example

Consider the example in Table 1, where the parameters of source memory and target
memory modules are listed. The mapping results obtained by applying the approach
presented above are shown in Figure 4. There are two possible solutions. Except
for the glue logic, the former area cost is 11562+ 7564 = 19126 gate counts and the
latter one is 8680× 2 = 17360 gate counts. Compared to the non-optimal solution
in Figure 4 (a), the solution in Figure 4 (b) is preferred.

Parameters Source(s) Target Module
t1 t2 t3 t4 t5

Word-count 256 256 256 128 128 128

Bit-width 12 8 4 12 8 4

R Ports 1 1 0 2 0 1

W Ports 1 0 0 2 1 0

RW Ports 2 1 2 1 2 2

Gate count 11562 7564 8680 6642 4636

Table 1. Parameters of the source and target memory modules

5 EXPERIMENTAL RESULTS

We applied our mapping algorithm to several examples. Our experiments use source
memory modules derived from various memory-intensive designs reported in the
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function sub map(s, T, constrain)
begin

if constrain=bit-width then

opt(s) = B(s)
opt(ti) = B(ti)

else if constrain = word then

opt(s) = N(s)
opt(ti) = N(ti)

end if

for i = 1 to opt(s) do
part map(i) = Ø

end for

Ts = Ø
for each ti ∈ T do

part map[opt(ti)] = ti;
for j = 1 to ⌈opt(s)/opt(ti)⌉ do

Ts = Ts + ti;
end for

end for

L0 = Ø;
for i = 1 to |Ts| do

Li = revise(Li−1, Tsi)
end for

return part map[opt(s)]
end

function revise(L, t)
begin

Lrevise = L;
for i = 1 to |L| do

if opt(new map) ≤ opt(s) or new map does not have a tj
such that opt(new map − tj) ≥ opt(s) then

insert new map to Lrevise

update
end if

end for

return Lrevise

end

Fig. 1. Bit-width mapping and word mapping algorithm
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function port map(s, T )
begin

for all read ports of s {

if
(

∑k
i=1

niri ≥ rs
)

then

map the read ports of s to the corresponding read ports of ti;
else

map the read ports of s to the corresponding read ports of ti;
map the rest read ports of s to the corresponding read-write ports of ti;

}
for all write ports of s {

if
(

∑k
i=1 niwi ≥ ws

)

then

map the write ports of s to the corresponding write ports of ti;
else

map the write ports of s to the corresponding write ports of ti;

map the rest write ports of s to the corresponding read-write ports of ti;
}
for all read-write ports of s {

if
(

∑k
i=1 nirwi ≥ rws

)

then

map the read-write ports of s to the corresponding read-write ports of ti;
else

map the read-write ports of s to the corresponding read-write ports of ti;
map the rest read-write ports of s to the corresponding rest read and write ports of ti;

}
end

Fig. 2. Bit-width mapping and word mapping algorithm

function complete map(s, T )
begin

Tword = Ø
for each word-count num in T do {

Tnum = {ti | W (ti) = num};
best bit = part map(s, Tnum, bit-width);
Tword = Tword + Tnum;

}
best map = part map(s, Tword, word);
solution = port map(s, t);

return solution;
end

Fig. 3. Complete mapping algorithm
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Fig. 4. Mapping result of the experiment

literature, as well as from industrial designs. Specifically, we report mapping results
for four examples in Table 2. The first three columns in this table describe the
source memory module. For each source module [10, 11, 12, 13], we list the name
of the design from which the memory module was extracted, the source of the
design and the size of the memory module. Columns 4 through 6 describe the
mapping result. The fourth column lists the arrayed configuration of the target
memory modules synthesized by our memory mapping algorithm; the fifth column
displays the area cost function, i.e. the equivalent 2-input NAND gate counts of the
implementation. The sixth column presents the run-time for our algorithm on SUN
Sparc-5 Workstation. The seventh column lists the run-time in [9] and the eighth
column lists the run-time improvement using our algorithm.

The table describes the memory mapping results generated by our mapping
algorithm on a set of the source memory modules. The table shows the mapping
results for area-efficient designs generated by our algorithm. These designs have
been synthesized by using the memory modules taken from the library [14]. This
library contains a set of RAM modules with the word-count equal to 16, 32, 64
or 128 and the bit-width equal to 2, 4 or 8. We report the area of the mapped
designs in terms of equivalent 2-input NAND gates.

From the experiment, we can find that our approach for memory mapping is
quite comprehensive. Our approach can synthesize source memory modules of vary-
ing complexity. These memories are of different word-count and bit-width. These
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Example Mapping Result

# Name Size Design Cost Run- Run-time Impro-
(gates) time (s) (s) [9] vement

1 Differen-
tial Heat
Release
[10]

469× 16 128×8, 128×8
128×8, 128×8
128×8, 128×8
64× 8, 64× 8
32× 8, 32× 8

68.4K 1.4 1.8 22.2%

2 Neural
Network
Chip [11]

160× 8 128× 8
32× 8

12.1K 0.59 0.9 34.4%

3 Interface
Scan [12]

360× 16 128×8, 128×8
128×8, 128×8
64× 8, 64× 8
32× 8, 32× 8
16× 8, 16× 8

60.4K 0.72 0.9 20.0%

4 Image
Pro-
cessing
[13]

384× 12 128×4, 128×8
128×4, 128×8
128×4, 128×8

44.3K 0.56 0.9 37.8%

Table 2. Memory mapping result

memory modules come from designs of various complexity. Our memory mapping
approach is quite general in the sense that it supports a wide variety of user se-
lectable design parameters such as the source component, the target library and the
optimizing cost function. If we analyze the run-time, we observe that we are able
to generate these designs very quickly, in the order of a few seconds. Compared to
the run-time in [9], we improved 20–40% on this aspect.

6 CONCLUSION

In this paper, we presented a 0-1 integer linear programming technique to solve
memory-mapping problems in high-level synthesis. The scheme implements a source
memory module by using a set of target memory modules from a library. Our ap-
proach facilitates design reuse for memory subsystems. We identified and formu-
lated the port-mapping subproblem into 0-1 ILP method. This method can not
only perform bit-width mapping and word mapping, but it can also perform port
mapping at the same time. Our experimental results that run on several industrial
and literature-based examples demonstrate that our mapping algorithm can gene-
rate a variety of cost-effective memory designs based on the user-given cost function
and the target library.
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