
Computing and Informatics, Vol. 22, 2003, 623–637

A NOTE ON EMERGENCE IN MULTI-AGENT STRING
PROCESSING SYSTEMS

Rudolf Freund

Faculty of Computer Science

Vienna University of Technology

Favoritenstrasse 9, A-1040 Wien, Austria

e-mail: rudi@emcc.at

Jozef Kelemen∗

Institute of Computer Science, Silesian University

Bezručovo nám. 13, 746 01 Opava, Czech Republic

and

Gratex International, a. s.

Bratislava, Slovakia

e-mail: kelemen@fpf.slu.cz

Gheorghe Păun

Institute of Mathematics, Romanian Academy

PO Box 1-764, 70700 Bucureşti, Romania

and

Research Group on Mathematical Linguistics

Rovira i Virgili University

Pl. Imperial Tarraco 1, 43005 Tarragona, Spain

e-mail: gp@astor.urv.es

Revised manuscript received 11 November 2003

∗ Author’s research on the subject is partially supported by the Czech Science Foun-
dation Grant No. 201/04/0528.

624 R. Freund, J. Kelemen, G. Păun

Abstract. We propose a way to define (and, in a certain extent, even to measure)

the phenomenon of emergence which appears in a complex system of interacting
agents whose global behaviour can be described by a language and whose compo-
nents (agents) can also be associated with grammars and languages. The basic
idea is to identify the “linear composition of behaviours” with “closure under basic
operations”, such as the AFL (Abstract Families of Languages) operations, which
are standard in the theory of formal languages.

Keywords: Grammar systems, multi-agent systems, emergence, abstract families
of languages

1 INTRODUCTION

The experiences with different fields of computing as well as with some non-
computational systems like behaviour-based (collective) robotics [1, 2, 3, 4], artificial
life [23], multi-agent systems [14], artificial economies [13], etc. in the last decade of
the 20th century resulted in considering a new possibility of how to set up multi-
component systems from autonomous components usually called agents. In the
fields mentioned above usually the larger or the more complex systems (multi-agent

systems) evolve incrementally, usually by adding new components to the existing
ones (and/or by deleting some others). In many cases this is the only possible way
to change the architecture of the systems. The communication between these com-
ponents is usually very opportunistic and guided by the desired global behaviour of
the resulting systems. Consequently, the modularity of such systems – the so-called
post-modularity [34] – is principially different from those of the previous ones. The
behaviour of such systems emerges from massive interactions between the compo-
nents of the system and their environment. In this paper we propose a way to
define and – in a certain extent – to even measure the phenomenon of emergence
which appears in a complex system whose global behaviour can be described by
a language and whose components can also be associated with languages. The basic
idea is to identify the “linear composition of behaviours” with “closure under basic
operations”, such as the AFL operations (which are standard in language theory).

2 GRAMMAR SYSTEMS – EMERGENCE

IN A NATURAL FRAMEWORK

The aim of this section is to informally describe some of the main ideas of grammar
systems theory emphasizing the fact that the idea of emergence is central in this
area. Later, making use of the deeply developed theory of formal languages, where
grammar systems theory is embedded, we will propose a rather operational way to
approach the notion of emergence.

A Note on Emergence in Multi-Agent String Processing Systems 625

In “classic” formal language theory, grammars (and automata) are used sepa-
rately, one grammar generates one language (one automaton recognizes one lan-
guage). However, in modern computer science, such notions as distribution, co-
operation, parallelism, communication, synchronization have become more and more
popular and important. Computer networks, parallel computing, distributed data
bases, etc., are practical counterparts (sources) of these notions. It is highly ex-
pectable that also the human brain is a decentralized system working in a distributed
manner, if we realize the number of components the brain uses simultaneously at
each moment of its work; see [25], for instance, for more details on a hypothesis
about that.

In (theoretical) computer science there are several approaches to these ideas,
in general using algebraic models or automata models. A grammatical model of
distributed/parallel work of several agents has been developed, mainly in the last
decade, under the name of grammar systems theory. This is already a well elaborated
branch of formal language theory. The monograph [6] contains the results known at
the middle of 1992. Many subsequent developments appear in the literature; here
we only mention the collective volumes [27, 28, 29], as well as the proceedings of the
series of workshops about grammar systems held every second year after 1994.

In short, a grammar system is a set of grammars, working together, according
to a specified protocol, for producing one language. The crucial element here is
the protocol of co-operation. The aim of considering such a compound genera-
tive machinery can be many-sided: to model a real phenomenon, to increase the
(generative) power of the components, to decrease the (descriptional) complexity.
The co-operation protocol has to deal with all these aspects. In some sense, the
theory of grammar systems is the theory of co-operation protocols; the focus does
not lie on the generative capacity, but on the functioning of the systems, and on
its influence on the generative capacity and on other specific properties. In other
words, the main interest lies on the global behaviour of the system, in comparison
and in relation with the behaviour of the components. As expected, the emergence
phenomenon is crucial in this framework, what the system can do is always much
more than “the sum” of the components output. We will give some details below.

Up to now, two basic classes of grammar systems have mainly been investigated,
the sequential ones and the parallel ones.

In a co-operating distributed (CD) grammar system (introduced in [5]), several
grammars have a common sentential form. Initially, this is a common axiom. At
each moment, one grammar is active and rewrites the string, whereas the others are
inactive. The conditions under which a component can become active, when it will
become inactive again and leave the sentential form to the other components – these
aspects are very important (also for the power of the system) and they are specified
by the co-operation protocol. The language of terminal strings generated in this
way is the language generated by the system. The following basic stop conditions
are given: each component, when active, has to work for “exactly k steps”, “at least
k steps”, “at most k steps”, “any number of steps”, or “the maximal number of

626 R. Freund, J. Kelemen, G. Păun

steps” (a step means the application of a rewriting rule). Many other starting and
stopping conditions were considered in the literature, sometimes also an external
control was imposed, specifying the order of components to be enabled, and ways
to increase collaboration between components were also taken into account.

In parallel communicating (PC) grammar systems (introduced in [30]), each
component has its own sentential form. In each time unit (a common clock divides
the time in units, in a uniform way for all components) each component uses a rule,
rewriting the associated sentential form. Up to now, we have separate grammars
working separately; what transforms the construct into a system is the possibility of
communicating. Special (query) symbols are provided, pointing to components of
the system. When a component i introduces the query symbol Qj , then the current
sentential form of the component j will be sent to the component i, replacing the
occurrence of Qj . One component is distinguished as the master, and the language
generated by it, alone or involving communications, is the language generated by
the system. Several variants can be considered, depending on the shape of the com-
munication graph, on the action a component has to perform after communicating,
and so on.

An interesting particular case of a CD grammar system is that of a colony of
grammars (introduced in [21]), where the components are considered as simple as
possible, generating only finite sets of strings. In the other direction, a complex
combination of both CD and PC grammar systems is found in an eco-grammar sys-

tem (introduced in [8]), where several agents, described by strings, evolve according
to and act on a common environment by means of rewriting rules; these rules are
chosen according to the state of the agent; the environment evolves independently
from the states of the agents, whereas the agents may also interact with each other.
A generalization of PC grammar systems (especially of those where the communi-
cation is done by command, like in [9]) was also proposed in [10].

Using the concept of colonies we now will illustrate how more complicated phe-
nomena may emerge from the simplest ones.

Let us first consider the notion of the emergent computation explained in [15]
as follows. An emergent computation is supposed to consist of:

1. a collection of agents, each following explicit instructions ;

2. interactions between the agents (according to the instructions), which form im-
plicit global patterns at the macroscopic level, i.e., epiphenomena;

3. a natural interpretation of the epiphenomena as computation.

It is clear that all components in a colony of grammars follow explicit instruc-
tions. These instructions are formulated in the form of rewriting rules and the
process of their use is formulated explicitly in the definition of the derivation step.
Interactions between the components are limited by the strategy of co-opration and
their behaviour “at the macroscopic level”, so observing the behaviour of the whole
colony, instead of the individual behaviours of its components, produces – as an

A Note on Emergence in Multi-Agent String Processing Systems 627

epiphenomenon – an infinite language, which is naturally interpretable as a com-
putation: it can be generated/accepted by the corresponding type of an abstract
computing device (if it is a context-free language, which is the typical case for
colonies, then by the corresponding pushdown automaton).

E.M.A. Ronald et al. [31] have formulated a test of emergence trying to offer an
operational definition of emergence for artificial life experiments. The requirements
put onto a system in which the phenomenon of emergence appears are as follows:

Design. The designer designs the systems by describing local interactions between
components in a language L1.

Observations. The observer describes global behaviours of the running system
using a language L2.

Surprise. The language of design L1 and the language of observation L2 are dis-
tinct, and the causal link between the elementary interactions programmed in L1

and the observations observed in L2 are non-obvious.

Let us analyze the design in more details. Imagine a designer (or more
designers) “programming” (constructively defining) the particular simple gram-
mars, say R1 and R2, for generating some required finite numbers of strings, say
{aB} and {Ab, b} (for instance, we may take the very simple regular grammars
R1 = ({A} , {a, B} , {A → aB} , A) and R2 = ({B} , {A, b} , {B → Ab,B → b} , B)).
The designer is satisfied because the work of the constructed modules fits the given
requirements. Using both of these generative devices in isolation, they generate
the simple sum of the two behaviours, the finite language {aB,Ab, b}. No surprise
appears during the observation of such a kind of system created from the (just
described) isolated modules.

Now, imagine that an observer puts the grammars together to rewrite a shared
sentential form starting with a non-terminal symbol from one of the simple grammars
(in our example, we start with the non-terminal symbol A from R1). What will be
observed now? The global behaviour of the whole system will be different from the
simple finite “sum” {aB,Ab, b} of the behaviours of the indvidual simple grammars.
The observed behaviour will be an infinite language {anbn | n ≥ 1}. However, the
design of the two components remains unchanged! So, while the language of the
designer has been concerned with finite behaviours, the language of the observer

of the system created in a rather simple way from the designed components will be
concerned with infinite behaviours (languages).

The impression of a surprise arises by realizing the gap between finite and
infinite behaviour just demonstrated above for the two systems set up from the same
components but working in different environments (starting with different starting
strings). Theoretically, some more surprising facts have been proved for colonies. As
we have already mentioned, colonies – devices set up from regular grammars genera-
ting finite languages – define the whole family of context-free languages, and if they
work with some simple and very “natural” additional restrictions, their generative
capacity can even be enlarged to some context-sensitive languages, too. Moreover, in

628 R. Freund, J. Kelemen, G. Păun

the case of the finite languages some problems seem to be highly actual, for instance
the complexity of defining such languages, and some of them are completely trivial,
like problems concerning decidability, computability, etc. Some questions become to
be meaningful only in the case of infinite languages. In other words, there are two
(not completely distinct, of course) languages for talking (and thinking) about finite
languages and devices generating them, and, in contrast, for infinite languages.

Now, we could state that colonies satisfy the test of emergence as proposed
in [31], and that they offer a quite simple and theoretically well grounded example
of how the test can be applied. In such a case, moreover, we can demonstrate
the appearance of the phenomenon of emergence in theoretically (mathematically)
well described formal systems, too, not only in experimental situations as discussed
in [31]. More about this can be found in [20]. In more technical details, the example
mentioned above can be found in [20].

In all these classes of grammar systems the phenomenon of emergence is funda-
mental, and the main reason of considering them is the fact that, in most cases, the

language generated (sometimes, accepted) by the system is essentially more complex

than the languages of the components. Just to have an idea about what this means,
we recall a series of results, in an informal manner (an elementary knowledge of
basic elements of formal language theory, especially about the Chomsky hierarchy,
is assumed):

1. CD grammar systems with regular components generate only regular languages,
in all modes of co-operation, but systems with context-free components can
generate non-context-free languages in the modes “at least k steps”, “exactly
k steps”, “maximal number of steps” ([5, 6]).

2. The colonies with sequential rewriting characterize the family of context-free
languages ([7]), but colonies with parallel rewriting or with an enhanced co-
operation of components can generate non-context-free languages ([12, 22, 26]).

3. PC grammar systems with regular components can generate non-context-free
languages ([6, 30]), while systems with context-free components characterize the
recursively enumerable languages ([11, 24]).

3 ABSTRACT FAMILIES OF LANGUAGES:

A POSSIBLE THEORETICAL FRAMEWORK

The difference between the level of components (finite in the case of colonies, regular
in the case of PC grammar systems, context-free in the case of CD and PC grammar
systems) and the level of the system output (context-free or more in the case of
colonies, non-context-free in the case of CD grammar systems, non-context-free or
even recursively enumerable in the case of PC grammar systems) is striking, and this
is exactly the effect of emergence. It is also clear that we can almost directly apply
the test of emergence, as proposed in [31]; see [20] for further discussions about this
topic, mainly about the case of colonies.

A Note on Emergence in Multi-Agent String Processing Systems 629

However, what we want to have is a more operational concept of a “test of
emergence”, a more formal definition and, if possible, a way to quantify it. The
main difficulty lies in the fact that the very concept of emergence is somewhat . . .
emergent, mainly an intuition, a feeling (the feeling of a surprise, see [31]). The test
of emergency proposed in [31] tries to capture the meaning of the concept in a more
precise manner, but still a lot remains imprecise, at least from a mathematical point
of view. Of course, we cannot hope to have a precise definition of a general notion
as that of emergence able to cover the concept in its whole generality, hence, we here
will try to approach it only for systems having to do with string processing. The
case study which we will discuss will be that of grammar systems, which perfectly
fits in this category.

At a more technical level, the difficulty is to transfer to our domain and to
formally define the meaning of the intuitive statement that “emergence appears
when the system behaviour is [much] more than the linear sum of the components
behaviour”.

Our basic proposal is to interpret the “linear sum” in terms of “nice operations
on languages”; then, the linear closure of a set (of behaviours) will mean the closure
of a set of languages under given “nice” operations.

Fortunately, in formal language theory we have several possibilities to choose
“nice” operations, namely those used in the abstract theory of languages (in short,
AFL), a branch of formal languages much developed in the sixties and the seventies.
The monograph [16] is just a milestone of that area; further references can be found
in [32].

The basic notions of AFL theory are those of trio, semi-AFL, and AFL: A trio

is a family of languages which is closed under non-erasing morphisms, inverse mor-
phisms, and intersection with regular languages. A semi-AFL is a trio closed also
under union. An AFL is a semi-AFL also closed under concatenation and Kleene +.
Thus, in sum, an AFL is a family of languages which is closed under union, concate-
nation, Kleene +, non-erasing morphisms, intersection with regular languages, and
inverse morphisms. (These operations are not independent of each other, but they
are basic in formal language theory and, in this combination, considered in the AFL
theory; further discussions about this topic can be found in [16].) A trio, semi-AFL,
or AFL which is closed under arbitrary morphisms and under Kleene ∗ is said to be
full.

As most important examples, we mention that the families of regular languages
(REG), of context-free languages (CF), of context-sensitive languages (CS), and
of recursively enumerable languages (RE) are AFLs, while the family of linear lan-
guages (LIN) is a semi-AFL which not an AFL (it is not closed under concatenation
and Kleene closure). All these families are full, with the exception of CS, which is
not closed under erasing morphisms.

It is also very important for our purposes to note that REG is the smallest trio,
semi-AFL, and AFL. Actually, a much more impressive statement holds: If F is

any full trio such that there is a language in F which is non-empty, then REG ⊆ F
(Theorem 3.1.1, [16]).

630 R. Freund, J. Kelemen, G. Păun

Now, starting from a given family F of languages (in particular, it can be finite,
or only consisting of only one language), we can look for the smallest trio, semi-
AFL, and AFL which contains the languages from F (“smallest” here is meant in
the sense of the inclusion relation), and we denote the resulting families of languages
by trio(F), sAFL(F), and AFL(F), respectively.

Intuitively, such families consist of all languages from F , plus all languages
which can be obtained from the languages of F by applying to them the operations
corresponding to the type of family we look for, putting together the languages of F
and all those obtained so far, and then iterating this procedure an arbitrary number
of times. Thus, it is clear that F ⊆ trio(F) ⊆ sAFL(F) ⊆ AFL(F). Of course,
depending on the initial family F , some of these inclusions can be proper, whereas
others can be equalities.

A family F of languages such that F = trio({L}) is said to be a principal trio,
while L is said to be a generator of F . The notion directly extends to principal
semi-AFLs and principal AFLs. For our purposes, it is important to note that every
principal semi-AFL or AFL has an infinite number of generators (Exercise 5.1.1,
[16]).

All the familiesREG,LIN, CF, CS, andRE are principal semi-AFLs (and AFLs
in the case of REG,CF, CS, and RE). As we have remarked above, any non-empty
language is a generator of the full AFL REG. A generator of LIN is, for instance,
the language {w mi(w) | w ∈ {a, b}∗}, where mi(w) denotes the mirror image of
the string w. Well-known generators of CF are the Dyck languages and generators
of RE are the twin-shuffle languages. We do not enter into further details here, yet
we return to the goal of our investigation, a framework for defining emergence.

Convention: All languages we deal with in this paper are recursively enumerable,
so we do not consider languages which are not Turing enumerable.

4 DEFINING EMERGENCE – THE CASE OF GRAMMAR SYSTEMS

In [18] something what is emergent is explained as “. . . a product of coupled,
context-dependent interactions. Technically, these interactions and the resulting
system are nonlinear : The behaviour of the overall system cannot be obtained by
summing the behaviours of its constituent parts. . . However, we can reduce the
behaviour of the whole to the lawful behaviour of its parts, if we take nonlinear in-
teractions into account.” In what follows we will propose a way how this formulation
can be translated into a more sophisticated formal framework.

Consider a system Σ, composed of several subsystems σ1, . . . , σn. Assume that
with the system itself and with its subsystems we can, in a natural way, associate
some languages L(Σ), L(σ1), . . . , L(σn), which describe the behaviour (the type, the
competence) of the system and of each of its subsystems.

• If L(Σ) ∈ trio({L(σ1), . . . , L(σn)}), then we say that the system displays no

emergence.

A Note on Emergence in Multi-Agent String Processing Systems 631

• If L(Σ) /∈ trio({L(σ1), . . . , L(σn)}), then we say that the system displays a trio

emergence.

• If L(Σ) /∈ sAFL({L(σ1), . . . , L(σn)}), then we say that the system displays
a semi-AFL emergence.

• If L(Σ) /∈ AFL({L(σ1), . . . , L(σn)}), then we say that the system displays an

AFL emergence.

A further level can also be considered: let AFL∩(F) denote the smallest AFL
which contains F and is closed under intersection.

• If L(Σ) /∈ AFL∩({L(σ1), . . . , L(σn)}), then we say that the system displays
a strong AFL emergence.

Let us see how these precise notions of emergence apply to grammar systems of
various types.

If the component languages are regular, then the smallest trio, semi-AFL, AFL
containing them is REG. If the component languages are context-free, then the
smallest trio, semi-AFL, AFL containing them is CF . This means that the colonies
have an AFL emergence, which is not the case for CD grammar systems with regular
components, but is true again for CD grammar systems with context-free compo-
nents, and for PC grammar systems with both regular or context-free components.

However, the results we have mentioned at the end of Section 2 about the power
of grammar systems in some sense show more than the previous estimations. For
instance, colonies with parallel rewriting not only generate languages outside REG,
the smallest AFL containing the finite languages, but also outside CF (implicitly,
outside the semi-AFL LIN). Similarly, PC grammar systems with regular compo-
nents have the behaviour outside CF , while systems with context-free components
jump directly to the full AFL of all recursively enumerable languages.

Moreover, because REG is closed under intersection, it follows that always when
we have finite or regular component languages, trio emergence directly means strong
AFL emergence.

These observations suggest that the previous scale for assessing the emergent
behaviour of a system is operational enough, but not refined enough. A solution is
to take a given hierarchy of trios, semi-AFLs, or AFLs as reference, as we have done
above with the basic families in the Chomsky hierarchy. Several other families can
be placed in between these five families of languages. At the limit, we can consider
infinite hierarchies of families with given closure properties.

Consider such an infinite hierarchy of, for instance, AFLs, H : REG = F1 ⊂
F2 ⊂ . . . ⊂ Fi ⊂ Fi+1 ⊂ . . . ⊆ RE (remember that we only work with Turing
enumerable languages). Then, if L(σj) ∈ Fm, 1 ≤ j ≤ n, and L(Σ) ∈ Fm+t−Fm+t−1,
for some t ≥ 1, then we will say that Σ is t-emergent with respect to the hierarchyH.
Of course, in this framework we can also have an infinite emergence: if L(σj) ∈ Fm

and L(Σ) belongs to no Fr, r ≥ m, then Σ is ∞-emergent, a property of a clear
interest.

632 R. Freund, J. Kelemen, G. Păun

In this way, we can have a precise numerical estimation of the emergent be-
haviour of Σ.

For instance, if we take the (Chomsky) hierarchy HCh : REG ⊂ LIN ⊂ CF ⊂
CS ⊂ RE (of semi-AFLs), we know that sequential colonies are 2-emergent, while
parallel colonies are 3-emergent, CD grammar systems with context-free rules are
1-emergent, PC grammar systems with regular components are 3-emergent, and PC
grammar systems with context-free components are 2-emergent, always with respect
to the chosen hierarchy, i.e., the Chomsky hierarchy HCh.

It is visible that this refined notion of emergence is rather suggestive – and it
can even be more suggestive for a more detailed hierarchy of families.

Just as an illustration, let us consider an infinite hierarchy of trios of context-free
languages, the one defined by the index of context-free grammars.

For a derivation

δ : S = w0 =⇒ w1 =⇒ . . . =⇒ wm = z ∈ T ∗

in a context-free grammar G = (N, T, P, S) (the notion can be extended to any class
of grammars using non-terminal symbols) we define

ind(δ) = max{|wi|N | 0 ≤ i ≤ m},

where |x|N is the number of occurrences of non-terminal symbols from N in the
string x ∈ (N ∪ T)∗; the maximal number of occurrences of non-terminal symbols
from N in all the sentential forms is the index of the derivation δ. Then, if ∆(z, G)
is the set of derivations of z ∈ T ∗ with respect to the grammar G, the index of z
with respect to G is defined by

ind(z, G) = max{ind(δ) | δ ∈ ∆(z, G)}.

The index of the grammar G is

ind(G) = sup{ind(z, G) | z ∈ L(G)},

and for a language L ∈ CF the index with respect to the class of context-free
grammars is

indCF (L) = inf{ind(G) | L = L(G)}.

Now let us denote the family of languages {L ∈ CF | indCF (L) ≤ i}, i ≥ 1,
by CFi. It is known (see, e.g., [17]) that all the inclusions CFi ⊂ CFi+1, i ≥ 1,
are proper and that all these families are full trios. Moreover, it is shown in [33]
that there are context-free languages of an infinite index – an example is the Dyck
language over {a, b}. Consequently, we have the following hierarchy of trios:

LIN = CF1 ⊂ CF2 ⊂ . . . ⊂ CFi ⊂ CFi+1 ⊂ . . . ⊂ CF .

Now, let us consider this hierarchy as the reference for emergence:

A Note on Emergence in Multi-Agent String Processing Systems 633

At first sight, colonies offer us the pleasant result of having an infinite emergence:
the components of a colony are regular grammars, hence they correspond to index 1,
while the family of languages generated by colonies equals CF , hence also languages
of an infinite index are reached. The surprise is only partially justified, because of
the apparent incongruence between the definition of a colony and the definition of
the index: in a colony, the terminal symbols of one component can be rewritten
by another component, hence they become nonterminals for the second component
(hence for the colony as a whole), while in the definition of the index there is an
essential distinction between terminals and nonterminals – and only the latter are
counted. Still, the behaviour of colonies can be considered as surprising even in that
context.

Then, a natural case to be considered is that of PC grammar systems, where
the separation of terminals and non-terminals is rigid and systems with regular
components (index 1) are able to generate languages which are not regular. Here
we are only interested in context-free languages.

Which is the maximal index of a context-free language which can be generated by

a PC grammar system with regular components? Actually, we here have four prob-
lems, depending on the type of systems we consider: centralized or non-centralized,
returning or non-returning; all these problems remain open here.

We can only prove that 1-emergence appears, at least for returning PC grammar
systems, centralized or non-centralized, and this can be shown with the following
system:

Γ = (N,K, T, (P1, S2), (P2, S2)),

N = {S1, S2},

K = {Q1, Q2},

T = {a, b},

P1 = {S2 → a, S2 → aS1, S1 → aS1, S1 → aQ2},

P2 = {S2 → bS2}.

Note that the axiom of both components is S2 and that the system is centralized
and regular in the restricted sense (the rules are not right-linear, but regular). Here
is a typical derivation in Γ, in the returning mode:

(S2, S2) =⇒ (aS1, bS2) =⇒
∗ (anS1, b

nS2) for some n ≥ 1

=⇒ (an+1Q2, b
n+1S2) =⇒ (an+1bn+1S2, S2)

=⇒ (an+1bn+1aS1, bS2) =⇒
∗ (an+1bn+1amS1, b

mS2) for some m ≥ 1

=⇒ (an+1bn+1am+1Q2, b
m+1S2) =⇒

∗ (an+1bn+1am+1bm+1S2, S2)

=⇒ (an+1bn+1am+1bm+1a, bS2).

Consequently, the language generated by Γ in the returning mode is

Lr(Γ) = {anbn | n ≥ 2}∗{a}.

634 R. Freund, J. Kelemen, G. Păun

This language is not linear, but it can be generated by a context-free grammar of
index 2. Thus, we have proved 1-emergence.

We conclude this section with a technical observation: if one of the languages
L(σi) is a generator of the full semi-AFL LIN (remember that there are infinitely
many such generators), then the smallest full semi-AFL which contains this language
and is closed under intersection is RE. Indeed, each recursively enumerable language
is the morphic image of the intersection of two linear languages. Consequently, in
such a case the system cannot display any strong semi-AFL (or AFL) emergence,
we already have sAFL({L(σ1), . . . , L(σn)}) = RE.

5 FINAL REMARKS

We have introduced a formal framework where the intuitive (we may also say “mys-
terious”) notion of emergence can be formulated (and “measured”) precisely for
complex systems whose behaviour can be described by string languages. The main
idea is to consider hierarchies of language families with ‘nice’ closure properties (as
a language approximation of what a ‘linear composition’ could mean for the be-
haviour of the components of the system) and to evaluate the jump in the hierarchy
from the level of languages of the components to the level of the language describing
the behaviour of the whole system. The idea has been illustrated with the case
of grammar systems (CD grammar systems, PC grammar systems, colonies), for
the Chomsky hierarchy of languages and for the infinite hierarchy of families of
context-free languages defined by the index of context-free grammars. Our study
has a preliminary character, as further investigations should be done both at the
technical level (in particular, an open problem which we feel interesting was formu-
lated with respect to the emergent behaviour of PC grammar systems with regular
components) and in what concerns case studies of “real life” complex systems, whose
emergent behaviour could be evaluated in this framework.

REFERENCES

[1] Arkin, R. C. Ed.: Robot Colonies. Kluwer, Boston, Mass., 1997.

[2] Arkin, R. C.: Behaviour-Based Robotics. The MIT Press, Cambridge, Mass., 1998.

[3] Brooks, R A.: Cambrian Intelligence. The MIT Press, Cambridge, Mass., 1999.

[4] Connell, J. H.: Minimalist Mobile Robotics – a Colony Architecture for a Mobile
Robot. Academic Press, New York, 1990.

[5] Csuhaj-Varjú, E.—Dassow, J.: On Co-Operating Distributed Grammar Systems.
J. Inform. Process. Cybern., EIK, Vol. 26, 1990, pp. 49–63.

[6] Csuhaj-Varju, E.—Dassow, J.—Kelemen, J.—Păun, Gh.: Grammar Sys-
tems. A Grammatical Approach to Distribution and Co-operation. Gordon and
Breach, London, 1994.

[7] Csuhaj-Varjú, E.—Kelemenová, A.: Languages of Colonies. Theoretical Com-
puter Science, Vol. 134, 1994, pp. 119–130.

A Note on Emergence in Multi-Agent String Processing Systems 635

[8] Csuhaj-Varjú, E.—Kelemen, J.—Kelemenová, A.—Păun, Gh.: Eco-

Grammar Systems: A Grammatical Framework for Studying Life-Like Interactions.
Artificial Life, Vol. 3, 1997, pp. 1–28.

[9] Csuhaj-Varjú, E.—Kelemen, J.—Păun, Gh.: Grammar Systems with WAVE-
Like Communication. Computers and AI, Vol. 15, 1996, pp. 419–436.

[10] Csuhaj-Varjú, E.—Salomaa, A.: Networks of Parallel Language Processors.
In: [28], pp. 299–318.

[11] Csuhaj-Varjú, E.—Vaszil, G.: On the Computational Completeness of Context-
Free PC Grammar Systems. Theoretical Computer Science, Vol. 215, 1999,
pp. 348–358.

[12] Dassow, J.—Kelemen, J.—Păun, Gh.: On Parallelism in Colonies. Cybernetics
and Systems, Vol. 24, 1993, pp. 37–49.

[13] Epstein, J. M.—Axtell, R.: Growing Artificial Societies – Social Science from

the Bottom Up. The MIT Press, Cambridge, Mass., 1996.

[14] Ferber, J.: Multi-Agent Systems – an Introduction to Distributed Artificial Intel-
ligence. Addison-Wesley, Harlow, 1999.

[15] Forrest, S.: Emergent Computation – Self-Organizing, Collective, and Co-
Operative Phenomena in Natural and Artificial Computing Networks. In: Emergent
Computation (S. Forrest, Ed.). The MIT Press, Cambridge, Mass., 1991, pp. 1–11.

[16] Ginsburg, S.: Algebraic and Automata-Theoretic Properties of Formal Languages.
North-Holland, Amsterdam, 1975.

[17] Gruska, J.: Descriptional Complexity of Context-Free Languages. Proc. MFCS
Symp., High Tatras, Czechoslovakia, 1973, pp. 71–83.

[18] Holland, J. H.: Emergence – from Chaos to Order. Addison-Wesley, Reading,
Mass., 1998.

[19] Kelemen, J.: On Post-Modularity and Emergence from Grammar-Theoretic Point
of View. In: Quo Vadis Computational Intelligence? (P. Sinčák, J. Vaščák, Eds.),
Physica-Verlag, Heidelberg, 2000, pp. 342–352.

[20] Kelemen, J.: From Statistics to Emergence – Exercises in Systems Modularity.
In: Multi-Agent Systems and Applications (M. Luck et al., Eds.), Springer-Verlag,
Berlin, 2001, pp. 281–300.

[21] Kelemen, J.—Kelemenová, A.: A Grammar-Theoretic Treatment of Multiagent
Systems. Cybernetics and Systems, Vol. 23, 1992, pp. 210–218.

[22] Kelemenová, A.: Timing in Colonies. In: [29], pp. 136–143.

[23] Langton, Ch. Ed.: Artificial Life – an Overview. The MIT Press, Cambridge, Mass.,
1995.

[24] Mandache, N.: On the Computational Power of Context-Free PCGS. Theoretical
Computer Sci., Vol. 237, 2000, pp. 135–148.

[25] Minsky, M.: The Society of Mind. Simon and Schuster, New York, 1986.

[26] Păun, Gh.: On the Generative Capacity of Colonies. Kybernetika, Vol. 31, 1995,
pp. 83–97.

[27] Păun, Gh. Ed.: Artificial Life. Grammatical Models. Black Sea Univ. Press, Bu-
cureşti, 1995.

636 R. Freund, J. Kelemen, G. Păun

[28] Păun, Gh.—Salomaa, A. Eds.: New Trends in Formal Languages: Control, Co-

Operation, Combinatorics. Springer-Verlag, Berlin, 1997.

[29] Păun, Gh.—Salomaa, A. Eds.: Grammatical Models of Multi-Agent Systems.
Gordon and Breach, London, 1998.

[30] Păun, Gh.—Sântean, L.: Parallel Communicating Grammar Systems: the Regu-
lar Case. Ann. Univ. Buc., Matem.-Inform. Series, Vol. 38, 1989, No. 2, pp. 55–63.

[31] Ronald, E. M. A.—Sipper, M.—Capcarrére, M. S.: Design, Observation,
Surprise! A Test of Emergence. Artificial Life, Vol. 5, 1999, pp. 225–239.

[32] Rozenberg, G.—Salomaa, A. Eds.: Handbook of Formal Languages, 3 volumes,
Springer-Verlag, Berlin, 1997.

[33] Salomaa, A.: On the Index of Context-Free Grammars and Languages. Inform.
Control, Vol. 14, 1969, pp. 474–477.

[34] Stein, L. A.: Post-Modular Systems – Architectural Principles for Cognitive
Robotics. Cybernetics and Systems, Vol. 28, 1997, pp. 471–487.

Rudolf Freund received his master and doctor degree in com-
puter science from the Vienna University of Technology, Aus-
tria, in 1980 and 1982, respectively. In 1986, he received his
master degree in mathematics and physics from the University
Vienna, Austria. In 1988 he joined the Vienna University of
Technology in Austria, where he became an Associate Profes-

sor in September 1995. His research interests include array and
graph grammars, regulated rewriting, infinite words, syntactic
pattern recognition, neural networks and their applications, and
especially models and systems for biological computing. In these
fields he is author or co-author of more than ninety scientific
papers.

A Note on Emergence in Multi-Agent String Processing Systems 637

Jozef Kelemen received his degrees in mathematics at the

Comenius University, Bratislava, Slovakia, in theoretical cyber-
netics at the Academy of Sciences, Moscow, Russia, and in com-
puting technology at the Slovak Technical University, Bratislava,
Slovakia. In the past, he was associated (in the positions of asso-
ciate or full professor) with the Comenius University and Univer-
sity of Economics, Bratislava, Slovakia, and with Lorand Eotvos
University, Budapest, and Istvan Szechenyi University of Tech-
nology, Gyor, Hungary, among others. Now, he is a full professor
of computer science and the head of the Institute of Computer

Science at the Silesian University at Opava, Czech Republic, and a research fellow of the
IT company Gratex International. His professional interests include some branches of
theoretical computer science, artificial intelligence, artificial life, and cognitive science. He
is a member of editorial boards of the journals Computing and Informatics, Experimen-
tal and Theoretical Artificial Intelligence, Grammars, and Neural Network World, and of
several international program committees of symposia and conferences, a member of the
American Association for Artificial Intelligence (AAAI), and the honorary member of the
Hungarian Fuzzy Association.

Gheorghe P�aun has graduated from the Faculty of Mathema-
tics, University of Bucharest, in 1974 and received his Ph.D. in
Mathematics (specialization: Computer Science) from the same
university in 1977. He held a research position at the University

of Bucharest, and from 1990 he is at the Institute of Mathema-
tics of the Romanian Academy, where he is currently a senior
researcher. From 2001 he also has a Ramon y Cajal research
professor position in Spain, first working in Rovira i Virgili Uni-
versity, Tarragona, and currently in Sevilla University. He visi-
ted numerous universities in Europe, Asia, and North America,

with frequent and/or longer stays in Turku (Finland), Leiden (The Netherlands), Magde-
burg (Germany, including the Alexander von Humboldt Fellowship in 1992–93), Tarragona
(Spain), London, Ontario (Canada), Rome (Italy), Tokyo (Japan), Warsaw (Poland), and
Vienna (Austria).

His main research areas are formal language theory and its applications, computa-
tional linguistics, DNA computing, and membrane computing (a research area initiated
by him, belonging to natural computing). He has published over 400 research papers (col-
laborating with many researchers worldwide), has lectured at over 100 universities, and
gave numerous invited talks at recognized international conferences. He has published
eleven books in mathematics and computer science, has edited over twenty five collective
volumes, and also published many popular science books and books on recreational ma-
thematics (games).

He is on the editorial boards of fourteen international journals in mathematics, com-

puter science, and linguistics, and was/is involved in the program/steering/organizing
commitees for many recognized conferences and workshops.

In 1997 he was elected a member of the Romanian Academy.

