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Abstract. In this paper, we study the Dominating Set problem with measure
functions, which is extended from the general Dominating Set problem. We study
the correspondnig problems on complexity, approximation and inapproximability
for Dominating Set problem with measure functions. In addition, we extend our
results to the weighted graphs.

Keywords: Dominating set, complexity, approximation, inapproximability

1 INTRODUCTION

Approximation algorithms [12, 22], which are used to solve optimization problems in
polynomial time with produced approximate solution being guaranteed to be close
to the optimal solution, is a major research area in theoretical computer science.

For minimization problems, an algorithm achieves approximation ratio δ ≥ 1 if
for any instance of the problem it produces a solution of value at most δ ·OPT , where
OPT is the optimal solution of the instance. We may define the approximation
ratio for maximization problem in the same way. Specifically, the study of the
approximation ratio contains two directions: upper bound, in which we need to
design algorithm that achieves ratio δ, and lower bound, in which we should prove
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that no approximation algorithms can achieve ratio δ for the given optimization
problem, unless P = NP .

In this paper, we extend the Dominating Set problem [11] to the one with
measure functions, i.e., Measure Dominating Set. The measure function is any
positive function f(·) defined on the number of vertices of the given graph. For
any undirected graph G = (V, E), the Measure Dominating Set problem asks for a
minimal set D ⊆ V such that for any vertex v /∈ D, there exists u ∈ D satisfying
the length of the shortest path between u and v is at most f(|V |). Note that in the
traditional Dominating Set problem, we only require (u, v) ∈ E, that is, f(|V |) ≡ 1.
In addition, we study this problem further on the graphs with weighted vertices and
edges, i.e., Weighted-Measured Dominating Set. Similar works on the extensions of
Dominating Set are referred to, e.g., in [6, 8].

Our contributions are the following threefolds for the both Measured and Weigh-
ted Dominating Set problem: (i) We show that both problems are NP -hard for
measure function f(n) = nε, where 0 < ε < 1 is any real. Note that Chang and
Nemhauster [6] showed that for any fixed constant distance, i.e., f(n) = c > 0, the
problem is NP -hard. (ii) We study approximation algorithms for the two problems.
Specifically, for Measured Dominating Set, we give a deterministic approximation
scheme with ratio O(logn); for the Weighted problem, we first show a deterministic
algorithm with approximation ratio O(logn), then we give a probabilistic approxi-
mation algorithm with ratio O(log∆) by randomized rounding, where ∆ is the
maximum cardinality of the sets of vertices that can be dominated by any single
vertex. (iii) We consider the inapproximability of the problems and demonstrate
that both lower bounds are Ω(logn).

In Section 2, we review the general Dominating Set problem and related works
for Set Cover (hence, for Dominating Set) problem. In Section 3, we formally
define the Measured Dominating Set problem and show our results on complexity,
approximation and inapproximability. We extend the model to weighted case and
discuss related problems in Section 4. We conclude our work in Section 5.

2 PRELIMINARIES

Given undirected connected graph G = (V, E), where V = {v1, . . . , vn} and E is the
set of edges, the Dominating Set problem is defined as follows.

Definition 2.1 (Dominating Set). For any graph G = (V, E), we are asked to find
a dominating set D ⊆ V with minimal cardinality, termed as optimal dominating
set, such that for any vj ∈ V −D, there exists vi ∈ D satisfying (vi, vj) ∈ E.

Dominating Set is a classic NP -hard problem, whose NP -hardness is reduced
from Set Cover problem [10], and has been discussed extensively from the point of
view of approximation. Note that all approximation and inapproximability results
of Set Cover also apply to Dominating Set similarly; hence, in the sequel we briefly
review the related works on Set Cover problem.
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For approximation algorithm, both greedy and linear program relaxation ap-
proach work for the approximation of Set Cover with the same approximation ratio
H(n) =

∑n
i=1

1
n
≤ lnn + 1 [13, 14, 20, 21]. Chvátal [7] extended the result to

the weighted case. Therefore, these solutions generate O(logn) approximation-ratio
algorithms for Dominating Set problem.

For inapproximability result, first, Arora et al. [2] showed that for some ε > 0,
it is NP -hard to approximate Set Cover problem within ratio 1 + ε, on the basis
of probabilistic checkable proof [2, 3] and MAX-SNP [17]. Secondly, Lund and
Yannakakis [15] proved that Set Cover cannot be approximated within ratio c logn
for any c < 1

4
, unless NP ⊂ TIME(nO(polylog n)). After that, Bellare et al. [5]

showed that unless P = NP , Set Cover cannot be approximated within any constant
ratio; Raz [18] proved the inapproximability ratio c logn for any c < 1

4
, unless

NP ⊂ TIME(nO(log logn)); and then Naor et al. [16] improved the coefficient 1
4
to 1

2

under the same assumption. Finally, Feige [9] closed the gap between approximation
and inapproximability, i.e., for any ε > 0, Set Cover cannot be approximated within
ratio (1− ε) lnn, unless NP ⊂ TIME(nO(poly log n)); further, Arora, Sudan [4], and
Raz, Safra [19] independently showed that approximating Set Cover within ratio
Ω(logn) is NP -hard, which thoroughly completes the work on the inapproximability
of Set Cover (i.e., Dominating Set).

3 DOMINATING SET WITH MEASURE FUNCTIONS

Now we consider Dominating Set problem with measure function f(n), where n
is the number of vertices of the given graph. That is, for any vi ∈ V we say vi
dominates vj ∈ V if and only if there exists a path, with length not more than f(n),
from vi to vj , and vice versa. Let LSP (vi, vj) denote the length of the shortest path
between vi and vj. Formally,

Definition 3.1 (Measured Dominating Set). For any given G = (V, E) and mea-
sure function f(n), where n = |V |, we are asked to find a dominating set D ⊆ V
with minimal cardinality, termed as optimal measured dominating set, such that for
any vj ∈ V −D, there exists vi ∈ D satisfying LSP (vi, vj) ≤ f(n).

3.1 NP-Hardness

Note that the general Dominating Set problem we discussed in the above section is
a special case of f(n) ≡ 1. Thus, intuitively, Measured Dominating Set is at least
as hard as the former one. Formally,

Theorem 3.1. For any real ε, 0 < ε < 1, Measured Dominating Set problem is
NP -hard for the measure function nε, where n is the number of vertices.

Proof. We reduce from the general Dominating Set problem (i.e., f = 1) on the
graph G = (V, E). Let δ be an integer that satisfies

1 ≤ δ ≤ (δn)ε < δ + 1,
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where n = |V |. It is easy to see that such an integer always exists, and upper
bounded by n

ε
1−ε , which implies that the integer δ we need is bounded by the

polynomial of n.
We construct the graph G′ = (V ′, E ′) with measure function nε as follows. For

every vertex vi ∈ V , we add other δ−1 vertices v1i , . . . , v
δ−1
i with edges among them

sequently. That is, define

V ′ = V ∪
{
v1i , . . . , v

δ−1
i | i = 1, . . . , n

}
,

E ′ = E ∪
{
(vi, v

1
i ), (v

1
i , v

2
i ), . . . , (v

δ−2
i , vδ−1

i ) | i = 1, . . . , n
}
.

Note that in G′, |V ′| = δn, hence the measure function of G′ is f ′ = (δn)ε.
For any dominating set D of G with measure function f , it is easy to see that

D is still a dominating set of G′ with measure function f ′. This is because for any
vji ∈ V ′, 1 ≤ j ≤ δ − 1, there must exist vl ∈ D that dominates vi with length one,
i.e., (vl, vi) ∈ E. And then, LSP (vl, v

j
i ) ≤ 1 + j ≤ δ ≤ f ′ implies that vl dominates

vji with length f ′.
Conversely, for any dominating set D′ of G′ with measure function f ′, it is easy

to see that for all 1 ≤ i ≤ n we must have
∣∣D′ ∩ {vi, v1i , . . . , v

δ−1
i }

∣∣ ≤ 1. Therefore,

for every vji ∈ D′, 1 ≤ j ≤ δ − 1 we may replace vji with vi in D′, which defines
a new set D and maintains the property of domination. Thus, we have |D| = |D′|
and both of them are dominating sets of G′ with measure function f ′. In addition,
we know that D is also a dominating set of G with measure function f . This is
because f ′ < δ + 1, and hence, for any vj /∈ D, there must exist vi ∈ D such that
(vi, vj) ∈ E. Hence the theorem follows. �

Some comments are in place. Note that if f(n) ≥ n, any single vertex serves as
an optimal measured dominating set. Specifically, when f(n) < n and f(n) = Θ(n),
we have the following lemma.

Lemma 3.1. For any graphG = (V, E), and measure function f(n), where n = |V |,
if f(n) < n and f(n) = Θ(n), then Measured Dominating Set is polynomial-time
solvable.

Proof. It’s easy to see that there exist constant integers c and N such that for all
n ≥ N we have c ≥ n

f(n)
. In the following we show that the size of the optimal

solution is at most c, and then we only need to enumerate all possible c′-collections
of vertices to find the optimal measured dominating set, for c′ = 1, . . . , c.

First, we compute the spanning tree T of G. Trivially, any measured dominating
set of T is a feasible solution of the original graph G. Therefore, if we find a solution
of T with size at most c, it ensures that the size of the optimal solution of G is at
most c. Hence we finish the whole proof of the lemma.

We denote the generated dominating set by D (initially D = ∅). For any
vi, vj ∈ V , let l(vi, vj) be the length of the shortest path between vi and vj in T .
The algorithm to find a measured dominating set of T is as follows:
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1. For an arbitrary vi ∈ V , we regard vi as the root of T and search T by BFS. Let
LEAF be the collection of all leaves of T .

2. If the height of T is no more than f(n), then D ← D ∪ {vi}, and return D.

3. Otherwise, let vk = argmaxvj∈LEAF l(vi, vj). Note that l(vi, vk) > f(n), which
implies that there exists a vertex vj contained in the path between vi and vk
such that l(vj, vk) = f(n). Let D ← D ∪ {vj}, and delete the subtree rooted
at vj .

4. Goto step 2.

Trivially, D is a feasible solution of T . In each iteration, we must delete at least
f(n) vertices. Therefore, the algorithm runs at most c ≥ n

f(n)
iterations and there

are at most c vertices added into D. �

In the rest of the paper, we only consider the case of f(n) = nε, 0 < ε < 1, and
all the results are referred to this specific measure function.

3.2 Approximation Algorithm

Similar as the general Dominating Set, we now consider approximation algorithm
for the Measured Dominating Set problem.

For any graph G = (V, E), we consider the adjacent matrix M to the power
f(n). Define graph G′ = (V, E ′), where the set of edges E ′ is determined according
to the Boolean matrix M ′, i.e., M ′ is the adjacent matrix of G′.

Lemma 3.2. D′ is an optimal measured dominating set ofG′ with measure function
f ′ = 1 if and only if D′ is an optimal measured dominating set of G with measure
function f(n).

Proof. We only prove the necessary condition, the sufficient condition is similar.
First, it is easy to see that D′ does be a dominating set of G. Assume, on the
contrary, that there exists a dominating set D of G with measure function f(n)
such that |D| < |D′|. That is, for any u ∈ V − D, there exists v ∈ D such that
LSP (u, v) ≤ f(n), which implies that (u, v) ∈ E ′. Therefore, D is also a dominating
set of G′ with measure function f ′. A contradiction. �

Based on the above lemma, we get the following approximation scheme for
Measured Dominating Set on the basis of approximation algorithm for the general
Dominating Set problem.
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Approximation Scheme for Measured Dominating Set:

Input : graph G = (V, E) and measure function f(n).

Algorithm:

1. compute adjacent matrix M of G and boolean matrix M ′ = M f(n).

2. construct graph G′ = (V, E ′), where M ′ is adjacent matrix of G′.

3. compute the dominating set D′ of G′ with measure function f ′ = 1

by approximation algorithm for the traditional Dominating Set.

Output : dominating set D′ of G with measure function f(n).

From Lemma 3.2, we get the following result.

Theorem 3.2. If the algorithm for the general Dominating Set used above has
approximation ratio δ, then the above scheme for Measured Dominating Set problem
has approximation ratio δ.

Corollary 3.1. There exists an approximation algorithm for Measured Dominating
Set with approximation ratio O(logn).

3.3 Inapproximability

Note that in the proof of Theorem 3.1, we show the NP -hardness of Measured Do-
minating Set by reducing from the general Dominating Set problem. Furthermore,
observe that the reduction we constructed has the property that the optimal solu-
tions of both instances share the same cardinality. Therefore, we have showed that
for any instance I of Dominating Set, the following gap-preserving reduction holds:

OPT (I) ≤ c =⇒ OPT (τ(I)) ≤ c

OPT (I) > cρ =⇒ OPT (τ(I)) > cρ

where τ is the reduction we constructed in the proof of Theorem 3.1, c and ρ ≥ 1
are functions of the instance size |I |. Due to the known inapproximability results for
Set Cover (i.e., Dominating Set) demonstrated in Section 2, we have the following
theorem.

Theorem 3.3. Measured Dominating Set problem cannot be approximated within
ratio Ω(logn) unless P = NP .

From Corollary 3.1 and the above theorem, we know that the bound for Mea-
sured Dominating Set problem is tight, i.e., Θ(logn).
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4 MEASURED DOMINATING SET FOR WEIGHTED GRAPHS

In this section, we study Measured Dominating Set problem on the graph with both
non-negative weighted vertices (with weight function w) and edges (with weight
function w′). In this case, the weighted-shortest path between vi and vj, denoted as
WSP (vi, vj), is the minimum sum of weights of edges on all such paths. That is,

WSP (vi, vj) = min

{
∑

el∈P

w′(el) | P is a path between vi and vj

}
.

Similarly, we say vi dominates vj if and only if WSP (vi, vj) ≤ f(n), and vice versa.

Definition 4.1 (Weighted-Measured Dominating Set). For any given graph G =
(V, E) with weighted vertices and edges and measure function f(n), where n = |V |,
we are asked to find a dominating set D ⊆ V with minimal (vertices) weights,
termed as optimal weighted-measured dominating set, such that for any vj ∈ V −D
there exists vi ∈ D satisfying WSP (vi, vj) ≤ f(n).

Note that in the above definition the criteria of the dominating set refer to
vertices weights, whereas that two vertices are dominated each other refers to weights
of edges.

Observe that Measured Dominating Set is a special case of the weighted model
when all weights of vertices and edges are equal to one. Therefore, we have the
following conclusion.

Theorem 4.1. Weighted-Measured Dominating Set problem is NP -hard.

In addition, the conclusion of Theorem 3.3 also works here, that is,

Theorem 4.2. Approximating Weighted-Measured Dominating Set problem with-
in ratio Ω(logn) is NP -hard.

Now we are searching for the approximation schemes for Weighted-Measured
Dominating Set problem.

4.1 Greedy Algorithm

Similar as most other classic optimization problems, we first consider to apply the
greedy approach.

For any given instance of Weighted-Measured Dominating Set problem, let OPT
be the size of the optimal solution. Define Si = {vj | WSP (vi, vj) ≤ f(n)}, and
∆ = max |Si|. Note that for all 1 ≤ i ≤ n, vi ∈ Si. Let D be the dominating set
generated by the algorithm, and D = V − D. Let U l be the set of vertices not
dominated so far at the beginning of iteration l. The greedy algorithm works as
follows.
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Greedy Algorithm for Weighted-Measured Dominating Set:

1. D ← ∅, U1 ← V , l← 1.

2. Sl
i ← Si, for 1 ≤ i ≤ n.

3. While U l 6= ∅ do

(a) vj = argminvi∈D
w(vi)

|Sl
i |
.

(b) D ← D ∪ {vj}.

(c) U l+1 ← U l − Sl
j.

(d) g(vi) = w(vj)/|Sl
j|, for vi ∈ Sl

j.

(e) Sl+1
i ← Sl

i − Sl
j, for vi ∈ D.

(f) l← l + 1.

4. Output dominating set D with measure function f(n).

Theorem 4.3. The above greedy algorithm produces an Hn ratio approximation
algorithm for Weighted-Measured Dominating Set problem, where Hn = 1 + 1

2
+

· · ·+ 1
n
.

Proof. Assume without loss of generality that v1, . . . , vn is the order in which these
vertices are removed (i.e., dominated) by step (iii) of the algorithm, ties are broken
arbitrarily. It is easy to see that g(v1) ≤ g(v2) ≤ · · · ≤ g(vn). In addition, from the
definition of (iv), we know that

n∑

i=1

g(vi) =
∑

vi∈D

w(vi). (1)

For any vertex vi, assume vi is dominated at iteration l, i.e., vi ∈ U l and vi /∈
U l+1. Hence, we know that |U l| ≥ n − i + 1. Therefore, from the minimization of
(i), we have

g(vi) ≤
OPT

|U l|
≤

OPT

n− i+ 1
, (2)

where the first inequality is due to at the beginning of iteration l, the leftover sets
of the optimal solution (contained in D) can dominate U l at a cost of at most OPT .
Combining (1) and (2), we have

∑

vi∈D

w(vi) =

n∑

i=1

g(vi) ≤
n∑

i=1

OPT

n− i + 1
= Hn · OPT .

Hence the theorem follows. �
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It is well known that Hn ≤ logn+1, therefore the approximation ratio produced
by greedy algorithm is upper bounded by O(logn). In addition, we stress that the
bound Hn is tight. The following example demonstrates this point clearly.

Example 4.1. Consider the graph G = (V, E) with measure function f(n+1) = 1,
where V = {v1, . . . , vn, vn+1} (with weights w(vi) =

1
i
, for 1 ≤ i ≤ n, and w(vn+1) =

1 + ε for a sufficiently small real ε > 0), and E = {(v1, vn+1), (v2, vn+1),
. . . , (vn, vn+1)} (with unit weight each, i.e., w′(e) = 1 for e ∈ E). Note that the
optimal solution is OPT = 1 + ε associated with the dominating set {vn+1}. The
greedy algorithm, however, generates dominating set D = {v1, . . . , vn} with total
weight Hn.

4.2 Approximation Algorithm by Randomized Rounding

Observe that the Weighted-Measured Dominating Set problem is equivalent to the
following integer program:

Integer Program (IP):

min

n∑

i=1

wixi

s.t.
∑

vj∈Si

xj ≥ 1, ∀ 1 ≤ i ≤ n

xi ∈ {0, 1}, ∀ 1 ≤ i ≤ n

Here, xi represents whether vertex vi is contained in the dominating set or not. The
linear program relaxation is as follows.

Linear Program Relaxation (LPR):

min

n∑

i=1

wixi

s.t.
∑

vj∈Si

xj ≥ 1, ∀ 1 ≤ i ≤ n

xi ∈ [0, 1], ∀ 1 ≤ i ≤ n

Let (x∗
1, . . . , x

∗
n) be the optimal solution of IP, and (x̃1, . . . , x̃n) be the optimal

solution of LPR. Therefore, we have

OPT =

n∑

i=1

wix
∗
i ≥

n∑

i=1

wix̃i. (3)

Note that LPR is polynomial-time solvable, hence we may compute (x̃1, . . . , x̃n)
efficiently, and the “feasible” solution of IP is defined by randomized rounding as
follows.
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xi =

{
1 with probability x̃i

0 otherwise.

Define D = {vi | xi = 1, i = 1, . . . , n}. In the following, we analyze the proba-
bility that D is a feasible solution of IP. For any vertex vi, due to the feasibility of
x̃i’s, the probability that vi is dominated is

1−
∏

vj∈Si

(1− x̃j) ≥ 1 − (1−
1

|Si|
)|Si| ≥ 1−

1

e
. (4)

That is, the probability is lower bounded by constant 1− 1
e
. To increase this prob-

ability, we may use amplification approach to independently execute randomized
rounding t times, whose value will be determined later. In this case, for any vertex
vi, the following equality holds:

Prob[xi = 0] = (1− x̃i)
t. (5)

Let Ai denote the event that vi is not dominated, due to FKG inequality [1], it
is easy to see the following two inequalities hold:

Prob[Ai ∩ Aj] ≥ Prob[Ai] · Prob[Aj], (6)

Prob[Ai ∩ Aj] ≥ Prob[Ai] · Prob[Aj]. (7)

Let B =
⋂n

i=1 Ai be the event that all vertices are dominated. From (3)-(7), the
expected value of the solution produced by randomized rounding, given that event
B happens, is

E

[
n∑

i=1

wixi | B

]
=

n∑

i=1

wi · Prob [xi = 1 | B]

=
n∑

i=1

wi ·
Prob [B | xi = 1]

Prob[B]
· Prob[xi = 1]

=
n∑

i=1

wi ·
Prob

[⋂
j /∈Si

Aj

]

Prob
[⋂n

j=1Aj

] · Prob[xi = 1]

(7)

≤
n∑

i=1

wi ·
1

Prob
[⋂

j∈Si
Aj

] · Prob[xi = 1]

(7)

≤
n∑

i=1

wi ·
1∏

j∈Si
Prob

[
Aj

] · Prob[xi = 1]

(4)

≤
n∑

i=1

wi ·
1

(1− e−t)∆
· Prob[xi = 1]
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(5)
=

1

(1− e−t)∆
·

n∑

i=1

wi · (1− (1− x̃i)
t)

≤
1

(1− e−t)∆
·

n∑

i=1

wi · (1− (1− tx̃i))

(3)

≤
t

(1− e−t)∆
·OPT .

Defining t = O(log∆), we have

E

[
n∑

i=1

wixi | B

]
≤ O(log∆ · OPT ).

Therefore, we have the following conclusion.

Theorem 4.4. Given any graph G with weighted vertices and edges, with positive
probability, the weighted-measured dominating set of G can be computed efficiently
within O(log∆) ratio to the optimal solution.

5 CONCLUSIONS

An extension model of Dominating Set problem, Dominating Set with measure func-
tions, is studied in this paper. Specifically, we showed the NP -hardness for the
problem with measure function f(n) = nε, and discussed related approximation
algorithms. In addition, the problem we studied in this paper, associated with
a number of other extensions of Dominating Set, has many potential applications in
wireless Ad Hoc network, in communication network, etc.
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