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Abstract. In the paper we present results, which allow us to compute the indepen-
dence numbers of P2-path graphs and P3-path graphs of special graphs. As P2(G)
and P3(G) are subgraphs of iterated line graphs L2(G) and L

3(G), respectively, we
compare our results with the independence numbers of corresponding iterated line
graphs.
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1 INTRODUCTION

Let G be a graph, k ≥ 1, and let Pk be the set of all paths of length k (i.e., with
k+1 vertices) in G. The vertex set of a path graph Pk(G) is the set Pk. Two vertices
of Pk(G) are joined by an edge if and only if the edges in the intersection of the
corresponding paths form a path of length k−1, and their union forms either a cycle
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or a path of length k+1. This means that the vertices are adjacent if and only if
one can be obtained from the other by “shifting” the corresponding paths in G.

Path graphs were investigated by Broersma and Hoede in [4] as a natural gene-
ralization of line graphs, since P1(G) is the line graph L(G) of G. However, there is
also another connection between path graphs and line graphs. Denote by Lk(G) the
graph, obtained from G by applying k times the line graph operator. Then Pk(G)
is a subgraph of Lk(G), and P2(G) is a spanning subgraph of L2(G).

Traversability of P2-path graphs is studied in [16], and a characterization of
P2-path graphs is given in [4] and [13]. Distance properties of path graphs are
studied in [3, 8] and [9], and [10], [5] and [2] are devoted to connectivity of path
graphs. Isomorphism of path graphs is studied in [1] and [14].

Let G be a graph. By V (G) and E(G) we denote the vertex set and edge set of
G, respectively, and for each vertex v of G, by degG(v) we denote the degree of v
in G. A subset A of the set of vertices of G is independent, if there is no edge in G
connecting a pair of vertices of A. The maximum size of the set of independent
vertices of G is the independence number β(G).

In this paper we study the independence number of Pk-path graphs. Since the
problem is complicated in general, we restrict ourselves to cases k = 2 and k = 3.
We construct maximum sets of independent vertices of Pk(G) for special classes of
graphs G, 2 ≤ k ≤ 3, and we compare the results with the independence numbers
of Lk(G).

The outline of the paper is as follows. In Section 2 we study iterated line
graphs, while Sections 3 and 4 are devoted to P2-path graphs and P3-path graphs,
respectively.

2 ITERATED LINE GRAPHS

Let G be a graph and let L2(G) be its second iterated line graph. It is easy to
see that there is a one-to-one correspondence between the vertices of L2(G) and the
paths of length two in G, see [15]. For that reason, we will identify these two objects.

Two distinct vertices are adjacent in L2(G) if and only if the corresponding
paths share an edge in common. Hence, the set of vertices in L2(G) is independent
if and only if the corresponding paths of length two are edge-disjoint in G.

In the pioneering paper [11] there is the following lemma:

Lemma 1. Let G be a connected graph with even number of edges. Then the edge
set of G can be decomposed into edge-disjoint paths of length two.

As the paper [11] is in Slovak, it is not familiar in general. For that reason we
include a sketch of the proof from [11].

Proof. (Sketch of the proof of Lemma 1) Let us direct all the edges of G. This
orientation can be done in such a way that to every vertex of G an even number of
arcs is directed. (If this is not the case, then denote by P an undirected path joining
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two vertices of odd in-degree and reverse the orientation of all arcs of P . Proceed
in this process until no vertex of odd in-degree remains.)

Finally, for every vertex v of G, partition the arcs terminating in v into pairs,
to form edge-disjoint paths of length two. 2

As a straightforward consequence of Lemma 1 we have the following statement:

Theorem 2. For every connected graph G we have β(L2(G)) =
⌊

|E(G)|
2

⌋

.

It is well-known that for general graphG the problem of finding its independence
number is NP-hard, see [6]. If we consider line graphs, maximum independent sets
in L(G) correspond to maximum matchings in G. Hence, the problem of finding
the independence number of L(G) is polynomial, see [12]. And as we have already
shown, the problem of finding the independence number of L2(G) is trivial.

In [15] we present bounds for the numbers of vertices in iterated line graphs. As
a consequence, for r-regular graphs, r ≥ 2, and k ≥ 2 we have

β(Lk(G)) =

⌊

n

2
·
k−1
∏

i=0

[2i−1· (r−2) + 1]

⌋

,

where n is the number of vertices of G. Moreover, for every graph G distinct from
a path, a cycle and a claw, there are constants c1 and c2, c1 > 0 and c2 ≥ 1, such
that

β(Lk(G)) > c1 · 2(
k−2

2
) · ck−1

2

for every k ≥ 0.

3 P2-PATH GRAPHS

We present a non-deterministic algorithm for finding a maximum independent set of
P2(G). This algorithm is not important from the algorithmic point of view, however,
it shows the structure of any maximum independent set (see Theorem 3).

Algorithm 1. Let G be a graph with the maximum degree ∆(G).

Step 0. Set G′ = G, d = ∆(G) and I = ∅.

Step 1. Choose a vertex v of G′, such that 2 ≤ degG′(v) ≤ d. Add to I all paths of
G′ of the form (x, v, y) where both xv and vy are edges of G′. Set d = degG′(v).
Now delete from G′ the vertex v and all edges incident to v, and denote the
resulting graph by G′.

Step 2. If ∆(G′) ≥ 2 then go to Step 1, otherwise terminate the algorithm and give
the set I on the output.

Theorem 3. Let I be any maximum independent set of vertices of P2(G), i.e.,
|I | = β(P2(G)). Then, choosing the vertices in a clever way, I can be found by
Algorithm 1.
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Proof. First, observe that if we proceed in Algorithm 1 in any way, we construct
an independent set of vertices of P2(G). The reason is that if two paths of I share
an edge, say uv, then these paths are (u, v, x) and (u, v, y) for suitable x and y.

Let I be a maximum independent set of P2(G). For every vertex u of G, denote
by Iu the paths of I which have u in the center. Further, denote by Tu the set of
endvertices of paths in Iu. As I is a maximum independent set, for every x, y ∈ Tu,
x 6= y, we have (x, v, y) ∈ Iu. Hence, |Iu| =

(

|Tu|
2

)

Let v be a vertex of G such that |Iv| is maximum. To prove the statement, it is
enough to show that |Tv| = degG(v), i.e., that all neighbours of v occur in Tv.

Suppose that there is a neighbour w of v, such that w /∈ Tv. If the edge vw does
not appear in the paths of I , we can add to I all paths of the form (w, v, x), x ∈ Tv,
to obtain a larger independent set, which contradicts the maximality of I . Hence, we
may assume that v ∈ Tw. By the choice of v, we have |Iv| ≥ |Iw|, and consequently
|Tv| ≥ |Tw|. Remove from I all paths of the form (x, w, v), add the paths (w, v, y),
and denote the resulting set by I ′. Obviously, I ′ forms an independent set of vertices
in P2(G), and

|I ′| = |I | − (|Tw| − 1) + |Tv| > |I |,

a contradiction. 2

Now we focus our attention to some classes of graphs and determine the inde-
pendence numbers of their P2-path graphs.

As the complete graph Kn is vertex-transitive and by deleting a vertex from Kn

we receive a Kn−1, we can choose the vertices for Algorithm 1 in arbitrary order.
Thus, we have

β(P2(Kn)) =

(

n− 1

2

)

+

(

n− 2

2

)

+ . . .+

(

2

2

)

=

(

n

3

)

.

Observe that β(L2(Kn)) = ⌊1
2

(

n

2

)

⌋, |V (L2(Kn))| = |V (P2(Kn))| = 3
(

n

3

)

, the graph

L2(Kn) is regular of degree 4n− 10 and P2(Kn) is regular of degree 2n− 4.
For the complete bipartite graphKn,n the situation is more complicated, because

there are many ways for choosing the order of vertices for our algorithm. In fact,
here the algorithm is useless. However, we can determine β(P2(Kn,n)) in other way.

Since Kn,n is a bipartite graph, P2(Kn,n) is bipartite as well. Denote by {u1, u2,
. . . , un} and {v1, v2, . . . , vn} the bipartition of the vertex set of Kn,n. The vertices
of P2(Kn,n) can be partitioned into four-cycles and six-cycles

V (P2(Kn,n)) =
⋃

a6=b

{(ua, va, ub), (va, ub, vb), (ub, vb, ua), (vb, ua, va)}
⋃

⋃

a6=b6=c6=a

{(ua, vb, uc), (vb, uc, va), (uc, va, ub), (va, ub, vc), (ub, vc, ua), (vc, ua, vb)}.

Hence, P2(Kn,n) is a bipartite graph having a linear factor. Thus, β(P2(Kn,n)) =
|V (P2(Kn,n))|

2
= n3−n2

2
. Observe that β(L2(Kn,n)) = ⌊n2

2
⌋, the graph L2(Kn,n) is regular

of degree 4n− 6 and P2(Kn,n) is regular of degree 2n− 2.
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Using Algorithm 1, the maximum independent set of P2(Kn,n) can be obtained
by choosing, in each step, the vertex of the maximum degree. This gives an inde-
pendent set of size n ·

(

n

2

)

= n3−n2

2
= β(P2(Kn,n)). Analogous situation has appeared

in the trivial case of Kn. Unfortunately, there are graphs for which we cannot start
with a vertex of maximum degree.

Let us denote by Tt,s a tree, obtained from t vertex disjoint stars K1,s−1 and
one extra vertex which is joined to all central vertices of the stars. We determine
β(P2(Tt,s)) using Algorithm 1. In Tt,s there are t vertices of degree s, one vertex of
degree t and t(s−1) vertices of degree 1. As Tt,s is symmetric, in Algorithm 1 the size
of I is determined by the order in which it chooses the central vertex. Hence, denote
by β(k) the size of independent set obtained by choosing k vertices of degree s, then
the central vertex of degree t−k, and finishing with the remaining t−k vertices of
degree s−1, 0 ≤ k ≤ t. This gives

β(k) = k

(

s

2

)

+

(

t− k

2

)

+ (t− k)

(

s− 1

2

)

=
1

2

[

k2 + k(2s− 2t− 1) + c
]

,

where c is a constant depending only on t and s. Hence, β(k) is maximum if k = 0
or k = t. Since β(t) > β(0) is equivalent to t2 + t(2s − 2t − 1) > 0, which gives
2s − 1 > t, we cannot start with the vertex of maximum degree if 2s − 1 > t > s.
In fact, this shows that the problem of finding the independence number of P2(G)
is not trivial in general.

4 P3-PATH GRAPHS

As the problem is complicated for P3-path graphs in general, we consider only
graphs G of girth at least 4. We start with a non-deterministic algorithm, which is
similar to Algorithm 1.

Algorithm 2. Let G be a graph of girth at least 4 and the maximum degree ∆(G).

Step 0. Set G′ = G, d = ∆(G) and I = ∅.

Step 1. Choose an edge uv of G′, such that 2 ≤ degG′(u) ≤ d. Add to I all paths of
G′ of the form (x, u, v, y) where both xu and vy are edges ofG′. Set d = degG′(u).
Now delete from G′ the edge uv, and denote the resulting graph by G′.

Step 2. If there are paths of length 3 in G then go to Step 1, otherwise terminate
the algorithm and give the set I on the output.

Theorem 4. Let G be a graph of girth at least 4. Then choosing the vertices in
a clever way, Algorithm 2 finds a maximum independent set of P3(G).

Proof. First, observe that Algorithm 2 constructs an independent set of vertices
of P3(G). The reason is that if uv is a central edge in a path in I , then it does not
occur as an endedge of any path in I .
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Let I be a maximum independent set of P3(G). For every edge uv of G, denote
by Iuv the paths of I which have the edge uv in the middle. Further, let

T uv
u = T vu

u = {x; (x, u, v, y) ∈ Iuv for suitable y}.

As I is a maximum independent set, for every x ∈ T uv
u and y ∈ T uv

v , we have
(x, u, v, y) ∈ I . (Observe that G has no triangles.)

Let us consider an arbitrarily chosen vertex v of G. Among all neighbours of v,
let u have the maximum value of |T vu

u |. Suppose that |T vu
u | > 0. Moreover, suppose

that w is a neighbour of v, w 6= u, such that w /∈ T uv
v . If (u, v, w) does not occur

as a subpath in elements of I , then we can add to I all paths (x, u, v, w), x ∈ T vu
u ,

to obtain a larger independent set. Hence, (u, v, w) is a subpath in an element of I .
Since w /∈ T uv

v , it follows that u ∈ Twv
v . By the choice of u, |T vu

u | ≥ |T vw
w |. Remove

from I all paths of the form (u, v, w, y), y ∈ T vw
w , add the paths (x, u, v, w), x ∈ T vu

u ,
and denote the resulting set by I ′. Obviously, I ′ forms an independent set in P3(G)
and

|I ′| = |I | − |T vw
w | + |T vu

u | ≥ |I |.

Observe that our change of I to I ′ is local. Namely, if we determine the sets
T yx
x for I ′, these sets will coincide with those determined for I , except for the case

x = v. If we denote r = degG(v), then continuing in these local changes for other
neighbours of v, we get a maximum independent set with |T uv

v | = r − 1.
Now we repeat this process with an edge zv of G, such that |T vz

z | is maximum
among the neighbours of v, z 6= u. Again, suppose that |Ivz| > 0. We must avoid
the edge uv, but after the local changes all the remaining edges will occur in Ivz.
We get |T zv

v | = r− 2. Continuing in these changes with other edges we see that the
neighbours of v can be labelled by u1, u2, . . . , ur, so that either |T vui

v | = r − i, or
|T vui

v | = 0 (if |Ivui
| = 0). Obviously, if |T vui

v | = 0 then |T
vuj
v | = 0 for every j > i.

Assume that these local changes were done for all vertices v of G. Among all
edges with |Iab| > 0 let ab have maximum value of degG(a). Moreover, let ab be the
edge for which |T ba

a | = degG(a)− 1.
If there is a neighbour c of b, c 6= a, such that c /∈ T ab

b , then remove from I all
paths of the form (a, b, c, y), y ∈ T bc

c , add the paths (x, a, b, c), x ∈ T ba
a , and denote

the resulting set by I ′. Obviously, I ′ forms an independent set in P3(G) and

|I ′| = |I | − |T bc
c |+ |T ba

a | ≥ |I |.

We can do these changes with other neighbours of b as well, to obtain |T ab
b | =

degG(b)− 1. As we already assumed |T ba
a | = degG(a)− 1, the result follows. 2

Observe that we did not prove that every maximum independent set of P3-path
graph can be found by Algorithm 2. The problem is that the inequalities are not
sharp in the previous proof.

Now we focus our attention to graphs which are decomposable into r linear fac-
tors, r ≥ 2. The following (deterministic) algorithm finds a maximum independent
set of vertices of P3(G).
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Algorithm 3. Let G be a graph of girth at least 4, and let F1, F2, . . . , Fr be the
factorization of G.

Step 0. Set G′ = G, I = ∅ and i = 1.

Step 1. For each edge uv of Fi, add to I all paths of G′ of the form (x, u, v, y) where
both xu and vy are edges of G′. Then delete from G′ all edges of Fi and denote
the resulting graph by G′.

Step 2. If i < r − 1 then increase i by 1 and go to Step 1, otherwise terminate the
algorithm and give the set I on the output.

Theorem 5. Let G be a graph of girth at least 4 which is decomposable into r
linear factors, r ≥ 2. Then Algorithm 3 finds a maximum independent set of P3(G),
and the size of this set is n

12
[2r3 − 3r2 + r] where n is the number of vertices of G.

Proof. As Algorithm 3 is just a special case of Algorithm 2, it constructs an in-
dependent set of vertices of P3(G). Moreover, the size of this set is n

2
(r−1)2 +

n
2
(r−2)2 + . . .+ n

2
12 = n

12
[2r3 − 3r2 + r].

As we have already shown in the proof of Theorem 4, in P3(G) there is a maxi-
mum independent set I , such that for every vertex v its neighbours can be labelled
by u1, u2, . . . , ur, so that either |T vui

v | = r − i, or |T vui
v | = 0. (We use the notation

from the previous proof.) Thus,

|I | =
∑

uv∈E(G)

|T uv
u | · |T uv

v |,

where there are at most nmultipliers of size r−i, 1 ≤ i ≤ r−1. Since ab+ac < a2+bc
if a > b ≥ c ≥ 0, we have |I | ≤ n

2
(r−1)2 + n

2
(r−2)2 + . . .+ n

2
12 = n

12
[2r3 − 3r2 + r].

However, Algorithm 3 finds an independent set which has exactly this size, and
hence, it finds a maximum independent set in P3(G). 2

By Theorem 5, for complete bipartite graph Kn,n we have β(P3(Kn,n)) =
2n
12
[2n3 − 3n2 + n]. Observe that P3(Kn,n) has n2(n − 1)2 = n4 − 2n3 + n2 ver-

tices and degree 2n − 4, but it is not bipartite. The odd girth of P3(Kn,n) is 9.
On the other hand, L3(Kn,n) has 2n

4 − 5n3 + 3n2 vertices and degree 8n− 14, and

β(L3(Kn,n)) = ⌊n3−n2

2
⌋.

Analogously, β(P3(Qr)) = 2r

12
[2r3 − 3r2 + r] if Qr denotes an r-dimensional

cube. The graph P3(Qr) has 2r−1(r3 − 2r2 + r) vertices and degree 2r − 2. On
the other hand, L3(Qr) has 2r−1(2r3 − 5r2 + 3r) vertices and degree 8r − 14, and

β(L3(Qr) = ⌊2r−1(r2−r)
2

⌋.
We remark that in a sense, the results of section 3 can be generalized for P2t-path

graphs and the results of section 4 can be generalized for P2t+1-path graphs, t ≥ 2.
Hovewer, in the generalized algorithms we cannot simply delete edges from G, but
we must forbid these edges as “next by central” edges of paths in I . Moreover, there
are problems with graphs of “small” girths. So we can either work with graphs of
“large” girths (for Ps-path graphs we require the girth at least s+1), or we can turn
our attention to walk graphs instead of the path graphs, see [7].
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