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Abstract. This paper presents a market mechanism for dynamic resource allocation
in computational grid. Grid market is described that consists of two economic
agent types; it allows agents representing various grid resources to coordinate their
resource allocation decisions without assuming a priori cooperation. The grid task
agents buy resources to complete tasks. Grid resource agents charge the task agents
for the amount of resource capacity allocated. Grid resource allocation problem is

presented as grid user utility optimization. Given grid resource agent’s pricing
policy, the task agent optimization problem is to complete its job as quickly as
possible when spending the least possible amount of money. This paper provides
a resource allocation and pricing algorithm. Experiments are made to compare
the performance of the price-directed resource allocation with conventional Round-
Robin allocation.
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1 INTRODUCTION

Grid computing is an emerging technology that promises to unify resources and
computing power in many organizations. It is widely used to solve large-scale prob-
lems in engineering and science area. Since the Grid computing technology is still
in a very early stage, there are still a few works on the building of efficient resources
manager on the Grid [1–4]. Carsten Ernemann [8] addresses the idea of apply-
ing economic models to the scheduling task. In [8] a scheduling infrastructure and
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a market-economic method is presented. The efficiency of this approach in terms of
response and wait time minimization as well as utilization is evaluated by simula-
tions with real workload traces. The evaluations show that the presented economic
scheduling algorithm provides similar or even better average weighted response-times
as common algorithms like backfilling. This is especially promising as the presented
economic models have additional advantages as e.g. support for different price mo-
dels, optimization objectives, access policies or quality of service demands. Grid
Architecture for Computational Economy (GRACE) [9, 21] proposes a distributed
computational economy as an effective metaphor for the management of resources
and application scheduling. It proposes an architectural framework that supports
resource trading and quality of services based scheduling. It enables the regulation
of supply and demand for resources; provides an incentive for resource owners to
participate in the Grid; and motivates the users to trade-off between deadline, bud-
get, and the required level of quality-of-service. It also demonstrates the capability
of economic-based systems for peer-to-peer distributed computing by developing
users’ quality-of-service requirements driven scheduling strategies, algorithms, and
systems. Chun and Culler [22] propose CPU timeshare allocations are governed
by a market economy that optimizes user value. Their approach does not address
the issue of market equilibrium; rather, as with auctions, it sets prices locally, but
prices are set based on priority. Nimrod-G [10, 17] is a Grid resource broker that
allows managing and steering task farming applications on computational Grids. It
uses an economic model for resource management and scheduling. Users formulate
parameter studies using a declarative parametric modeling language or GUI with
the experiment being run on the Grid. Nimrod-G provides resource discovery, re-
source trading, scheduling, resource staging on Grid nodes, result gathering, and
final presentation to the user.

Compared with other grid management, our model proposes an economic solu-
tion to the problem of heterogeneous demand in the grid. The desire of end user
is represented by utility functions to allow them to specify resource requirements
and preference parameters. This method is targeted to solve heterogeneous demand
in the grid. It is a user-centric scheme in which scheduling decision is directed by
the users requirements. Experiments are made to compare the performance of the
price-directed resource allocation with conventional Round-Robin allocation.

The rest of the paper is organized as follows. Section 2 describes grid market
for grid resource management; Section 3 presents the grid resource allocation prob-
lem; Section 4 describes allocation and pricing problem; Section 5 describes initial
experiment; Section 6 concludes the paper.

2 GRID MARKET FOR GRID RESOURCE MANAGEMENT

The grid market consists of two economic agent types (see Figure 1): the grid
resource agents that represent the economic interests of the underlying resources of
the computational grid, the grid task agents that represent the interests of grid user
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using the grid to achieve goals. Grid market has information about the‘ locations
of current resource providers in the grid and about their prices. Whenever a grid
resource agent in the grid decides to sell its resources, change its pricing structure,
or update available capacity, it will spawn an agent to find grid markets and update
the advertised information. The grid market then provides this information to other
agents wishing to know about resource providers. Whenever a new grid task agent
is created, it is first given an endowment of electronic cash to spend to complete its
task. If that agent either refuses to make a purchase under that level of availability
or that price structure, or if the task agent does not purchase all of the available
capacity, the resource agent offers the remaining capacity to the next task agent. We
assume that when a task agent purchases a portion of the resource, it is guaranteed
that the task agent continues to receive resource uninterrupted from the resource
agent until its task is completed. The price that the agent pays, per second of
resource capacity, is the same for as long as he continues to use the purchased rate.
The agent makes no guarantee to the resource provider and may leave the queue or
leave the processor at any time. The user makes this decision by keeping up-to-date
on the resources and prices offered by other resource providers on the grid. This
can be done by periodically spawning agents that travel to grid markets and return
with price and resource quotes [5, 6, 14–16].

A grid resource agent is used at the source node in the grid and is deployed at the
entry node. The Grid resource agents have varied computational resource capacity,
and the computational resource capacity is shared among the grid task agents. The
grid resource agents charge the task agents for the portion of the computational
resource capacity occupied. We assume that the grid resource agents of a grid do
not cooperate, probably due to high messaging and processing overheads associated
with cooperative allocating. Instead, they act non-cooperatively with the objective
of maximizing their individual profits. The grid resource agents compete among
each other to serve the task agents. The task agents do not collaborate either, and
try to purchase as much computational resource as possible with the objective of
maximizing their net benefit. The agents communicate by means of a simple set
of signals that encapsulate offers, bids, commitments, and payments for resources.
We couple the resources and payments with the offers and requests, respectively.
This reduces the number of steps involved in a transaction (committing agents to
their payments and offers ahead of the market outcome), and so increases the speed
of the system’s decision making. To enforce these rules the interactions between
the two agent types are mediated by means of market mechanisms. In our market
mechanisms, agent communication is restricted to setting a price on a single unit
of a known grid resource. Therefore, agents set their prices solely on the basis of
their implicit perception of supply and demand of grid resource at a given time.
When a resource is scarce, grid task agents have to increase the prices they are
willing to buy, just as resource agents decrease the price at which they are willing
to offer the resource. In our model, agents perceive supply and demand in the
market through price-directed market-based algorithm that will be described in
Section 4.
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Fig. 1. Grid market model

Grid resource agents publish resource/service descriptions to Grid Market Ma-
nager. A grid resource agent can appear or leave the grid at any time. Resource grid
agent provides services that can be used by other grid agents. Grid resource agents
can have multiple accessing interfaces, though an agent does not need to publish
all of its interfaces for use. Each published interface is advertised as an agent entry
point. An agent entry point is a URI that uniquely identifies an agent’s interface.
Grid resource agent entry points are used by other grid agents to establish direct
point-to-point connection between two grid agents [18].

A grid resource agent has a set of n resources units of grid resource’ computation
capacity required to serve task agent’s requirement, that it can sell under market
control. At time t, the price to be asked for each of these units is stored in a vector
pt = {p1t , p

2
t , . . . , p

n
t } with the range of possible prices being zero to infinity, pt ∈

(0,∞), for each member of the vector i = 1, . . . , n and each time period t. At time
t = 0 the prices for each unit are randomly (uniformly) distributed on [0, H] where
H is the initial upper limit on prices asked. Given its baseline level, the resource
agent attempts to maximize its income. When x units have been allocated, the
remaining n − x units are offered for sale simultaneously [7]. Suppose that of the
n − x units offered for sale in a given period t, the m units with the lowest prices
are successfully sold. The prices in the vector are updated by using price-directed
allocation algorithm. Thus the grid resource agent increases or decreases the price of
any unit by a small amount after each negotiation. Here is obtained from a uniform
random distribution. This approach was chosen so that the prices of each resource
should adapt to the dynamic demand on the grid.

Grid resource agents sell the underlying resources of the grid. A grid task
agent that represents the grid user makes buying decisions within budget constraints
to acquire computation resources. The offers placed on the grid market by grid
resource agents are allocated to grid task agent. Grid task agents buy computation
resources solely on the basis of the most recent price information they have. Grid
task agents initiate competing for grid resource by signaling that they wish to buy
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resources to complete certain tasks. The task agent retains a vector of prices that it
is willing to pay for resources. The task agent tries to maintain its resources at a level
optimal units denoted by xj∗

i discovered through gradient climbing adaptation to the
behavior of the market described in Section 4. The most profitable value of xj∗

i is
obtained by adjusting it according to changing profit during ongoing buying and
selling episodes. The price paid for each resource agent should be as low as possible
without failing to obtain the resource. Therefore the task agent makes a request
for each resource that it needs separately. If a request was rejected, the agent
increases the price it will send to resource agent at the next negotiation. If a request
was accepted, the agent reduces the price it pays for that resource in subsequent
negotiations.

Grid task agents and grid resource agents do not communicate directly with one
another or amongst themselves. All interactions are by the means of grid market.
The grid market also broadcast the prices at which trades are agreed, so the agents
have more information upon which to base their trading behavior. The negotiation
between agents is mediated by means of a grid market. It allows multiple grid task
agents and grid resource agents to negotiate simultaneously, it provides a dense set
of market price information and it allows supply and demand to be reconciled at
the same time. Grid market provides a means to complete institutionally mediated
bargaining in one shot that would take an indeterminate time using iterated market
allocation algorithms. The resources exchanged at the grid markets are the right
to use slices of computation resource of grid resource agent, which when taken to-
gether, provide the necessary capacity to grid task agent. The grid markets use
price-directed allocation algorithm that will be described in Section 4. In this al-
gorithm an initial set of prices is announced to the task agent. In each iteration,
grid resource tasks individually determine their optimal allocation and communi-
cate their results to the grid resource agent. Grid resource agents then update their
prices and communicate the new prices to the task agents and the cycle repeats.
Prices are then iteratively changed to accommodate the demands for resources until
the total demand equals to the total amount of resources available. The task agent’s
utility maximization is also considered.

3 GRID RESOURCE ALLOCATION PROBLEM

The grid task agents buy resources to complete tasks. Grid resource agents charge
the task agents for the amount of resource capacity allocated. However, there are
multiple grid task agents competing to buy the grid resource agent’s computation
resource. We investigate the effect of this competition on the system model. Spe-
cifically, we show that such a price competition leads to the optimal grid resource
allocation strategy for the grid task agents. This approach provides a dynamical
and distributed algorithm for determining the resource allocation in the grid. The
basic problem of grid market is to divide some resources among a number of grid
task agents via a sound market mechanism. In order for the mechanism to be
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economically efficient, the utility of grid task agents can be maximized when agent’s
requirements are rational. Each grid task agent has a utility function telling how
much it is worth for the agent to have a certain amount of the resources. The
problem is formulated as a resource allocation problem that should be solved via
a market mechanism. In this section we find the task agent’s optimal allocating
strategy under a certain grid resource agents pricing scheme. First, we formulate
the utility function of grid task agent, and then give optimization solution to grid
resource allocation.

3.1 Grid Agent Description

A market mechanism’s efficiency depends on the consumers’ ability to assess their
needs and then make rational decisions that maximize their utility. Here, utility is
a measure of the pleasure a market participant derives from consumption of a good.
We are concerned with two attributes that affect grid task agents. The first factor
is cost. We limit every task agent’s monetary resources, so a task agent that pays
a higher price for grid resource effectively limits the amount of utility it can gener-
ate in the future. Currency can be considered an abstract good representing future
consumption. The second factor is completion time. This depends on resource con-
gestion and the hardware providing service. There could be other qualities besides
completion time. In information retrieval tasks, accuracy is another factor.

Grid task agents want to complete a set of jobs in a given sequence by purchasing
resources from grid resource agents located throughout the grid. An agent begins
with an endowment of Ei to spend to complete its task and wishes to minimize
the total time taken to complete a sequence of jobs given its budget constraint.
We assume that there are K types of resources and that each agent may needs
many types to complete a job. Assume that there is a set K = {1, 2, . . . , K} of
different types of resources that the grid allocates at each grid task agent in order to
complete the task. For example, if storage systems and databases are the two types
of resources that the grid allocates in order to complete the task, then K = {1, 2}.
In this case, k = 1 refers to storage systems and k = 2 refers to databases. The
agent’s task can be represented as the sequence (qij)

j=K
j=1 , where qij is the size of ith

task agent’ s jth job.

Let uj
i be the price paid to jth resource agent per time unit by the ith task agent.

Let be the total investment of the ith task agent, which is defined in (4.1). N grid
task agents compete for grid resources with finite capacity. The resource is allocated
using a market mechanism, where the partitions depend on the relative payments
sent by the grid task agents. We assume that each task agent submits uj

i to the grid
resource agent. Then, uj = [uj

1 . . . u
j
N ] represents all payments of grid task agents

for jth resource agent. Let pj denote the price of the unit computational resource in
resource agent j. Let the pricing policy, p = (p1, p2, . . . , pj), denote the set of unit
computational resource prices of all the resource agents in the grid.
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ui =
∑

j

uj
i (1)

Let xj
i be the fraction of resource units allocated to task agent i by resource

agent j. If ith task agent’s payment in the jth resource agent is uj
i , then the total

computation resource units allocated to task agent i is

xj
i =

uj
i

pj
. (2)

The ith agent receives resources proportional to its payment relative to the sum of
the resource agent’s revenue, cj is the capacity in computational units of jth grid
resource agent. uj

i is the amount that the ith agent pays for resource j, rji is the
capacity that i-th agent pays receives.

rji = xj

uj
i

pj

The time taken by the ith agent to complete its job is: tji =
qij

cjx
j

i

and the expenses

are: M j
i = uj

i
qij

cjx
j

i

.

The goal of each task agent is to complete its job as quickly as possible when
spending the least possible amounts of money. qij is the size of ith task agent’s jth

job. Since the grid user wishes to minimize both the time,
∑N

j=1
qij

cjx
j

i

+D, and money
∑

j u
j
l it spends. The utility function U(xj

i ) of the grid task agent is defined as (3).

U(xj
i ) = −K





N
∑

j=1

qij

cjx
j
i

+D



−
∑

j

uj
i (3)

Where D is the delay, which includes waiting times, transfer times between
various nodes in the grid. K is the relative importance of costs and times to complete
grid task, an agent with larger value of K would indicate a greater preference to
reduce its completion time. When K is 1, costs and times are equally important.

3.2 Grid User Benefit Optimization Under Budget Constraint

Every grid task agent tries to maximize itself benefit regardless of others subject
to the availability of budgets and complete time limits. For a given grid resource
pricing policy P, the task agent optimization problem (S) can be written as (4).

(S) maxU(xj
i ) (4)

s. t. Ei ≥
∑

j

xj
ipj
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Constraint is a budget constraint, which says that the aggregate sum of all costs
of each task agent cannot exceed its total budget. Ei is endowment given to an
agent. Our objective is to choose optimal xj

i .

N
∑

i=1

xj
i = 1 (5)

Indicates a grid resource is divisible, that can be shared among many grid task
agents.

We substitute xj
i =

u
j

i

pj
into U(xj

i ) to obtain (6):

U(xj
i ) = −K





N
∑

j=1

qij

cjx
j
i

+D



−
∑

j

xj
ipj. (6)

We compute the optimum by deriving the derivative of U(xj
i ) with respect to xj

i

as (7).

U ′(xj
i ) =

dU(xj
i )

dxj
i

=
N
∑

j=1

qij

cj
(

xj
i

)2 − pj (7)

Then, the second derivative of U(xj
i ) with respect to xj

i is (8).

U ′′(xj
i ) =

d2U(xj
i )

d
(

xj
i

)2 = −K
N
∑

j=1

qij

cj
(

xj
i

)3 (8)

U ′′(xj
i ) < 0 is negative due to 0 < xj

i < 1. The extreme point is the unique value
maximizing the agent’s utility and is optimal resource demand for grid resource
agent. Grid task agent’s utility is a convex function of xj

i . A common method of
optimizing convex function is to apply Lagrangian. The Lagrangian for the task
agent’s utility is L(x) (9).

L(xj
i ) = −K





N
∑

j=1

qij

cjx
j
i

+D



 −
∑

j

xj
ipj − λ





∑

j

xj
ipj



 (9)

where λ is the Lagrangian constant. From Karush-Kuhn-Tucker Theorem we know
that the optimal solution is given ∂L(x)/∂x = 0 for λ > 0.

∂L(xj
i)

∂xj
i

= K
N
∑

j=1

qij

cj
(

xj
i

)2 − (1 + λ)pj (10)

Let ∂L(xj
i )/∂x

j
i = 0 to obtain (11):

xj
i =

(

Kqij
(1 + λ)pjcj

) 1

2

. (11)
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Using this result in the constraint equation, we can determine θ = λ+ 1 as

θ−
1

2 =
Ei

∑N
k=1 pk

(

Kqik
ckpk

)
1

2

. (12)

We substitute (12) into (11) to obtain (13):

xj∗

i =

(

qij
pjcj

) 1

2 Ei

∑N
k=1 pk

(

qik
ckpk

)
1

2

. (13)

xj∗

i is the unique optimal solution to the optimization problem (S).

4 ALLOCATION AND PRICING ALGORITHM

An iterative resource allocation and pricing algorithm is designed to solve the grid
task agent resource allocation problem. In each iteration, the grid user individually
solves its fees to pay, adjusts its grid resource demand and notifies the grid about
this change. After the new grid resource demand is observed by the grid resource
agent, it updates its price accordingly and communicates the new prices to the grid
task agent, and the cycle repeats. To illustrate how grid task agent adjusts its fees to
pay, we define the demand function D(p) = R → R, which is defined as the quantity
of resources that the agent would desire if the price is p. D(p) can be obtained by
optimal solution uj∗

i to S (4) problem.

D(p) =
uj∗

i

pj
(14)

The iterative algorithm that computes the price and resource allocation is then
given as follows.

4.1 Algorithm 1 Grid Resource Unit Price Calculation

and Resource Allocation

Grid resource agent part algorithm at iteration n

(1) receives grid resource demand xj(n) from grid task agents;

(2) computes a new price according to the following formula

p
(n+1)
j = max

{

ε, p
(n)
j + η

(

xj(n)p(n) − cj
)}

(15)

where xj =
∑

i x
j
i , η > 0 is a small step size parameter, n is iteration. Let

ε > 0 be a sufficiently small constant preventing prices to approach zero. This
algorithm is consistent with the law of supply and demand: if the demand for
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grid resource exceeds the capacity supply cj, then the price p
(n+1)
j is raised;

otherwise, the price is reduced;

(3) communicates new price p
(n+1)
j to all grid task agents.

Grid task agent part algorithm at iteration n

(1) receives from the grid resource agent j the price pj which is calculated by (15)

(2) calculates its optimal resource demand according to uj∗

i to maximize U(uj
i )

xj(n+ 1) =
uj∗

i

(n)

p
(n)
j

(16)

(3) communicates new grid resource demand xj(n+ 1) to grid resource agents.

5 EXPERIMENTS

The goal of this experiment is to compare the performance of a decentralized eco-
nomic approach based on the price-directed resource allocation algorithm with con-
ventional Round-Robin allocation algorithm. To do this, both approaches are evalu-
ated experimentally by means of simulations. In the Round-Robin allocation scheme,
no pricing is used. The incoming task queries are matched with the next available
resource offer, which meets the task’s constraints but which is usually not the best.
First we introduce the configuration of simulation, then give the experiment design
and results.

The simulator was developed to test the price-directed allocation algorithm. It
is implemented on top of the JAVASIM network simulator. Different agent types
can be instantiated, namely grid client, grid task agents, and grid resource agents.
Grid resources to be allocated encompass computation service access, bandwidth
and storage. The simulation is built on a TCP/IP network model supported by
JAVASIM. The physical network topology is specified in the input of the simula-
tor. The experiment is to study characteristics of price-directed allocation algo-
rithm with Round-Robin algorithm in terms of response time and resource allo-
cation efficiency. Grid systems are randomized in various sizes: 100, 500, 1000,
and 2000 nodes. In the experiments we change some of test parameters, such as
the size of grid that is denoted by S in the following figures, resource requests in-
tensity is denoted by I . We devise requests intensity with 50ms, 100ms, 200ms
and 400ms.The experiment is to randomly submit 250 grid requests and schedule
them to the specific grid resource based on price-directed resource allocation and
Round-Robin allocation. Arrival time of each resource request is determined ran-
domly in exponential distribution with the mean of 200ms, but we will change the
values of arrival time when testing effect of requests intensity on response time and
resource allocation efficiency. All nodes are initially no loads. During the time



Market Mechanism for Dynamic Resource Management In Computational Grid 199

of experiment, grid resource requests are generated by the grid user agent. After
this initial period, the number of tasks that is statistically expected to be gen-
erated during an interval of 100 time units is considered in the result. To allow
grid task agents to complete tasks, an additional margin of 300 time units is pro-
vided. For the simulated scenarios it does not matter how many grid user agents
there are in the system. Therefore, we use only one grid user agent for the gen-
eration of grid resource agent. The size of data carried by the grid task agent
is denoted by D; all tasks have the same computation size D = 25KB. Task
deadlines are not used. The default value of the task price denoted by P is 100.
There are 25 grid resource agents in the system. All gird resource agents have the
same resource size denoted by R, set R = 100. All parameters are summarized
in Table 1. Each measurement is run 30 times with different seeds. These experi-
mental configurations are to bring up performance of resource allocation algorithm
as many as possible. Interesting variables are recorded and plot average results in
Figure 2 and Figure 3 for response times and resource allocation efficiency, respec-
tively.

Parameter Value

Number of nodes in a cluster exp(25)
Number of nodes 100, 500, 1000, 2000
Reschedule Interval 600 seconds
Number of Jobs 250
Requests intensity (ms) 50, 100, 200, 400
Arrival time (ms) 200

Table 1. Simulation parameters

Firstly, we have measured the response times of price-directed allocation and
Round-Robin allocation when using the following parameters for the test: (I =
200ms). Response time measures the time observed by the grid client to access the
requested grid resources. It is influenced by the size of the grid, the available con-
nections and bandwidth, and especially by the necessary mechanisms to establish
a working link between grid task agent and grid resource agent. For comparing dif-
ferent size grid, a lower average response time is considered to be better. The results
are shown in Figure 2. From the results in Figure 2, for Round-Robin allocation, the
response time value seems to depend on the grid size. Price-directed allocation and
Round-Robin allocation present the good results for this small size grid. However,
when the size of grid is larger, Round-Robin allocation is decreasing quickly; the
response time using price-directed allocation can be as much as 44% shorter than
that using the Round-Robin allocation. On big grid, Round-Robin allocation takes
more time to allocate appropriate resources. As shown in Figure 2, for different
size grid, the price-directed allocation outperforms the conventional Round-Robin
allocation.

Secondly, we measured the resource allocation efficiency of price-directed alloca-
tion and Round-Robin allocation when using the following parameters for the test:
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Fig. 2. Comparison of response time

(I = 200ms). Resource allocation efficiency indicates the ratio of grid resource re-
quests, for which the grid resource agent grants to provide a resource, to all sent grid
resource requests. In other words, it measures how many requests a grid client has
to send until a resource agent accepts its demand and grants access. As the request
messages waste up bandwidth, higher resource allocation efficiency is deemed to be
better both for the individual grid client agent and for the whole grid as a whole.
The results are shown in Figure 3. It becomes clear that both allocation schemes
work best under small size grid. The Round-Robin allocation achieves to match
nearly 98% of all requests in small size grid scenario, with price-directed allocation
closely behind. However, as grid size increases, the Round-Robin allocation soon
loses comparably more performance than the price-directed allocation. Under large
size grid, the decrease of the results for Round-Robin allocation is lower than in the
small size. Resource allocation efficiency using price-directed allocation is as much
as 27% larger than that using the Round-Robin allocation. With varying grid size,
the result decreases for both methods similarly.
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Fig. 3. Resource Allocation Efficiency

From the above performance comparisons, some conclusions can be drawn. In
most of the test cases, the price-directed allocation is more efficient than the Round-
Robin allocation to allocate grid resource in test application. When grid size is
increasing, there are more merits to use the price-directed allocation to schedule grid
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resource; the price-directed allocation has better performance than usual Round-
Robin allocation.

6 CONCLUSIONS

This paper presents a market-based approach to computational grid resource ma-
nagement. A realistic model for the relationship between the grid task agent and
grid resource agent is presented. The grid task agents buy resources to complete
tasks. Grid resource agents charge the task agents for the amount of resource ca-
pacity allocated. However, there are multiple grid task agents competing to buy
the grid resource agent’s computation resource. Given grid resource agent’s pricing
policy, the task agent optimization problem is provided. This paper provides a price-
directed market-based algorithm for solving the grid task agent resource allocation
problem. The results of experiment show the price-directed allocation has better
performance than usual Round-Robin allocation.
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