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Abstract. Most of graph drawing algorithms draw graphs on unbounded planes.
In this paper we introduce a new polyline grid drawing algorithm for drawing free
trees on plane regions which are bounded by simple polygons. Our algorithm uses
the simulated annealing (SA) method, and by means of the straight skeletons of
the bounding polygons guides the SA method to uniformly distribute the vertices
of the given trees over the given regions. Our results show improvements to the
previous algorithms that use the SA method to draw graphs inside rectangles. To
our knowledge, this paper is the first attempt for developing algorithms that draw
graphs on regions which are bounded by simple polygons.
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1 INTRODUCTION

Graphs are well-known structures that have many applications. Hence drawing
graphs “nicely” has been investigated by many researchers. There are some aes-
thetics for nice drawing of graphs that are mentioned in the literature. Some of the
most important aesthetics are: minimizing the number of edge crossings, minimizing
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the number of bends per edge, increasing symmetry of drawing, maximizing angular
resolution, and uniform distribution of vertices over drawing regions [7, 16].

Most of graph drawing algorithms draw graphs on unbounded planes and few
of them draw graphs on regions which are bounded by rectangles. However, there
are some applications in which it is desirable to draw graphs on regions which are
bounded by general polygons. For example, consider a graphical user interface in
which we would like to draw a graph inside a star-shaped polygon to make it more
beautiful. In this paper we consider polyline grid drawing of free trees inside simple
polygons by means of the straight skeletons of polygons [1, 2, 3, 14, 15] and the
simulated annealing (SA) method. We assume that the reader is familiar with the
SA method.

The edges of the given tree may have some bends in our drawings if the given
region is bounded by a non-convex polygon. When drawing large graphs, drawing
results of algorithms that use clustering [10, 11, 12] usually have much fewer edge
crossings than drawing results of those that do not use it [4, 6, 13, 17, 18, 19]. Our
algorithm uses a special form of clustering and uniformly distributes the vertices of
the given tree over the given region.

We compare our drawing results to those of the algorithm introduced in [9],
which we call the SA algorithm. The SA algorithm draws graphs inside a given
rectangle and similar to ours uses the SA method. Because of employing geometri-
cal properties of drawing regions by our algorithm, our drawing results show more
symmetry than the results of the SA algorithm. The average number of edge cross-
ings in drawings of some complete binary trees inside a square, both by our algorithm
and the SA algorithm, is given in Table 1. This result has been obtained from run-
ning our algorithm and the SA algorithm 100 times for each tree on a 640×480-grid.
As can be seen, our algorithm also outperforms the SA algorithm in the number of
edge crossings. In Section 2, the straight skeleton is briefly described. In Section 3,
our algorithm is introduced. In Section 4, some drawing results of our algorithm are
illustrated and compared to the drawing results of the SA algorithm. In Section 5,
the conclusion is stated.

Trees 7-node 15-node 31-node 63-node 127-node

The SA alg. 0 0 0 1.88 34.1

Our alg. 0 0 0 0 1.85

Table 1. The average number of edge crossings in drawings of some complete binary trees
inside a rectangle both by our algorithm and the SA algorithm

2 THE STRAIGHT SKELETON

There are two types of skeletons for simple polygons—the medial axis and the straight
skeleton. The medial axis of a given simple polygon P consists of all the interior
points whose closest point on the boundary of P is not unique [8]. While the medial



Drawing Free Trees 241

axis is a Voronoi-diagram-like concept, the straight skeleton is not defined using
a distance function but rather by an appropriate shrinking process.

Face0

Face1

Face3

Face2

0

1 4

3

2 5

Fig. 1. The straight skeleton of a rectangle

The straight skeleton is defined as the union of the pieces of the angular bisectors
traced out by the polygon vertices during the shrinking process [1, 2, 3, 14, 15]. The
straight skeleton, in general, differs from the medial axis. If P is convex then both
structures are identical; otherwise, the medial axis contains parabolically curved
segments around the reflex vertices of P , which are avoided by the straight skeleton.
In this paper, we consider drawing of free trees on plane regions which are bounded
by general simple polygons, and to avoid parabolically curved segments we use the
straight skeletons as the skeletons of polygons. In the following, by the skeleton we
mean the straight skeleton. The skeleton of a given n-gon P partitions the interior
of P into n connected regions which are called faces. Each face is related to just
one edge of P . The bisector pieces are called arcs and their endpoints are called
nodes. When P is simple, the structure is tree. Figure 1 shows the straight skeleton
of a rectangle.

3 OUR DRAWING ALGORITHM

In this section, after introducing some new definitions, we explain our drawing al-
gorithm (from now on, for simplicity, we use trees for free trees and polygons for
simple polygons). Our algorithm produces a polyline grid drawing of the given free
tree which is bounded by the given polygon. All the vertices and the bends are put
on the grid points, but the edge crossings are not restricted to be on the grid points.

Definition 1. For a skeleton S and its node i, let FaceSet(i;S) be the set of all
the faces which have node i as a vertex on their boundary.

Example 1. Consider skeleton S of Figure 1, we have FaceSet(0;S) = {Face0,
Face3} and FaceSet(1;S) = {Face0,Face1,Face3}.

Definition 2. For a tree T and its edge (i, j), let CloserSet(i|j; T ) be the set of
all the nodes of the tree whose graph-theoretic distance from node i is shorter than
from node j.
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Example 2. Consider skeleton S of Figure 1, CloserSet(1|4;S) = {0, 1, 2} and
CloserSet(4|1;S) = {3, 4, 5}.

By considering the tree structure of the skeletons, this definition is also appli-
cable to the skeletons. In the following we describe each step of the algorithm in
details. The pseudo-code of our algorithm is as follows.

Free Trees Drawing Algorithm

input: a free tree T , a simple polygon P , and a 2D grid G

output: a polyline grid drawing of T on G which is bounded by P

Step A. Computing the polygon skeleton and the area of the faces

Step B. Computing the weights of the nodes of the skeleton

Step C. Computing the weights of the edges of the skeleton

Step D. Computing the weights of the edges of the tree

Step E. Mapping the tree onto the skeleton

Step F. Removing possible crossings between the edges of the tree and the polygon

Step G. Drawing the tree using the SA method

Step A. Computing the polygon skeleton and the area of the faces

Let us call the boundary of a face Pface. We obtain straight skeleton S of given
polygon P using [8]. Since all the Pfaces are simple polygons we can use the
following formula to compute the area of face f [5].

Area(f) =
1

2

n−1∑

i=0

(XiYi+1 −Xi+1Yi)

Here (Xi, Yi) are the coordinates of vertex i (i = 0, . . . , N − 1) of the Pface of
face f ; Xn = X0 and Yn = Y0. To use the above formula, the vertices of the
Pfaces should be ordered clockwise or counter clockwise.

Step B. Computing the weights of the nodes of the skeleton

For each node i of skeleton S we compute the following sum as the weight of
node i.

WIA(i;S) =
∑

fǫFaceSet(i;S)

Area(f)

WIA(i;S) denotes the weight of the incident area of node i of skeleton S. In
fact, this weight represents the total amount of the area of the faces which are
incident to vertex i of skeleton S.
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Step C. Computing the weights of the edges of the skeleton

For each endpoint of every edge (i, j) of skeleton S, we consider a weight. The
difference of these two weights is considered to be the weight of edge (i, j) and
is denoted by WE((i, j);S). WCS(i|j;S) is defined as sum of the weights of the
nodes belonging to CloserSet(i|j;S).

WCS(i|j;S) =
∑

mǫCloserSet(i|j;S)

WIA(m;S)

WCS(j|i;S) =
∑

mǫCloserSet(j|i;S)

WIA(m;S)

WE((i, j);S) = |WCS(i|j;S)−WCS(j|i;S)|

Step D. Computing the weights of the edges of the tree

For each endpoint of every edge (i, j) of tree T , we consider a weight. The
difference of these two weights is considered to be the weight of edge (i, j). By
|S| we mean the cardinality of set S. If for each node i of tree T we define
WIA(i; T ) = 1, we have:

WCS(i|j; T ) =
∑

mǫCloserSet(i|j;T )

WIA(m; T ) = |CloserSet(i|j; T )|

WCS(j|i; T ) =
∑

mǫCloserSet(j|i;T )

WIA(m; T ) = |CloserSet(j|i; T )|

WE((i, j); T ) = |WCS(i|j; T )−WCS(j|i; T )|

Definition 3. By the middle edge of a skeleton S (tree T ) we mean an edge
of S (T ) that has the minimum weight among all the other edges of S (T ).

Definition 4. A skeleton (tree) may have more than one middle edge. It is
guaranteed by Lemma 1 that in this case these edges share an endpoint which
is called the middle node.

Definition 5. By the middle-connected node we mean a node that is connected
to the middle node by an edge.

Step E. Mapping the tree onto the skeleton

In this step, we are going to uniformly distribute the vertices of the tree over
the given region. We do this by means of a recursive mapping procedure which
recursively maps the middle edge or the middle node of the tree onto a proper
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point of the skeleton. This mapping procedure provides a mapping list of the
nodes of the tree which are mapped onto the corresponding points of the skeleton.
This mapping list is used by the SA method to distribute the vertices of the tree
over the given region. The termination condition of the procedure is satisfied
when the number of the nodes of the given tree or the number of the edges of
the skeleton becomes less than one. Considering the weighted skeleton and the
weighted tree, four cases are possible in each call of the mapping procedure:

Case 1. Neither the tree nor the skeleton has a middle node.

Case 2. The tree and the skeleton both have a middle node.

Case 3. The tree has a middle node, but the skeleton does not have a middle
node.

Case 4. The tree does not have a middle node, but the skeleton has a middle
node.

Case 1. In this case the tree and the skeleton both have a middle edge but not
a middle node. We map the middle edge of the skeleton onto the middle
edge of the tree and omit these two middle edges from the skeleton and
the tree. This divides the tree and the skeleton into two sub-trees and two
sub-skeletons, respectively.

We should add a record to the mapping list, to show that the middle edge of
the tree is mapped onto the middle edge of the skeleton. We substitute the
middle edge of the tree with a path of length two whose extreme vertices are
the endpoints of the middle edge and its internal vertex is a dummy vertex.
Then we record in the mapping list that this newly added dummy vertex
of the tree is mapped onto the middle point of the related middle edge of
the skeleton. After termination of the algorithm, these dummy vertices may
appear as some bends in the edges of the tree.

Then we update the weights of the edges of the two sub-skeletons and the
two sub-trees. To do this, consider each sub-skeleton (sub-tree) as a directed
tree whose root is the endpoint of the omitted middle edge that is attached
to this sub-skeleton (sub-tree), and the edges are directed from the root to-
ward the leaves. Suppose edge (v, u) is the omitted middle edge of skeleton S

(tree T ). The following pseudo-code shows how the weights of the edges of
each sub-skeleton of skeleton S are updated. We can use this pseudo-code
to update the weights of the edges of each sub-tree of tree T by replacing S

with T . Then we apply the mapping procedure recursively for each sub-
skeleton and its related sub-tree.

for each directed edge (i, j) of each sub-skeleton rooted at u do
{
WCS(i|j;S) = WCS(i|j;S)−WCS(v|u;S)
WE((i, j);S) = |WCS(i|j;S)−WCS(j|i;S)|

}
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for each directed edge (i, j) of each sub-skeleton rooted at v do
{
WCS(i|j;S) = WCS(i|j;S)−WCS(u|v;S)
WE((i, j);S) = |WCS(i|j;S)−WCS(j|i;S)|

}

Case 2. In this case the tree and the skeleton both have a middle node. We
omit the middle node and its incident edges from the tree. For the skeleton
we just disconnect edges that are connected at the middle node. So the ske-
leton and the tree are divided into two or more sub-skeletons and sub-trees,
respectively. We record in the mapping list that the middle node of the tree
is mapped onto the related middle node of the skeleton.

Then we update the weights of the edges of the sub-skeletons and the sub-
trees. To do this, consider each sub-skeleton as a directed tree whose root is
the middle node and each sub-tree as a directed tree whose root is a middle-
connected node, and the edges are directed from the root to the leaves.
Suppose node u is the middle node of skeleton S (tree T ). The following
pseudo-code shows how the weights of the edges of the sub-trees and the
sub-skeletons are updated.

SUMT =
∑

(u,i)ǫT WCS(i|u; T )

for each directed edge (i, j) of each sub-tree rooted at middle-connected node v
do
{
WCS(i|j; T ) = WCS(i|j; T )− SUMT +WCS(v|u; T )− 1
WE((i, j); T ) = |WCS(i|j; T )−WCS(j|i; T )|

}

SUMS =
∑

(u,i)ǫS WCS(i|u;S)

for each directed edge (i, j) of each sub-skeleton which is rooted at
middle node u and includes middle-connected node v do
{
WCS(i|j;S) = WCS(i|j;S)− SUMS +WCS(v|u;S)
WE((i, j);S) = |WCS(i|j;S)−WCS(j|i;S)|

}

In this case we may have more than two sub-trees and two sub-skeletons.
We divide the sub-skeletons and the sub-trees into the same number of some
groups of sub-skeletons and sub-trees which are balanced as much as possible
with respect to WCS(v|u;S) and WCS(p|q; T ), where u is the middle node
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and v is a middle-connected node of the skeleton, and q is the middle node
and p is a middle-connected node of the tree. For each group of sub-skeletons,
and its related group of sub-trees, we call the mapping procedure recursively.

Case 3. In this case the tree has a middle node, but the skeleton does not have
any middle node. The skeleton is divided into two sub-skeletons and the
weights of the edges of the sub-skeletons are updated as in Case 1. The tree
is divided into two or more sub-trees and the weights of the edges of the
sub-trees are updated as in Case 2. We record in the mapping list that the
middle node of the tree is mapped onto the middle point of the related middle
edge of the skeleton. If there are more than two sub-trees, we divide the sub-
trees into two groups of sub-trees which are balanced as much as possible
with respect to WCS(v|u; T ), where u is the middle node and v is a middle-
connected node of the tree. The mapping procedure is called recursively for
each group of sub-trees and the related sub-skeleton.

u u u u u u

a b e f c d
... ...

Fig. 2. Proof of lemma 1

Case 4. In this case the skeleton has a middle node, but the tree does not have
any middle node. The tree is divided into two sub-trees and the weights
of the edges of the sub-trees are updated as in Case 1. The skeleton is
divided into two or more sub-skeletons and the weights of the edges of the
sub-skeletons are updated as in Case 2. We substitute the middle edge of the
tree with a path of length two whose extreme vertices are the endpoints of
the middle edge and its internal vertex is a dummy vertex. We record in the
mapping list that this newly added dummy vertex of the tree is mapped onto
the middle node of the skeleton. If there are more than two sub-skeletons, we
divide the sub-skeletons into two groups of sub-skeletons which are balanced
as much as possible with respect to WCS(v|u;S), where u is the middle node
and v is a middle-connected node of the skeleton. The mapping procedure
is called recursively for each group of sub-skeletons and the related sub-tree.

Definition 6. For a tree T and its two nodes i and j, let PathSet((i, j); T )
be the set of all the nodes of the tree excluding i and j which lie on the path
between nodes i and j. This definition is also applicable to the skeletons.

Lemma 1. If a skeleton S (tree T ) has more than one middle edge, then these
edges share an endpoint which is called the middle node.

Proof. We prove the lemma for skeleton S, a similar proof applies to tree T .
Suppose edges (a, b) and (c, d) are two middle edges of skeleton S, as shown in
Figure 2. If these two middle edges share an endpoint, the lemma is proved.
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Otherwise, there is at least one edge (e, f) which lies on the path between nodes b
and c (see Figure 2). Two cases are possible, case I in which WCS(e|f ;S) ≥
WCS(f |e;S) and case II in which WCS(e|f ;S) < WCS(f |e;S). We prove the
lemma for case I, the proof is similar for case II. From the definition we have

WCS(c|d;S) ≥ WIA(c;S) +
∑

iǫPathSet((c,f);S)

WIA(i;S) +WIA(f ;S) +WCS(e|f ;S)

=⇒ WCS(c|d;S) > WCS(e|f ;S) (1)

WCS(f |e;S) ≥ WIA(f ;S) +
∑

iǫPathSet((f,c);S)

WIA(i;S) +WIA(c;S) +WCS(d|c;S)

=⇒ WCS(d|c;S) < WCS(f |e;S) (2)

From relations (1) and (2) we have

WCS(c|d;S)−WCS(d|c;S) > WCS(e|f ;S)−WCS(f |e;S) ≥ 0

=⇒ |WCS(c|d;S)−WCS(d|c;S)| > |WCS(e|f ;S)−WCS(f |e;S)|

=⇒ WE((c, d);S) > WE((e, f);S)

This contradicts the assumption that edge (c, d) is a middle edge. 2

Step F. Removing possible crossings between the edges of the tree and

the edges of the polygon

Before applying the SA method, all the nodes of the tree which are included
in the mapping list are placed at the related points of the skeleton. Let the
closest located node of a tree node be an already located node of the tree with
the shortest graph-theoretic distance from the given tree node among all the
previously located nodes of the tree. The remaining unlocated nodes of the
tree are placed at the locations of their closest located nodes. After all the
nodes of the tree are initially located, if the given polygon is non-convex there
is the possibility of crossing between the edges of the tree and the border of
the polygon. If this is the case, we remove these crossings by introducing some
dummy nodes and bending the crossing edges of the tree. By applying rounding
or truncation we obtain integer coordinates. The resulting configuration is the
initial configuration of the SA method.

Step G. Drawing the tree using the SA method

As the final step of our algorithm, we use the SA method to draw the tree
inside the given polygon. We try to keep the nodes of the tree as close as to
their corresponding points of the skeleton by considering some new virtual fixed
nodes and virtual edges. Our algorithm guides the SA method, so our drawing
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results have fewer edge crossings and show more symmetry than the results of
the algorithm introduced in [9], the SA algorithm.

4 DRAWING RESULTS

In this section, we compare the drawing results of our algorithm to those of the SA
algorithm [9] by illustration of some examples. We also present some drawings of
free trees by our algorithm on a 2D 480×640-grid which is bounded by some convex,
rectilinear and concave polygons.

u

u

u

u

u
u

u

Fig. 3. Drawing of a 7-node complete binary tree by the SA algorithm

u u

u

u

uu

u

Fig. 4. Drawing of a 7-node complete binary tree by our algorithm

We use the same parameters and factors for the cost function of the SA method
as is used by the SA algorithm. Figures 3 and 4 show the drawings of a complete
binary tree that consists of seven nodes by the SA algorithm and by our algorithm,
respectively. The size of the bounding rectangle is 100 × 200. As can be seen,
our drawing seems nicer than the drawing of the SA algorithm. This is due to the
symmetry of our drawing achieved using the geometrical properties of the bounding
polygon by our algorithm.
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The drawing of a complete binary tree with 63 vertices by the SA algorithm,
inside a square, is shown in Figure 5. As can be seen, although the tree is planar
its drawing by the SA algorithm is not planar. The drawing of this tree by our
algorithm is shown in Figure 6. The size of the bounding square in these examples
is 400 × 400. Our algorithm divides the given tree into some clusters of nodes by
means of our mapping procedure, and distributes the nodes on different parts of the
given polygon, and because of this, our algorithm usually has fewer edge crossings
than the SA algorithm.
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Fig. 5. Drawing of a 63-node complete binary tree by the SA algorithm inside a square
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Fig. 6. Drawing of a 63-node complete binary tree by our algorithm inside a square

Figure 7 shows the drawing of a complete binary tree with 63 vertices by our
algorithm inside a convex polygon. The size of the bounding square which includes
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the given convex polygon is 400 × 400. Figures 8, 9 and 10 illustrate the drawings
of a 31-node complete binary tree inside U-shaped, T-shaped, and S-shaped recti-
linear polygons, respectively by our algorithm. The sizes of the bounding rectangles
are 300× 400, 200× 300 and 300× 300, respectively.

As the two final examples, the drawings of a complete binary tree with 31 vertices
by our algorithm inside a W-shaped polygon and a NM-shaped polygon are shown
in Figures 11 and 12, respectively. The sizes of the bounding rectangles are 200×400
and 200× 600, respectively.
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Fig. 7. Drawing of a 63-node complete binary tree by our algorithm inside a convex polygon
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Fig. 8. Drawing of a 31-node complete binary tree by our algorithm inside a U-shaped

rectilinear polygon
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Fig. 9. Drawing of a 31-node complete binary tree by our algorithm inside a T-shaped
rectilinear polygon
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Fig. 10. Drawing of a 31-node complete binary tree by our algorithm inside a S-shaped
rectilinear polygon

5 CONCLUSION

In this paper we introduced a new algorithm that employs the straight skeletons
of polygons and the simulated annealing method to draw free trees inside general
simple polygons. The drawing results show that our algorithm draws trees nicelier
than the previous algorithms, with respect to the aesthetics that are mentioned
at the introduction section, even for relatively large trees. This paper is the first
attempt to develop algorithms which draw graphs on plane regions bounded by
simple polygons.
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Fig. 11. Drawing of a 31-node complete binary tree by our algorithm inside a W-shaped
polygon
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Fig. 12. Drawing of a 31-node complete binary tree by our algorithm inside a NM-shaped
polygon
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