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Abstract. Koza has shown how Automatically Defined Functions (ADFs) can re-
duce computational effort in the genetic programming paradigm. In Koza’s Auto-
matically Defined Functions, as well as in standard genetic programming, an im-
provement in a part of a program (an ADF or a main body) can only be transferred
to other individuals in the population via crossover. In this article, we consider
whether it is a good idea to transfer immediately improvements found by a single
individual to other individuals in the population. A system that implements this
idea has been proposed and tested for the even-5-parity, even-6-parity, and even-
10-parity problems. Results are very encouraging: computational effort is reduced
(compared to Koza’s ADFs) and the system seems to be less prone to early stag-

nation. Also, as evolution occurs in separate populations, our approach permits to
parallelize genetic programming in another different way.
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1 INTRODUCTION

In [10], Koza showed how “automatically defined functions enable genetic program-
ming to solve a variety of problems in a way that can be interpreted as a decom-
position of a problem into subproblems, a solving of the subproblems, and an as-
sembly of the solutions to the subproblems into a solution to the overall problem”.
Also, he showed that “For a variety of problems, genetic programming requires less
computational effort to solve a problem with automatically defined functions than
without them, provided the difficulty of the problem is above a certain relatively
low problem-specific breakeven point for computational effort.”

With Koza’s ADFs, each individual consists of both the main body of the pro-
gram and of all its subroutines. An improvement in a subroutine (or a main body)
of an individual can only be transferred to another individual via crossover be-
tween both individuals. It would seem that if an individual can immediately use
improvements obtained by other individuals of the population, then the rate of dis-
covery would be faster. An example of this is science itself, where discoveries by
one scientist are quickly transferred to other scientists, leads to fast advance. If
discoveries were transferred only by word of mouth, advance would be much slower.
However, in the case of genetic programming, it is not obvious that transfer of
discoveries (pieces of code, or subtrees) will be beneficial. For instance, it might
happen that an individual cannot use another individual “discovery” (for instance,
a subtree) because their structures are too different. Actually, this is true even
for crossover. It is well known that exchange of subtrees by crossover is frequently
harmful [6]. In the more extreme case where new discoveries are supplied to all
the individuals in the population, something could be an improvement for an in-
dividual but a hindrance to another and therefore, former good individuals would
become instantly bad individuals. What would be the net effect of both tendencies
is unclear, although one would expect that immediate transfer of global improve-
ments would be generally harmful. Thus, the aim of this article is to start exploring
empirically this matter: what would happen if improvements in a subroutine (or a
program’s main body) would be transferred immediately to all individuals of the
population? The reader should be aware that by improvements we mean global
improvements, that is, improvements that lead to a change in the best of popula-
tion.

This article has been structured as follows. Section 2 gives a background on
genetic programming and automatically defined functions, and motivates the need
for evolving subroutine automatically. Section 3 describes our approach to transfer-
ring discoveries between populations. Section 4 contains the results obtained for the
well-known even-n-parity family of problems and Section 5 shows experimentally
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what happens during a transfer. Finally, Sections 6 and 7 discuss the related work,
summarize the conclusions, and describe the future lines of work.

2 GENETIC PROGRAMMING AND AUTOMATICALLY

DEFINED FUNCTIONS

In this section, we will introduce the field of Genetic Programming (GP) [8], and
motivate the need for Automatic Defined Functions [9].

Genetic programming is an evolutionary technique designed to generate pro-
grams automatically. It has three main elements:

• A population of individuals. In this case, the individuals are computer programs.
They are usually represented as parse trees, made of functions (with arguments),
and terminals (with no arguments: constants). The initial population is made
of individuals generated randomly.

• A fitness function. It is used to measure the goodness of the computer program
represented by the individual. Usually, this is done by running the individual
many times, using many (input, output) cases, also known as fitness cases. The
fitness of the individual is then computed by taking into account how many
times the output of the program guesses the expected output.

• A set of genetic operators. In GP, the basic operators are reproduction, mu-
tation, and crossover. Reproduction does not change the individual. Mutation
changes a function, a terminal, or a subtree; and crossover exchanges two sub-
trees from two parent individuals, thereby combining characterictics from both
of them into the offspring.

The GP algorithm enters into a cycle of fitness evaluation and genetic operator
application, producing consecutive generations of populations of computer programs,
until a good enough individual is found. In terms of classical search, GP is a kind
of bema search, the heuristic being the fitness function. GP has many parameters,
the most important ones being the size of the population (M) and the maximum
number of generatiosn (G). Also, every genetic operator has a probability of being
applied. The crossover operator is usually the most likely one to be used.

When building computer programs, programmers rarely write code by using
only the primitive functions and terminals the language provides. Rather, they
write parameterized chunks of code, called functions, procedures, or subroutines,
that are likely to be used in different parts of the program, and that simplify their
structure. Basically, these functions and subroutines act as the building blocks that
facilitate programming in a particular domain. Based on this insight, Koza devised
a new GP paradigm called Automatically Defined Functions (ADF) [9]. Within
this paradigm, every individual has several parts: one main program and several
subroutines or ADFs. The crossover operator has been modified, so that an ADF
from an individual can be recombined with another ADF from another individual
(and not with a main program, for instance). It was found experimentally that,
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for complex problems, the computational effort required to evolve correct computer
programs is reduced by using ADFs. This is because GP finds the proper low-level
building blocks (the subroutines) appropriate to solve the problem at hand. Also,
the structural complexity of the final individuals (their size) is also smaller. The
reason is that ADFs allow to reuse code in different parts of the program, just as
programmers do.

In the same line, Spector experimented with Automatically Defined Macros
with similar results [13]. In the ADF and ADM approach, each individual has its
own ADFs. The only way a useful subroutine discovered by one individual can be
transmitted to other individuals is by means of the crossover operator: from parents
to offspring, under several generations.

Other ways of creating ADFs have also been researched. In [5], pieces of code are
extracted from individuals and stored in a global library, called GLIB, and become
primitives that can be used by any individual. The only way these new primitives
can be used by other individuals is by crossover and mutation. In [16] a similar
approach is followed, although in this case subroutines compete according to their
fitness. ARL (Adaptive Representations Learning) is another approach that selects
small building blocks from frequently used good individuals [12]. These subroutines
are parameterized and stored in a global library. From time to time, a percentage
of individuals is killed and new ones are generated, so that functions in the library
have a chance of being used. Subroutines are deleted from the library if their fitness
is too low. However, once code is put in the library, it stops evolving, even though
it might not contain optimized code.

3 TRANSFERRING IMPROVEMENTS BETWEEN POPULATIONS

In this section, we will describe our approach, which consists in having separate
populations for the main programs (or main program bodies) and the subroutines,
instead of complete individuals carrying their own subroutines. A population will
transfer a piece of code to another when it discovers something having a higher fitness
than the previous best piece of code. This scheme allows to transfer improvements
to all individuals in the other populations as soon as they are discovered.

Let us suppose that our individuals consist of just two parts: a main body and
one ADF (ADF0). As shown in Figure 1, our implementation divides the population
of individuals into two separated populations: one for program’s main bodies (called
main population) and the other one for ADFs (named ADF population). Both po-
pulations will evolve independently. Each population will supply the best individual
obtained so far to the other population so that individuals of the other population
can be evaluated. More specifically, the main population will supply the best main
body obtained so far to the ADF population. Likewise, the ADF population will
supply the best ADF0 obtained so far to the main population.

In order to evaluate a member (a main body or main program) of the main po-
pulation, it will be coupled with the best ADF0 supplied from the ADF population,
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Fig. 1. Inter-relations between the main body population and the ADF population

a whole individual will be built, and the fitness obtained by that individual will be
assigned to the main body being evaluated. Similarly, in order to evaluate an ADF
in the ADF population, the ADF will be coupled with the best main body supplied
by the main population and the resulting individual will be evaluated. Of course,
it is impossible to evaluate an individual in a population until a best individual has
been obtained in the other population. But this is also true for individuals in the
other population. As the process must start somewhere, at the beginning of the run
a randomly chosen individual from each population is designated as the best of that
population.

Therefore, all individuals in the main population will be coupled and evalu-
ated with the same ADF (the best one obtained so far), and vice versa. Thus, an
improvement found by the main population will be immediately transferred to all
ADFs in the ADF population (and vice versa).

Populations are evaluated sequentially: if we let an n population system run for
150 generations, P0 will be run at generation 0, P1 will be run at generation 1 and
so on. P0 will be run again at generation n, P1 at generation n + 1 and so forth.
Therefore, each population Pi will run for 150/n generations, interleaved with the
rest of the populations. Table 1 shows the algorithm we have used for this article.

4 EXPERIMENTAL RESULTS

The approach shown in Figure 1 has been tested with the even-5-parity, even-6-
parity, and even-10-parity problems, described in [10]. Table 2 shows the tableau
for the even-5-parity problem problem with ADFs (the 6 and 10 EVEN-N-PARITY
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1. For each i, create population Pi and choose randomly a best-of-run Bi.

2. Do until the number of generations is exhausted or success.

(a) run GP on P0 for 1 generation and update B0. Stop if success.

(b) run GP on P1 for 1 generation and update B1. Stop if success.

(c) . . .

(d) run GP on Pn−1 for 1 generation and update Bn−1. Stop if success.

Table 1. Basic algorithm

problems are similar). In this case, we have used two ADFs with three arguments
and one main body.

Objective Find a program that produces the value for the Boolean even 5-parity
function as its output when given the values of the tree independent
Boolean variables as its input.

Architecture One result-producing branch and two two-argument functions-defining
branches, with ADF1 hierarchically referring to ADF0.

Parameters Branch typing.
Terminal set for
the result-producing
branch:

D0, D1, D2, D3, D4

Function set for
the result-producing
branch:

ADF0, ADF1, AND, OR, NAND, and NOR

Terminal set for
the function-defining
branch ADF0:

ARG0, ARG1, and ARG2

Function set for
the function-defining
branch ADF0:

AND, OR, NAND, and NOR.

Terminal set for
the function-defining
branch ADF1:

ARG0, ARG1, and ARG2

Function set for
the function-defining
branch ADF1:

AND, OR, NAND, NOR, and ADF0 (hierarchical reference to ADF0
by ADF1).

Fitness cases All 25 = 32 combinations of the five Boolean arguments D0, D1, D2,
D3, D4.

Raw fitness The number of fitness cases for which the value returned by the program
equals the correct value of the even-5-parity function.

Standardized fitness The standardized fitness of a program is the sum, over the 32 fitness
cases, of the Hamming distance (error) between the value returned
by the program and the correct value of the Boolean even-5-parity
function.

Hits Same as raw fitness.
Wrapper None.
Parameters M = 200, G = 150
Success predicate A program scores the maximum number of hits

Table 2. Tableau with ADFs for the even-5-parity problem

This tableau is similar to Koza’s, but for M and G. M is the size of the
population and G is the number of generations. Koza’s M is 16000 whereas we



The Effects of Transfer of Global Improvements in Genetic Programming 383

use a much smaller population size of 200 for even-5-parity, 400 for even-6-parity,
and 1000 for even-10-parity. We have done so, so that many more experiments
can be run in order to get better statistical estimates. Each configuration was run
200 times. Besides, as we wanted to explore the behaviour of the system for long
runs, our G has been extended to 150 (being Koza’s G = 51). As we use different
parameters, we performed a series of experiments for Koza’s ADFs as well, so that it
can be compared to our system. From now on, Koza’s ADF results will be referred
to as Kadf and our system results as Iadf (“Independent ADFs”).

As Koza states in [10], a good way to determine how well an adaptive system
performs (for a given problem and chosen parameters) is to obtain the computa-
tional effort (E) for that problem. In order to estimate computational effort, it is
necessary to estimate first the probability that a run with population M yields, at
least, a solution by evaluation i or before. This is called the cumulative probability
P (M, i). From this, the number of runs required to obtain a solution by generation i
(or before) with probability z R(M, i, z) can be calculated. The computational effort
E is then equal to the number of individuals that have to be evaluated in order to
obtain a solution by generation i, or before.

I(M, i, z) = R(M, i, z)×M × i (1)

As M and z remain fixed, I is a function of i. In order to estimate how difficult
it is for a system to obtain a solution, the minimum I value is obtained. Therefore,
the computational effort a system needs to solve a problem (with probability z) is:

E = min
i=0,...,G

(I(M, i, z)). (2)

The generation at which this minimum computational effort is realized is
called i∗.

Computational effort and related data for both Kadf and Iadf are shown in Tab-
le 3. Graphs displaying computational effort per generation are shown in Figures 2
and 3. Figures 4 and 5 show the cumulative probabilities of solving even-5-parity
and even-6-parity, respectively.

EVEN-5-PARITY EVEN-6-PARITY

Kadf Iadf Kadf Iadf

Population size 200 200 400 400

Computational Effort 428400 365800 952000 704000

Best generation i* 33 30 34 54

EKadf/EIadf 1.17 1.35

Table 3. Computational effort results (and related data) for Kadf and Iadf

It turns out that Iadf performs slightly better than Kadf (see Table 3) for the
even-5-parity problem (being the effort ratio E = 1.17) and somewhat better for
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be solved by generation i with probability z = 0.99

the more complex even-6-parity problem (E = 1.35).1 However, that is the effort
that the system would have spent had we chosen G = i∗. But i∗ is not a datum
we can know a priori. Had we started our runs without this knowledge, we could
have chosen any other G and spent a different computational effort I . In order to
have a better picture of what happens for different values of G, graphs displaying
computational effort are shown in Figures 2 and 3. Also, Figures 4 and 5 show

1 Koza, using a population of 16000 individuals, reported a computational effort of
464000 for even-5-parity and of 1344000 for even-6-parity (with ADFs) [9]
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the cumulative probabilities of solving even-5-parity and even-6-parity, respectively.
Results in these graphs can be easily summarized:

• Iadf has a smaller computational effort than Kadf for all generations and espe-
cially for the latest generations (see Figure 2). This fact is even more noticeable
for the more difficult problem (even-6-parity) (see Figure 3).

• Iadf manages to keep a steady rate of improvement (in terms of cumulative
probability of success) for longer than Kadf (see Figure 4). Kadf ’s rate dimini-
shes by generation 60 whilst Iadf continues improving at a good pace for much
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longer. Again, this is even more noticeable in the even-6-parity problem (see
Figure 5).

In order to test how our system behaves for higher order parity functions, we
used the even-10-parity problem. We ran this problem 200 times with a population
size of 1000 individuals. Kadf did not find any solution, and Iadf found just one,
However, given that so few solutions were found, it is not possible to compute the
computational effort, because the probability of success cannot be estimated with
accuracy. In [9], Koza reported solving the even-10-parity problem with ADF’s with
a population of 16000 individuals, but he was unable to estimate the computational
effort for the same reason. In order to compare Kadf and Iadf in this problem, we
will follow a different approach that uses the fitness of every best individual obtained
in the last generation (the 50th) for every one of the 200 runs. Given these 200 runs,
Figure 6 displays the probability of obtaining an individual with fitness x, or better,
after 50 generations. It has to be taken into account that in standard GP, the goal
is to minimize the fitness value. So, small fitness means a better individual. That
is why smaller fitness values are less probable in Figure 6: it is more difficult to
find good individuals (small fitness) than bad ones (large fitness). We can observe
that the probabilities for Iadf are always larger than for Kadf, which means that
Iadf will find better individuals more likely. The median value for Kadf is 488.0,
whereas for Iadf is 416.0.
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Fig. 6. Probability of obtaining an individual with fitness x, or better, after 50 generations,
for the even-10-parity problem

Results seem positive, but it is not clear why transfer of the best individual
of a population does not usually harm individuals of the other populations. Next
subsection tries to deepen our understanding of what is going on during transfers.
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5 BEFORE AND AFTER THE TRANSFER

In order to understand better what happens when a population transfers its best
individual to another, we have re-executed all the successful runs for the even-5-
parity configuration. It is in successful runs where the effects of transfer, if any, will
be seen more clearly. In order to observe the changes, we measured the fitness of
the populations just before the transfer happened, and just after the transfer. Let
us remember that a transfer occurs when one population finds a better individual
than its best so far. All re-runs followed the same pattern. A sample run can be
seen in Table 4 where transfers from population ADF0 are observed.

Average Gain in
Generation % Worse % Equal % Better Improvement Best

1 9 43 48 0.455 2.0
4 31 16 54 0.445 -1.0

10 53 7 40 0.33 2.0
13 26 24 50 1.78 0.0
16 21 44 35 1.23 0.0
19 27 4 70 2.87 4.0

Table 4. Sequence of transfers from ADF0 in a sample successful run

The first column of Table 4 is the generation at which the trasnfer happened. It
is noticeable that transfer happens only a few times. This is very usual in the other
runs as well.

Colums “Worse”, “Equal” and “Better” of Table 4 display the percentage of
individuals that worsened, remained equal, or improved their fitness after the trans-
fer. We can see that although many individuals improve after the transfer, many are
worse off as well. Usually, in most of the transfers, more individuals improve their
fitness, compared to those that worsen it. In order to know what the net effect is,
the “Average Improvement” for all individuals in the population is also displayed. It
can be observed that it is usually positive but small. This is true of most of the runs
we sampled. Therefore, it seems that, in general, transfer do have a small positive
net effect on the whole population.

However, the most interesting result is displayed in the last column “Gain in
Best”. This is the increase (or decrease) in fitness for the best individuals found
before and after the transfer. Here, a positive amount means that the population
contains a better individual after the transfer than the previous best. That is, a
real advance happened. A negative value means that the best individual was lost
and replaced by a worse one: knowledge was lost. It can be seen that most values
are positive, some are 0, and one is negative. One of the positive values is quite
large (the 4.0 increase, for instance. The maximum improvement for even-5-parity is
32.0 points). This pattern is followed, to some extent, in all the successful runs. As
this is the most important measure (it measures genuine advances due to transfers),
we will quantify it further.
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Figure 7 displays the frequency of fitness improvements over all actual transfers
of all runs from the ADF0, ADF1, and Main Program populations, respectively. For
instance, the point at (1.0, 0.36) means that 36% of transfers from population Main
Program improve the best individual in the population by 1.0 points of fitness.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

-6 -4 -2  0  2  4  6  8  10

F
re

qu
en

cy

Improvement in Fitness

’Gain in Best’ Frequency

Main Program
ADF0
ADF1

Fig. 7. Frequency (y-axis) of fitness improvements (x-axis) from transfers from the ADF0,
ADF1, and Main Program populations, respectively

The first remark about Figure 7 is that very few of the transfers worsen the best
individual (i.e. negative values in the x-axis). For instance, the probability of wors-
ening one point of fitness because of transfers from the Main Program population
is 2%. The probability of worsening 6 points is 0.5%. The second remark is that
for transfers from populations ADF0 and ADF1, the most frequent outcome is no
change (0 fitness points) in the best individual. For transfers from Main Program,
the most likely outcome (36%) is improving the best individual by 1 point. Yet,
there is a good probability that large changes (greater or equal to 2 fitness points)
will happen. Even very large changes of 10 fitness points can happen (about 1%
probability in the three cases).

In summary, very few transfers cause harm (to the best individual found so far),
most do nothing, and a fair amount of them are genuine discoveries.
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We now will show a couple of instances where an improvement is transferred.
The first one is a transfer from the ADF0 population. The discovery by the ADF0
population was:

(OR (AND ARG1 ARG2)

(NOR ARG2

(AND (OR (NOR ARG0 ARG2)

(OR ARG2 ARG1))

(NAND (NAND ARG2 ARG1)

(NOR ARG2 ARG1)))))

which after simplification is logically equivalent to:

(NOT (XOR ARG1 ARG2))

It makes a lot of sense that this subroutine was considered a discovery worth
transferring, because this ADF0 actually solves the even-2-parity problem, and can
be used to solve the larger even-5-parity problem. This ADF0 is true when an even
number of bits in ARG1 and ARG2 are 1 (ARG0 is not used). Table 5 shows the
sequence of transfers from fhe ADF0 population. The transfer at generation 13 is
the individual just reported. It is remarkable that, although at generation 13 the
“gain in best” after the transfer is 0, many individuals benefit from it (58%). Also,
the “average improvement” among the individuals of the population is quite large
(5.0 fitness points). So this ADF0 was a worthy discovery.

Average Gain in
Generation % Worse % Equal % Better Improvement Best

1 16 66 18 0.02 1.0
4 18 54 28 0.2 0.0

13 22 20 58 5.0 0.0

Table 5. Transfers from ADF0 in a successful run

In this same run, another very interesting subroutine was found by population
ADF1. Table 6 shows the sequence of ADF1 transfers. The one worth mentioning
is that of generation 11, that has a “gain in best” of 10 fitness points, a very large
amount, that benefited 58% of the receiving individuals.

Average Gain in
Generation % Worse % Equal % Better Improvement Best

2 13 72 14 0.015 2.0
11 28 14 58 1.15 10.0

Table 6. Transfers from ADF1 in a successful run
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The ADF1 individual being transferred was:

(ADF0 (ADF0 (ADF0 ARG0 (OR ARG0 ARG2)

(OR ARG0 ARG2))

(NOR (AND (OR (NAND ARG2 ARG1) ARG1) ARG1)

(ADF0 ARG1 ARG2 ARG1))

(NAND (AND ARG2 ARG0)

(ADF0 ARG2 ARG2 ARG1)))

(NOR (NAND (NOR ARG1 ARG1) (OR ARG0 ARG2))

(NAND (NOR ARG0 ARG1) (NAND ARG2 ARG2)))

(NAND (NAND (AND ARG2 ARG2) (ADF0 ARG0 ARG1 ARG0))

(ADF0 (NOR (OR ARG0 ARG2) ARG2)

(NOR ARG0 ARG0)

(ADF0 ARG1 ARG2 ARG1))))

This seemingly complex individual, when simplified, reduces to:

(NOT (XOR ARG0 ARG1 ARG2))

which solves the even-3-parity problem. Hence, it is a good subroutine to be used
by the main program, in order to solve the even-5-parity problem. Actually, the
program that uses this ADF1 is a perfect individual.

We have checked other transfers at different runs. Not always subroutines can
be understood so easily, but in all cases, the transferring individual implied some
sort of improvement for the receiving population.

6 RELATED WORK

Iadf originated in an idea that emerged from previous research. In [4], it was
indirectly shown how fixing part of a program and letting the rest evolve could be
an interesting way for a programmer to introduce background knowledge into GP
and to reduce the search space. This article is an offshoot of that idea, although it
is an evolving population best individual (instead of the programmer) which fixes
part of the program for the rest of the evolving populations. This idea was initially
explored in [2] and has been extended for the present article.

The system we have studied in this paper can be considered as an extreme
case of co-evolution [7], albeit a strange one, because interaction between popula-
tions happens only through the best individual of each population. Co-evolution of
a main program and several independent ADF populations has already been dealt
with in [1]. Both approaches differ in perspective, though: we are more interested
in the simultaneous transfer of information from one population to all individuals in
the other populations than in studying general ADF co-evolution. In their approach,
in order to evaluate a main program, ADF individuals are selected from the ADF
sub-populations. They tested several selection policies, being “the best individual”
policy very similar to our own approach. However, in their work this policy does
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not fare well compared to GP+ADF, which is the opposite of the results obtained
in our paper. Other differences are that we use a generational model for all evolving
populations instead of a steady-state model and that we favor program-level fitness
evaluation instead of evaluating directly the individuals in the ADF sub-populations.
Finally, our results are in terms of computational effort to solve the problem rather
than of average results per generation, as in their case [11] proposes a scheme con-
sisting of co-evolving populations of subroutines, but structured in a hierarchy. No
complete experimental study has been carried out, but there are some initial results
in [3]. The idea of transfer is not explicitly studied in any of these coevolutionary
approaches.

A related work reports the use of shared memory (initially proposed in [15])
between all the members of a population [14]. That is, they use a global memory as
a form of culture, to transfer data to all individuals in a population, with positive
results. Although the aim is similar to ours, the mechanism used in both cases is
different. In our case, what is transferred is not data but actual pieces of code.

7 CONCLUSIONS

This paper started by posing the question of whether it would be useful that im-
provements in a part of an individual (a subroutine, for instance) would be trans-
ferred to all members of the population as soon as they were found. We then
proposed a system to test this idea and utilized it for the even-5, 6, 10-parity prob-
lems. A comparison of our results with Koza’s ADF applied to the same prob-
lem shows that performance (in terms of minimum computational effort) is better.
Thus, there seems to be an advantage by immediately transferring improvements
to all individuals, at least in this case. A possible explanation of this behaviour
is that populations get specialised in some task, and therefore, it is easier for the
rest of the populations to accept their findings than if they were arbitrary improve-
ments. We have also analysed and quantified the effect of transfers, and found
out that transfers usually help the individuals of the receiving population on ave-
rage, and that in some cases, the receiving population discovers better individuals
than the best so far. That is, a real advance was achieved. It must be stressed
that this happens just because of the transfer, and that no genetic operators are
involved.

Our system shows a curious effect: the cumulative probability of success keeps
increasing at a good rate for longer than Kadf. That is, it doesn’t seem to stagnate
as soon as GP (or GP+ADF) does. The approach scales well, obtaining better
results for the more complex problem than for the simpler one.

Our approach is another way to parallelize GP, with the advantage that com-
munication between populations happens at a very small rate: all the information
populations need to exchange is the best individual obtained so far, which changes
rather slowly. This kind of parallelism would be useful for problems requiring many
different ADFs.
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Finally, we would like to determine under what conditions and for what problems
our “improvement transfer” approach works. Usually, new learning algorithms are
tested in two or three problems, but this often gives no prediction about what kind
of problems the algorithm is actually able to solve. After all, we already know that
no learning algorithm can do well in all situations (the so-called No Free Lunch
theorems) and therefore what should be done is to determine the subset of problems
the algorithm biases are appropriate for [19, 18]. This is very rarely attempted and
usually considered a difficult task (but see [17]). At least, the empirical study of our
paper shows that, contrary to our initial intuitions, improvement transfers do not
harm most of the individuals of the receiving population, as it has been shown in
the even-n-parity problems.
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