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Abstract. The dual core strategy allows to construct a fail-silent processor from two
instances (master/checker) of any arbitrary standard processor. Its main drawbacks
are its vulnerability with respect to common mode failures and the existence of
residual single points of failure. In this paper we propose a generic frame that
systematically eliminates these drawbacks. First, we employ temporal redundancy
to cope with common mode failures. Unlike similar approaches we can ensure error

containment even if – as a result of the temporal redundancy – the comparison by
the checker core is delayed. We attain this by introducing a specific delay element
for outgoing data. Second, we perform a systematic analysis of potential single
points of failure and eliminate these by careful layout, self-checking circuits and
similar methods. We finally validate our approach by means of exhaustive fault
injection experiments. The results indicate a 100% self-checking coverage for stuck-
at faults and complete error containment. Since the proposed framework has been
kept generic in the sense that the individual standard processor cores are treated
as black boxes, these results are valid independent of the core actually used.
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1 INTRODUCTION

In future automobiles more and more microprocessor-based control systems for
safety-critical applications such as antilocking brake system, electronic stability
program or x-by-wire systems (for example distributed notes connected by CAN,
TTP/C, TTCAN or FlexRay) will be implemented. To meet the high safety re-
quests of future applications – as demanded in the European standard EN 61508,
for instance – in spite of the increasing rate of transient errors [1, 2] that results
from shrinking feature size [3] the microprocessors have to be equipped with pow-
erful mechanisms for error detection and error handling. Generally the intention
is to make the microprocessor fail silent and to enable a recovery from transient
faults. While it is relatively easy to protect memory or communication interfaces by
means of coding techniques, e.g., the core is more difficult to protect. One attractive
generic solution in this context is a dual core system.

The advantage of a dual core system is that it is quite easily implemented with
standard cores. In contrast to other error detection mechanisms for a processor –
such as, e.g., code prediction [4, 5, 6, 7] or redundant computation (optionally with
modified operands [8, 9]), – no change in the core itself is necessary. At the same
time a very high error detection coverage can be attained. However, since the two
processors are implemented on the same die, are operating in lock step, have the
same power supply, the same clock generator and are working with the same input
data, there is a potential for common-mode failures and single points of failure.
This constitutes the main drawback of the dual core approach. Several dual-core
solutions have already been proposed, but all of them had some disadvantages. For
example, the master-checker approach from [10] requires two processor chips and
has hence proven too expensive because of the board space and assembly costs for
two chips, while in [11] single points of failure still remain, such as, for example, the
error signal. In our approach two cores are located on the same die to yield a fast
and economically viable solution. By means of a careful analysis we systematically
eliminate all potential single points of failure. In addition to a high error detection
coverage we are striving for short error detection latency. In particular we want
all errors within our dual-core processor to be detected before they propagate to
the output and hence pollute other functional units such as memory or peripherals.
This error containment is essential for fast recovery.

Since the automotive market is highly competitive the performance of the pro-
cessor must closely fit to the application requirements. Therefore a wide range of
processors with different performance is employed. It is, however, very expensive
to repeat the safety verification for every single core used. Our approach here is
to perform a safety verification for the proposed generic dual core frame once, and
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show that this verification is valid independent of the actual type of core embedded
in our frame.

This paper starts with an introduction of the proposed dual core frame along
with its implementation in Chapter 2. In Chapter 3 error handling within the pro-
posed concept will be explained. Our approach for ensuring error containment will
be presented in Chapter 4. Chapter 5 is concerned with an analysis of single points of
failure in the system. Subsequently the setup of the fault injection experiments will
be sketched in Chapter 6, while Chapter 7 presents and discusses the experimental
results. Finally, chapter 8 concludes the paper.

2 IMPLEMENTATION OF THE DUAL CORE FRAME

2.1 Overview

The proposed framework is based on the assumption of a Harvard architecture for the
processor cores used. Knowing that most processors practically used in automotive
applications exhibit a Harvard architecture this is a reasonable restriction. The
concrete processor we use to test our framework and to demonstrate its functiona-
lity is called SPEAR [12, 13]. This processor was selected because it provides all
features found with state of the art processors. It is a RISC processor with Harvard
architecture, has memory mapped IO and is able to meet the temporal demands
of real-time systems. Although today automotive processors normally have 32 bit
bus width, we considered the 16 bit architecture of SPEAR satisfactory for our
study of the specific implementation problems of dual core systems. While this
choice does not change the fault tolerance properties we intended to investigate,
the resulting reduction in hardware complexity allowed us to implement the system
in a FPGA and furthermore yielded shorter simulation time for the fault injection
experiments.

Figure 1 shows the implementation of the dual core system. The components of
the frame are transparent while the embedded standard processors are grey shaded
and the additional standard components (memories) are grey hatched. Notice that
we do not duplicate the expensive memory components but employ non-redundant
fail-silent memories as proposed in [14] instead.

All inputs of the two processor cores are checked for correctness, and their
outputs are compared. Obviously this is not true for power supply and clock. In
order to facilitate the detection of common mode failures induced for example over
the power supply or by electromagnetic interference (as shown in [15]) in general,
the two cores are operating in time diversity: the master is directly controlling the
peripherals such as the memory. The slave is working with a delay of exactly 1.5
clock cycles and does not perform write access to any resources. In order to obtain
the delay, the slave must be driven with the inverted clock. Temporal alignment
between master and slave is achieved by delaying the master’s inputs by 1.5 clock
cycles before providing them to the slave. The master’s outputs have to be delayed
by 1.5 clock cycles before they are compared with the output of the slave. Since
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a mismatch between master and slave cannot be detected before the slave’s results
are available, the master may apply its erroneous output signals to peripherals for 1.5
clock cycles. Given that the typical fault tolerance time of automotive applications is
much higher than several clock cycles, this does not constitute a substantial problem,
but makes a software recovery after transient faults more difficult. However, by
delaying the master’s output until the result of the comparison is known, incorrect
output signals can as well be completely prevented. In our implementation the price
is a 2 clock cycle increase of the memory write access time.
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Fig. 1. Dual core with time diversity

2.2 Delay Components

The delay components z
−1.5 (Fig. 2) are built of a series-connection of two flip-

flops each. The first flip-flop uses the same clock as the master, while the second
is provided with an inverted clock. This component is used to delay the master’s
outputs before the comparison with the slave’s outputs. These outputs are, for
example, address and data for memory and peripherals, and control signals such as
“write enable”. Furthermore, all status-signals (like “access violation”) that shall
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be compared have to be delayed as well. Similarly, the slave’s input signals (such as
the incoming instructions, e.g.) have to be delayed.

D

c l k

D      Q D      Q

> >

Fig. 2. Delay component

In an FPGA design it is often not possible to invert the clock-input of a flip
flop; thus, two clock networks have to be used. In order to achieve a good timing
behavior of the design the first flip flop has to be triggered with the clock of the
source and the second flip flop with the clock of the receiver. Because all receivers
like the comparators or the slave are working with the inverted clock, the first flip
flop is triggered with the normal clock and the second with the inverted clock.

2.3 Comparators

The comparison of the output signals of master and slave is done by totally self-
checking comparators as proposed in [16, 17]. If the comparison of the output
signals is time critical, an approach for the comparator as shown in [18] can be
used. All signals on the output buses are compared: data-lines, address-lines and
the incoming and outgoing control signals for the external modules. Occasionally
it may be desirable to compare some core-internal signals as well. This can reduce
the error detection latency and allows an easier fault recovery. Although such an
extension is quite straightforward to implement, we do not further consider it, since
our initial approach was to treat the used cores as black boxes.

2.4 Bus

Like the comparators the buses for the incoming and outgoing data and instructions
are non-redundant components as well, and therefore they require specific protection.
We decided to use the parity bit for this purpose. In order to ensure that at least
one core is getting correct data – otherwise the bus would constitute a single point
of failure –, the buses have to be routed to the slave first and then to the master
with the parity checker as shown in Figure 3 a). Should an error be located on the
bus beyond the parity checker, it can be assumed that the slave is getting correct
data and the comparators will detect the failure. With this layout rule fail-silent
behavior can be achieved with respect to the incoming buses. In order to provide
an equally efficient protection for the outgoing buses, the parity is first generated
for the master’s data and then the bus is routed to the delay component before the
comparison with the slave’s output is performed. The respective circuit diagram is
shown in Figure 3 b). With the single fault assumption there is either a failure on
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the bus or in the parity generator, which in both cases produces a detectable error
(see below).
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Fig. 3. Routing of the buses a) for incoming and b) for outgoing data

2.5 Parity Generator

Parity generation is performed for the master’s data, so the parity can be transmitted
to the destination simultaneously with the data, i.e. without delay. The data path
is protected by the comparison; any bus fault can be detected by a comparator
mismatch. In case of a comparator match the proposed layout ensures that the
parity has been generated over correct data. Should the parity generator fail or the
parity signal be corrupted, a parity check at the destination will detect this. For
the single fault assumption we need not anticipate both these scenarios, hence the
parity generator does not require any protection.

2.6 Parity Checker

To ensure complete protection of the master’s input bus the parity check is performed
directly at the master’s inputs, i.e. after the fork of the bus to the delay component
that feeds the slave. Since there is no way of detecting a stuck-at-inactive behavior
of the parity checker, this unit requires a totally self-checking implementation. For
the same reason the output signal of the parity checker is coded as an alternating
dual-rail signal (see below).

2.7 Interrupts and Reset

To protect single-bit input signals to the dual core system, such as interrupts and
the reset, e.g., dual-rail coding is employed. After having passed through an input
synchronization stage, the non-inverted rail of such a signal is routed to the mas-
ter, while the inverted rail goes to the slave. Care should be taken to perform the
re-inversion of the slave rail only after the delay unit. Otherwise electromagnetic
interferences could disturb both rails in the same way, which constitutes a common
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mode failure. If, however, the interrupt or reset signal for the slave can be delayed
at the source already, the inversion is not necessary. Due to these provisions inter-
ferences at these signals would either result in the two cores executing the interrupt
or the reset at different points in time (relative to their respective program flow)
or only one executing an interrupt or a reset at all. Both these types of diverging
control flow can be easily detected by the comparators.

2.8 Error Signal

All internal error detection mechanisms have to signal the error state by an alter-
nating dual rail signal. That means that a correct state of the system is indicated
either by “01” or “10” and an incorrect state is indicated by “00” or “11”. This
allows an evaluation by a dual-rail comparator. The signal has to alternate with
every check performed in order to detect stuck-at faults before accumulation occurs.
In order to include the output pins in the protection the signal must be routed to
the outside of the dual core system in a dual-rail manner.

3 ERROR HANDLING

In order to further support recovery the dual core framework provides an error status
register (for each core separately). It is accessible as memory mapped I/O device.
The following error sources are mapped to individual bits in this register (see also
the respective letters in Figure 1):

(A) IRAM-Error indicates a parity error in the instruction memory. Parity is
checked internally in the safe instruction memory by totally self checking de-
coders as outlined in [17]. Parity checks are performed on data, data address
and the control signals.

(B) DRAM-Error indicates an internal parity error in the safe data memory (ana-
logous to (A)).

(C) Instruction-Address-Error detected by a comparator in case the two processor
cores do not agree on the instruction address.

(D) Instruction-Error detected by a parity check of the instruction word at the dual
core input. As already mentioned this additional parity check is intended to
protect the bus.

(E) Data-Address-Error detected by a comparator in case the two processor cores
do not agree on the data address.

(F) Data-Out-Error detected by a comparator in case the two processor cores do
not agree on the data to be written.

(G) Delay-Unit-Error-1 and Delay-Unit-Error-2 detected by internal error detection
mechanism in the delay-unit. These error signals will be further explained in
Chapter 4.2.
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(H) Data-In-Error detected by a parity check of the data word at the dual core input
(analogous to (D)).

If an error is encountered in the master, the corresponding error signal is acti-
vated and the bit in the error status register is set. 1.5 clock cycles later the slave
will also set its error flag in the same way. All error signals are dual rail encoded.
They are combined to a global error signal called “Error Dual Core” by a totally
self-checking comparator. This global error signal is routed to an external watchdog
and to an interrupt line of the dual core system (see Figure 4).
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Fig. 4. Error handling

In response to this interrupt the dual core starts the interrupt service routine.
At this point the error status register provides extremely important information
on the source of the error and thus allows fast, problem specific recovery. Each
processor core can acknowledge the interrupt by clearing its error status register.
As already mentioned all error signals are dual rail encoded and the comparator is
totally self-checking to keep this unit single-fault tolerant as well. Potential bit-flips
in the error status register are detected by a diverging program flow of the master
and slave. In addition, a watchdog is activated with the global error signal. The
dual core has to toggle this watchdog in the course of the interrupt service routine
in order to acknowledge the proper recognition of the interrupt.
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4 ENSURING ERROR CONTAINMENT

By delaying the slave’s operation by 1.5 clock cycles we have introduced the temporal
diversity required to minimize the potential for common mode failures. The main
drawback of this solution, however, is that the check of the master’s data cannot
be performed until the slave has provided its results as a reference. During this
1.5 clock cycle latency period the master may write erroneous data to memory,
peripheral devices or actuators. Alternatively a faulty master may as well write to
an erroneous address or perform a write access instead of a read access. Obviously
these scenarios may lead to a failure of the complete system. Even worse, without
a clear indication of which external data has actually been adulterated by the faulty
master, recovery becomes very difficult.

To solve this problem we have inserted a delay unit to all outputs from the master
to the data memory or external memory mapped I/O-components. The penalty is
a 1.5 clock cycle delay of write accesses to the singular (i.e. non-duplicated) external
components. Since the interface to these external components is bi-directional, the
design of this delay unit (shown as a box called “Delay Unit” in Figure 1) is much
more complicated than that of the single-directional delay units used for comparison.
The related problems will be discussed in the next section.

The purpose of the delay unit is to defer any write access from the master to an
external component (memory, I/O module etc.) until the correctness of the respec-
tive data, address and control information has been verified by means of comparison
with the checker. Since the master may also read data from external components,
care must be taken not to delay a read access as well, since this would unnecessarily
degrade performance. The implementation of the delay unit is shown in Figure 5.

4.1 Operation of the Delay Unit

The delay unit consists of two branches, a read branch (lower input path of MUX2
in Figure 5 including MUX1) and a write branch (upper input path of MUX2). In
the write branch the data are delayed by 2 clock cycles. This delay is longer than
the required minimum of 1.5 clock cycles and allows the memory to be clocked with
the same clock polarity as the master, which is mandatory for a fast read access.
For the sake of consistency we have to delay the corresponding address and control
signals in the same way as the data, of course.

In the read branch we bypass the delay by means of MUX2, using the Read/Wri-
te signal to control the multiplexor appropriately. We must take care to use the
delayed version of the Read/Write signal here, because otherwise the write access
would be initiated (a) without the desired delay and (b) 2 cycles before the other
related signals are available.

It is easy to imagine that the unequal treatment of read and write leads to
problems when switching between read and write access: If we perform a read
immediately after a write, the delayed write and the immediate read would have
to be performed in parallel. So obviously we must keep a minimum distance of
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Fig. 5. Delay unit

2 clock cycles between a write and a succeeding read. If we perform a write im-
mediately after a read we get a temporal gap between the end of the read and
the start of the delayed write. During this 2 cycle gap MUX2 still activates the
read path, but the non-delayed data, address and control information in this path
already belong to the write access. To prevent this information from getting to
the external bus, we introduce MUX1 and provide uncritical constants (“no ope-
ration” in Figure 5) to the lower input of MUX2 during this gap until MUX2
eventually switches to the upper path and performs the actual write access. In
principle it would be sufficient to force the signal Read/Write to “read” during
this period (which would allow to save MUX1). However, in our generic solution
we wanted to ensure for every type of device that might be connected, that only
regular accesses are performed in the fault free case. Without MUX1 some state
machine within the external component might be upset by the mutilated access,
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an access violation be triggered or an unnecessary cache line replacement be per-
formed.

4.2 Protection of the Delay Unit

The Delay Unit is a singular component and hence requires specific protection. In
order to protect the interfaces to other components, the signal groups Data Address,
Data Out and Mem Control are secured each by a single parity. The parity of these
signal groups is routed through the delay unit along with the signals. Since the
signals within each group remain mutually independent in the delay unit, the single
parity provides sufficient protection against single faults.

Considering the special role of the Read/write signal for controlling the multi-
plexors we have to pay special attention to its protection. This signal is used alone
as well, and not only in context with the whole control signal group; therefore parity
protection is not sufficient. Consequently we secure the Read/write signal by a dual
rail code right at its entry to the delay unit. This not only prevents a single error
from turning a read into a write, it further allows us to implement the multiplexors
in a fail-safe fashion as shown in Figure 6.

A N D A N D A N D A N D A N D A N D

O R O R O R

R e a d /

W r i t e

_ _ _ _ _

R e a d /_ _ _ _

W r i t e

t o  C h e c k e r

I n 1 PI n 1 PI n 1 1I n 0 1I n 1 0I n 0 0

O u t 0 O u t 1 O u t P

Fig. 6. Internal structure of a multiplexor

In the layout care must be taken to route the dual rail Read/Write signal to
the multiplexor first and from there to the self checking comparator as shown in
Figure 6. Under this provision an error affecting one rail of the Read/Write signal
will be detected by the self checking checker, while a single error in the multiplexor
circuit will affect one single output bit and hence be detected by the parity check
at the output. Note that a parity check of the signal groups is not necessary in the
read path, since even if a write is erroneously turned into a read this will have no
effect to the memory contents. Still we have implemented both multiplexors MUX1
and MUX2 as shown in Figure 6 to facilitate detection of an incorrectly switched
data path as described above. Note that otherwise this error could not be detected
by parity checking, since the data from the wrong path do have correct parity.
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To complete our error containment concept, we have to secure the interface to
the external component. This can easily be attained by a single parity for each of
the signal groups. In addition, the external component should deny a write access,
if the delay unit has encountered an internal error. For this purpose a global error
signal is available in the delay unit. Most standard components, however, will not
be able to make use of this signal and it is up to the dual core to make appropriate
use of this indication. We have already given the details on generation and use of
the global error signal in Section 3.

Still we can attain write protection in case of an error for standard components
like for example the fail safe memory described in [14] as well by simply turning the
write into a read (due to timing issues this is only possible for errors indicated by
the dual core and not for error sources inside the delay unit). Figure 5 (bottom)
illustrates how this is done: The error indication from the master is compared with
the slave before it is available as “DRAM Error” with a delay of 1.5 clock cycles.
By adding another 0,5 cycles delay we can attain a temporal alignment of this error
signal with the corresponding data word in the delay unit. Using an AND gate
finally allows us to mask the Read/Write signal and thus inhibit a write access.
This signal change will furthermore cause a parity error for the control signal group.
The XOR gate shown in Figure 5 turns the dual rail signal into a single rail one.

5 RESIDUAL SINGLE POINTS OF FAILURE

Common-mode failures [19] are failures that are affecting by a single reason more
than one part of the system – usually redundant components – in the same way,
giving rise to an erroneous output that cannot be detected by comparison. As
already mentioned we have minimized the potential for common mode failures by
operating the processor cores in time diversity.

Single points of failure are locations in the system for which no redundancy is
available to detect or mask a failure. Some of these locations have already been
discussed in the previous chapter, like for example all incoming and outgoing signals
and buses, hence we do not further consider them here. The remaining components
that constitute potential single points of failure are the clock-signal and the power
supply.

5.1 Clock

Hypothesized failures of the clock signal are a totally missing clock and a partially
missing clock (i.e. for some components). Failures in the clock generator resulting
in pulse omissions are not considered, because they pertain to external components.
Transients on the clock line are common mode failures and should hence be covered
by the time diversity. As shown in [20] a missing clock signal is difficult to discover
by an internal mechanism, hence an external reference, e.g. a watchdog, is necessary.
Consequently one of the two cores can be assigned the responsibility to trigger the
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watchdog. This, however, does not provide complete coverage of all partial clock
failures unless the following layout rule is obeyed:

If the watchdog is triggered by the master and the clock is disrupted only for the
delay components and the slave (Figure 7 a), the comparators will always display
a correct signal, even when the master produces erroneous outputs, because the data
frozen in the delay component and the data frozen in the slave will probably be the
same. As a consequence both the watchdog and the comparator will fail to detect
this error. Therefore it is necessary to route the clock first to the slave and then
to the master that will trigger the watchdog (Figure 7 b). If now a total clock stall
happens or a clock stall happens in the clock path to the master (Figure 7 b), pos. 1
and 2), the watchdog will detect this error. The comparator in turn will recognize
the failure of a clock stall directly before the delay component (Figure 7 b) pos. 3)
or a clock stall before the slave (Figure 7 b) pos. 4). So all partial clock failures are
covered. In addition it must be ensured that the watchdog is timed from a source
independent of the clock to be checked.
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Fig. 7. Clock tree: a) a disadvantageous and b) a advantageous implementation

5.2 Power Supply

Disruption in the power supply will either result in a total stop of the system or –
in case of spikes or transient outages – in a temporary disruption of the operation
of one or more components of the dual core. Again the time diversity ensures that
the disruption causes different effects in the two cores. Moreover, such types of
failures tend to result in a program flow disruption such that the processor will very
likely not trigger the watchdog correctly. If only one component is disrupted, the
comparators will detect the failure. Low supply voltage of the comparators also will
be detected, because the dual-rail signals will not be able to display a proper high
logic level.

6 FAULT INJECTION EXPERIMENTS

In order to validate our theoretical analysis we have carried out a series of fault injec-
tion experiments on the proposed dual core frame. A dual core processor consisting
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of two SPEAR cores and the fault tolerant frame incorporating the delay unit for
the output has been implemented in VHDL. As shown in Figure 8 two instances of
this improved dual core architecture have been used in the test environment, one for
the device under test and another for the golden device that operates in lock-step
with the device under test and serves as a fault-free reference.
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Fig. 8. Test environment

During the experiments we need to observe two important phenomena: (1) has
the injected fault become effective and (2) has the resulting error been properly
detected in time, i.e. before polluting external devices. To address question (1) we
compare all signals issued from our device under test to (virtual) external compo-
nents like the data memory or memory mapped peripherals – such as data address,
data out and memory control – with the respective reference signals from the golden
device. In case of a comparator mismatch (indicated by the signal “Mismatch”)
we can conclude that the device under test is attempting an erroneous access. By
observing the Read/Write control signal (“Write Access” in Figure 8) we can further
judge whether this access is a malicious write or a harmless read – or has at least
been turned into a read by our protection scheme. With respect to question (2) we
can check whether an error has been detected by a mechanism inside the dual core
framework (signal “Internal Error”) or is detectable by an external device that em-
ploys a parity test on the buses (signal “Error Detectable”). By monitoring all these
signals on a cycle-by-cycle base we can assess the temporal relations, in particular
we can find out whether error detection occurred before an erroneous write.
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The test environment has been synthesized to a net list in EDIF format (elec-
tronic design interchange format). Fault injectors were inserted into this net list
at each logic gate input of the device under test. The fault injector is capable of
injecting stuck-at-one and stuck-at-zero faults. The faults were activated while run-
ning a test workload on the dual core system. In order to facilitate a more detailed
analysis, we have kept track of whether a fault has been inserted into the master
core, the slave core or the frame, and added this information to the respective entry
in the observation record. The stuck-at fault model is considered sufficient because
the concurrent error detection mechanisms are triggered with an extremely short
latency, so that the faults were detected very fast. Under this prerequisite the ob-
served coverage results can be directly projected to the bit flip or transient fault
model that are anticipated to dominate during field operation.

In order to assess the gain of the proposed delay unit with respect to error
containment we have carried out the experiments once with and once without delay
unit.

7 EXPERIMENTAL RESULTS

The results for the dual core without the delay unit are shown in Table 1.

component master slave frame overall

detected without effect 545 51 324 3 296 55 165

detected before effect 3 226 0 328 3 554

detected during read access 307 0 22 329

detected during write access 0 0 0 0

detected after read access 31 686 0 46 31 732

detected after write access 15 587 0 32 15 619

not detected without effect 3 755 3 748 760 8 263

not detected with effect 0 0 0 0

55 106 55 072 4 484 114 662

Table 1. Results of the fault injection for the dual core system without delay unit

Altogether by inserting a stuck-at-one and a stuck-at-zero at each gate

input 114 662 faults could be injected into the dual core system. 106 399 of these
faults could be activated by the workload in the sense that either the signal “In-
ternal Error”, “Error Detectable” or “Mismatch” became activated. This is about
92,8 percent of all injected faults. 4 484 faults were injected into the frame containing
the safety critical single components such as the parity checker and the buses. 760 of
these could not be activated, because we could not simulate external components
such as memory with an address space of 16 bit. Although this is not directly proven
by a measurement result, we can reasonably assume that these 760 faults would also
be detected, because the error detection mechanisms for the involved logic gates are
the same as those for the others. Faults in the master mostly became effective. The
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proportion of errors in the master that were detected before their effect propagated
to the output depends on the workload. Hence these numbers would look different
for a different workload. As expected faults in the slave never had an effect, since
the slave’s output is used for comparison and error detection only and not visible
for the external components.

An important result was the confirmation that all activated faults were detected
within latency of at most 1.5 clock cycle after they became effective. However,
15 619 of the activated faults could be detected only after having had an effect by
a write access. This significant share of 14% late detections is problematic, since
external components may have already been polluted by a faulty master and as a
result recovery becomes difficult.

This observation justifies the proposed insertion of the Delay Unit. Table 2
summarizes the results of the fault injection experiments we have performed on the
dual core with Delay Unit.

component master slave frame overall

detected without effect 204 51 170 3 517 54 891

detected before effect 19 047 98 734 19 879

detected during read access 559 0 601 1 160

detected during write access 0 0 320 320

detected after read access 31 455 0 87 31 542

detected after write access 0 0 0 0

not detected without effect 4 269 4 276 1 073 9 618

not detected with effect 0 0 0 0

55 534 55 544 6 332 117 410

Table 2. Results of the fault injection for the dual core system with delay unit

Here a total of 117 410 faults were injected of which 107 792 (about 92%) were
activated by the workload. The frame containing the safety critical single com-
ponents such as the parity checker, the buses and the output delay unit was now
subjected to 6 332 faults. 1 073 of these could not be activated due to the same rea-
sons as above. Again we can reasonably assume that these 1 073 faults would also
be detected, because the error detection mechanisms for the involved logic gates are
the same as those for the others. An interesting observation in this fault injection
experiment is, that 98 faults in the slave are are causing a mismatch between the
device under test and the golden device. This stands in contrast to the results in
Table 1 where the faults injected into the slave never had an effect. The reason
for this unexpected behavior is caused by our protection mechanism that turns a
write into a read in case of an error. Injecting a fault into the slave may trigger this
mechanism 1.5 clock cycles after the master has started its write access, which is
just sufficient to inhibit the write before the 2 cycle delay is over. Eventually this
causes a mismatch of the read/write signal between device under test and golden
device.
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The distinction between read and write accesses enabled by tracing the signal
“Write Access” allows some important observations: All faults that manifested as
a write access (including reads that turned into a write as a consequence of the fault)
are either detected before or during the access to the external component, which fa-
cilitates a well targeted recovery. The relevant detection mechanisms are “Internal
Error” and “Error Detectable” (i.e. parity on the external buses). All erroneous
read accesses are detected as well, but mostly after the access to the external com-
ponent. This is, however, no problem, because no external memory contents will be
adulterated by a read (but for the rare cases of consuming read in special peripheral
components). So although error detection cannot in general be guaranteed before
the erroneous access to an external device, all potentially malicious types of access
are properly handled and error containment is effectively enforced. In addition all
types of error observed throughout the experiment regardless of their severity have
been detected within a latency of at most 2 clock cycles.

8 CONCLUSION

We have proposed a generic frame for a dual core system that can be used to im-
plement a fault-tolerant processor system with virtually all modern processor cores.
Additionally we have proposed an extension that allows to ensure fault contain-
ment and hence facilitates fast, fine-grained recovery even if the processor cores are
operated in time diversity.

With a careful implementation mainly based on the self checking principle and
two rail coding complete coverage of single faults could be obtained even for the
singular function units of the dual core framework. Our analysis has shown that
in this implementation all single points of failure and all common-mode failures –
even at the input, output or error signals – can be eliminated, if several layout
rules are obeyed and if the operation of the slave is delayed by 1.5 clock cycles.
Comprehensive experimental results have confirmed this theoretical analysis: No
coverage violation has been observed.
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