
Computing and Informatics, Vol. 23, 2004, 501–515

A SIMPLE PLL-BASED TRUE RANDOM NUMBER
GENERATOR FOR EMBEDDED DIGITAL SYSTEMS

Miloš Drutarovský, Martin Šimka

Department of Electronics and Multimedia Communications

Technical University of Košice

Park Komenského 13, 041 20 Košice, Slovak Republic

e-mail: {Milos.Drutarovsky, Martin.Simka}@tuke.sk

Viktor Fischer, Frédéric Celle

Laboratoire Traitement du Signal et Instrumentation

Unité Mixte de Recherche CNRS 5516, Université Jean Monnet

10, rue Barrouin, 42000 Saint-Etienne, France

e-mail: {fischer, celle}@univ-st-etienne.fr

Manuscript received 22 December 2004

Abstract. The paper presents a simple True Random Number Generator (TRNG)
which can be embedded in digital Application Specific Integrated Circuits (ASICs)
and Field Programmable Logic Devices (FPLDs). As a source of randomness, it uses
on-chip noise generated in the internal analog Phase-Locked Loop (PLL) circuitry.
In contrast to traditionally used free-running oscillators, it uses a novel method of

randomness extraction based on two rationally related synthesized clock signals.
The generator has been developed for embedded cryptographic applications, where
it significantly increases the system security, but it can be used in a wide range of
other applications. The functionality of the proposed solution is demonstrated for
the Altera Apex FPLD family, but the same principle can be used for all recent
ASICs or FPLDs that include an on-chip reconfigurable analog PLL. The quality of
the TRNG output is confirmed by applying special DIEHARD and NIST statistical
tests, which pass even for high output bit-rates of several hundreds of Kbits/s.

Keywords: Cryptography, FPGA, PLL, clock jitter, TRNG, DIEHARD, NIST,
statistical tests

502 M. Drutarovský, V. Fischer, M. Šimka, F. Celle

1 INTRODUCTION

Producing unpredictable, i.e. irreproducible uniformly distributed random number
sequences on hardware is one of the central issues of the design of cryptographic
systems. Random numbers are needed, in particular, for the key generation, au-
thentication protocols, zero-knowledge protocols, padding, in many digital signature
schemes, and even in some encryption algorithms [1, 2]. In all these applications,
security greatly depends on the quality of the source of random numbers.

True Random Number Generators (TRNGs) can be produced using some non-
deterministic process. The most typical implementations, which cannot be embed-
ded in digital devices, use quantum mechanics [3] producing a random sequence
with a rate up to 1 Mbit/s. Radioactivity can also provide true random bits [4],
but at a much lower rate of several hundreds of bits per second. Many types of
hardware generators, which can be embedded in digital devices, have already been
published. They usually exploit the thermal noise (resistance or shoot) in electronic
devices and free-running oscillator(s) [5]. In the well-known Intel Random Number
Generator (RNG) [6], a slow clock signal modulated by an analog thermal noise
is amplified and sampled using fast asynchronous clock signal from a free-running
oscillator. The drift between the two clocks provides a source of random bits with
an average rate of 75Kbits/s.

Our aim was to find a solution, which could be embedded in a digital circuit.
Digital circuits are well suited for implementation of so called Pseudo-Random Num-
ber Generators (PRNGs). However, PRNGs themselves cannot provide sufficient
security for applications in cryptography. Even the best cryptographically secure
PRNGs (like BBS etc. [1]) require a truly random initialization sequence that is
typically provided by a TRNG embedded in the target hardware. Typical digital
circuits include only a limited number of sources of randomness, e.g. metastability,
frequency of a free-running oscillator, clock jitter, etc. Usually, reliable generators
based on the metastability and/or frequency instability are difficult to implement
or they are not secure enough for cryptographic applications. In some cases, the
entropy increase is not sufficiently high, so the output of the generator can be pre-
dicted [7]. Free-running oscillators are typically used in known TRNGs realized in
Field Programmable Logic Devices (FPLDs) [8,9]. The design [8] uses off-chip com-
ponents that generally decrease the cryptographic security of the implementation.
Implementation [9] requires very careful placement of ring oscillator pairs embedded
in the Xilinx FPLD. It can provide random bits at speeds up to 0.5Mbit/s.

In contrast to these methods, we have proposed a novel method of randomness
extraction (see [10]) based on two rationally related periodic signals. It was shown
that it is perfectly suited for modern FPLDs with the internal analog Phase-Locked
Loop (PLL) circuitry (e.g. Apex [11] or Stratix [12] FPLDs from Altera). The
generator provides random data with only small deviations from the ideal one.

In this paper, we present a modified version of our generator [10] having sim-
plified structure and higher data rate. It is based on an extended knowledge of the
jitter obtained by measurements on application cards in real conditions.

A Simple PLL-Based True Random Number Generator 503

2 JITTER OF THE PLL-SYNTHESIZED CLOCK SIGNALS

2.1 Analog PLLs Embedded in Digital Circuits

New digital VLSI circuits use advanced clock generation and distribution circuitry
based on embedded analog PLLs [11–14]. A simplified block diagram of one analog
PLL block typically available in advanced digital circuits is shown in Figure 1. Each
PLL block can provide at least one synthesized clock signal with the frequency FOUT :

FOUT = FIN

m

n× k
= FIN

KM

KD

, (1)

where FIN is the frequency of the external input clock source. Reference-, feedback-
and post-divider values n, m, and k can vary from one to several hundreds in
FPLDs [11, 12], or to several thousands in ASICs [14].

:n
Phase

Frequency

Detector
:k

:m

VCO

ClockShift

Circuitry

Input Clock
FIN

FOUT = FIN
m

n × k

Charge

Pump

&

Loop

Filter Output Clock

Fig. 1. Simplified block diagram of a typical analog embedded PLL circuitry

2.2 Jitter of the PLL Synthesized Clock Signals

In analog PLLs, a noise causes the Voltage Controlled Oscillator (VCO) to fluctuate
in frequency. Other frequency fluctuations are caused by variations of supply voltage,
temperature, and by a noisy environment. The internal PLL control circuitry adjusts
the VCO back to the specified frequency, but a certain part of the fluctuations
caused by the non-deterministic noise cannot be compensated for and is seen as
a clock jitter.

The size of the intrinsic jitter depends on the quality factor Q of the VCO, on
the bandwidth of the Loop Filter, and on the so-called pattern jitter introduced by
the Phase Frequency Detector. It is often given in peak-to-peak value or 1-sigma
(or RMS) value. 1-sigma value of the jitter (σjit) depends on the technology and the
configuration of the PLL and it can range from 3.5 ps to 10 ps for ASICs [14], or up
to 50 ps for FPLDs [11,12]. Since the technology of the PLL and the quality of the
VCO is usually defined, the user can change the output jitter by a modification of
the divider values and the filter bandwidth.

504 M. Drutarovský, V. Fischer, M. Šimka, F. Celle

For example, the analog PLL jitter in an Apex FPLD has 1-sigma value of
σjit ≈ 15.9 ps for a FOUT = 66.6MHz synthesized clock signal and multiplication fac-
tor 2 [15]. These results were acquired under “ideal conditions”, with only a minimal
amount of FPLD resources occupied by the application and minimal input/output
activities. Our last measurements (cf. in Subsection 2.3) show that the clock jitter
in the Apex FPLD is significantly higher (about 140 ps) when higher frequency mul-
tiplication factors are used and when internal flip-flops are switching on different
clock frequencies. Altera application engineers have confirmed these facts, too.

2.3 Jitter Size Measurement

Since the knowledge of the jitter and its statistical features is crucial for a correct
settings of the TRNG parameters, several measurements have been made for dif-
ferent configurations of the PLL (different values KM and KD). We used Agilent
Infiniium DCA 86100B wide-bandwidth oscilloscope and the Altera Nios develop-
ment board [16] with Apex EP20K200EFC484-2X device for the reference measure-
ments. The 1-sigma value of the jitter measured at the output of the PLL has
achieved values σjit ≈ 32 ps for FIN = 33.3MHz, and KM/KD = 2/1. For ratios
KM/KD = 3/2, 4/3, 5/4, 6/5, . . ., the 1-sigma value was in the range σjit ≈ 47–64 ps
and the jitter has approximately Gaussian distribution as it is illustrated in Figu-
re 2(a) for the configuration KM/KD = 6/5.

(a) KM/KD = 6/5 (b) KM/KD = 157/48

Fig. 2. Probability distribution of the jitter for two different PLL configurations: (a) the
Gaussian distribution for KM/KD = 6/5 with σjit ≈ 47 ps, (b) two-peak jitter distri-

bution for KM/KD = 157/48 with σjit ≈ 140 ps and 600 ps peak-to-peak value

However, for KM/KD = 157/48 used in [10], the jitter was σjit ≈ 140 ps and
it exhibited two peaks with a total size of 600 ps (peak-to-peak). The obtained
jitter distribution is visualized in Figure 2(b) and it is compatible with a referen-
ce measurement made by Xilinx on Altera FPLDs [15], where a two-peak jitter

A Simple PLL-Based True Random Number Generator 505

distribution has been documented. Since the jitter included in the clock signal in real
conditions was significantly higher than that documented by Altera (note that Altera
has used the same kind of development board [16], but with different parametersKM

andKD), we could significantly reduce the TRNG complexity. As far asKM andKD

parameters are chosen properly, the proposed method of randomness extraction is
insensitive to the jitter distribution (see Section 3 and [10]).

3 ROBUST RANDOMNESS EXTRACTION FROM THE CLOCK
JITTER GENERATED BY THE PLL CIRCUITRY

The basic principle behind our method is an extraction of the randomness from
the jitter of the clock signal synthesized in the embedded analog PLL. The jitter
is detected by the sampling of a reference (clock) signal using a rationally related
(clock) signal synthesized in the on-chip analog PLL. The fundamental problem lies
in the fact that the reference signal has to be sampled near the edges influenced by
the jitter. The structure of a simplified true random number generator is depicted
in Figure 3.

CLK

PLL D

CLK

Q
CLJ x(nNTQ)

Decimator

(NKD)

q(nTCLK)
D

CLK

Q

Fig. 3. Structure of a simplified true random number generator using PLL-synthesized
low-jitter clock signal

Because there is a probability that the first flip-flop could become metastable, the
second flip-flop is cascaded. In the case when the first flip-flop produces a metastable
output, it can resolve until its output is clocked by the second flip-flop. This flip-flops
connection does not assure that only the stable signal is clocked, but the probability
that the output q(nTCLK) will get a valid logical value is much higher [17].

Let CLJ be an on-chip PLL-synthesized rectangular clock waveform with the
frequency

FCLJ = FCLK

KM

KD

, (2)

where CLK is a reference clock signal and parameters KM and KD defined in (1)
are related to the PLL structure. A signal CLJ is sampled into the D flip-flops
using a clock signal with frequency FCLK. There are KD rising edges of CLK signal
and 2KM (rising and falling) edges of a CLJ waveform during the time period

TQ = KDTCLK = KMTCLJ . (3)

506 M. Drutarovský, V. Fischer, M. Šimka, F. Celle

It has been shown in [10] that if KM and KD are relatively prime, the set of
samples creates an equidistant set of values with a distance step

d =
TCLK

2KM

GCD(2KM , KD) =
TCLJ

2KD

GCD(2KM , KD), (4)

where GCD means Greatest Common Divisor. It has been shown that the worst-
case distance between the two closest edges of CLK and CLJ during the period TQ

is given as

MAX(∆Tmin) = d/2. (5)

If KM , KD and FCLJ are chosen so that

σjit > MAX(∆Tmin), (6)

we can guarantee that during TQ the sampling edge of CLK will fall at least once into
the edge zone of CLJ (the edge zone means the time interval around the edge with
a width smaller than σjit). Therefore, during the period TQ, KD values of CLJ will
be sampled into the first D flip-flop and at least one sampled value will statistically
depend on the random jitter, so the output value q(nTCLK) of the second flip-flop
will be nondeterministic. In [10] we used delay elements illustrated in Figure 4 to
increase the probability of overlapping of CLK and CLJ edge zones.

CLK

PLL D

CLK

Q

CLJ

. . .

xXOR(nTCLK)
x(nTQ) Decimator

(KD)

≈≈≈≈ττττ

≈≈≈≈ττττ

≈≈≈≈ττττ

D

CLK

Q

D

CLK

Q

Fig. 4. Structure of the originally proposed PLL-based true random number generator
with delay line elements and XOR corrector [10]

Thanks to the measurements, we obtained the information that the jitter value,
and also the probability of edges overlapping are higher as it was expected before.
Therefore, the delay line is not needed anymore for the condition

σjit ≫ MAX(∆Tmin). (7)

A Simple PLL-Based True Random Number Generator 507

The decimated output signal of the simplified TRNG

x(nTQ) = q(nTQ)⊕ q(nTQ − TCLK)⊕ . . .⊕ q(nTQ − (NKD − 1)TCLK), (8)

which is generated at the output of an Exclusive-OR (XOR)-based decimator [18] as
a bit-wise addition modulo 2 (⊕) of NKD samples q(.) sampled with the frequency
FCLK will be nondeterministic, too. Note that the delay line can still be a useful
building block for σjit ≈ max(∆Tmin) or σjit < max(∆Tmin), as it was shown in [19].

It can be seen that comparing to [10] we have changed the basic structure of the
TRNG in several ways:

• because of the higher jitter value, which has been approved by precise jitter
measurements, we could replace the delay line and the bank of flip-flops by
a single flip-flop,

• the metastability behavior of the signal q(nTCLK), and thus of the generator in
general was improved by the addition of the second flip-flop,

• we have validated that if condition (7) is fulfilled, the speed of the generator
can be increased by reducing the decimation factor to NKD, where N = 1 is
a number of TQ periods.

4 TRNG IMPLEMENTATION

We have validated our simplified structure of the TRNG using Altera analog PLLs
embedded in Apex E FPLD family. We have used a custom evaluation board with
a PC Card interface and Apex EP20K160 E device. The Apex EP20K160ETC144-
2X device has an included TRNG, 16 × 128-bit FIFO, PC Card interface, and
a custom logic. As the best option, a 2-PLL configuration (shown in Figure 5)
with only one common input clock signal has been chosen. Note that such clock
configuration was not possible for original Altera NIOS board [16].

Synthesized clock signals CLK and CLJ are not fed out from the FPLD (in
the design presented in [10], one synthesized signal has been fed out of the device
and reused in FPLD, what is the definitely less secure solution). Therefore, they
cannot be manipulated separately without a circuit reconfiguration. This fact is very
important for cryptographic applications, because it significantly improves overall
system security.

Multiplication and division factors for individual output signals were selected as
follows (the first number represents the PLL index and the second number the PLL
output index):

clk20 = 40× 53/22 = 96.36MHz,

clk40 = 40× 19/38 = 20MHz, (9)

clk41 = 40× 19/8 = 95MHz.

508 M. Drutarovský, V. Fischer, M. Šimka, F. Celle

PLL4

clk1

clk0

PLL2

clk1

clk0

inclk

inclk

CLK4p

CLK2p (NC)

CLKLK_FB2p (NC)

CLKLK_OUT2p (NC)

Oscil

40 MHz
FCLK (95 MHz)

Random

bitstream

generator

FCLJ

(96,4 MHz)
S/P

Conv.
FIFO

16x128

Custom logic

&

PC Card interface

Serial output 454 kbits/s
APEX EP20K160E-2X

Fig. 5. Block diagram of the experimental PC card with Apex EP20K160ETC144-2X

Therefore, according to (4) and (5) MAX(∆Tmin) ≈ 12 ps. This value is much
smaller than the measured jitter value σjit (see Section 2.3) and the condition (7)
is fulfilled. The TRNG was implemented for N = 1, and so RTRNG ≈ 454.000 bit/s
(about six times more than in [10]). This was done intentionally in order to check
a quality of the generated TRNG output bitstream under more stringent conditions.

The FPLD resource requirements of the proposed TRNG block as well as sup-
porting logic (FIFO and control logic) are shown in Table 1. The first four columns
show resource requirements (Logic Cells (LC), Embedded System Blocks (ESB),
PLL outputs and Global Clocks (GCLK)) for the generator. The other four columns
give requirements of the complete circuit including FIFO buffer and data bus con-
troller. Presented results have been obtained using Altera Quartus II v. 2.2 SP2.

TRNG only TRNG+FIFO and logic
LC ESB PLL GCLK LC ESB PLL GCLK

19 0 2 2 129 2 2 3

Table 1. Resource requirements of TRNG and supporting logic

While 19 logic cells represent less than 1% of available FPLD cells, the project
uses 100% of available PLLs (two PLLs). Since each PLL contains two clock outputs,
two additional clock outputs remain available (one at each PLL) and, with some
restrictions, they can be used inside the application area (e.g. in our case for the
PC Card interface). An internal usage of the PLL clock signals does not represent
a security problem as these signals cannot be externally manipulated.

A Simple PLL-Based True Random Number Generator 509

5 STATISTICAL EVALUATION OF THE SIMPLIFIED TRNG

There are some well-documented general statistical tests that can be used to look for
deviations from an ideal TRNG [1, 20–23]. A good TRNG should pass all kinds of
these tests. The following subsections present testing results of the proposed TRNG
using the standard DIEHARD and NIST statistical test suits. The DIEHARD
and NIST tests are the most frequently used statistical packages for evaluation of
PRNGs and TRNGs. These tests are applied to the 80-Megabit sequence and a set
of 1-Megabit ones for DIEHARD and NIST, respectively. Such record lengths are
typically used for evaluation of TRNGs [6,20,21]. To prove even further the quality
of the generator, we have also applied very strict Frequency (Monobit) tests for
significantly longer records.

5.1 Results of the DIEHARD Statistical Test

The DIEHARD test is a series of statistical tests developed by George Marsaglia for
testing mainly PRNGs [20]. In spite of that, it is frequently used also for testing of
TRNGs.

Our DIEHARD statistical tests were performed on standard continuous 80-
Megabit TRNG output records (for N = 1). The DIEHARD is a collection of
15 tests, most of which give several results. There are 234 p-values generated by
the test. For ideal random numbers, the p-values are uniform over the range 〈0, 1).
Figure 6 shows the distribution of p-values for an ideal RNG (dashed straight line of
the uniform distribution) and for the tested TRNG (solid line). It is clearly visible
that the distribution of p-values for the tested TRNG can be closely approximated
by the uniform distribution. Moreover, the absence of p-values equal to 1.00000
shows that no individual DIEHARD test has failed [20].

5.2 Results of the NIST Statistical Test

It seems that the NIST statistical test suite [21] is currently the most comprehensive
publicly available test tool. It is developed for testing of PRNGs as well as TRNGs.
In comparison to the DIEHARD test, it provides comprehensive support for the
interpretation of test results.

Our NIST statistical tests were performed on continuous 1-Gigabit TRNG out-
put records (for N = 1) and followed the testing strategy, general recommendations,
and result interpretation described in [21]. We have used a set of 1000 1-Megabit1

sequences produced by the TRNG and we have evaluated the set of P -values2 at
a significance level α = 0.01. We have got similar results as in [10] (with the ex-
ception of FFT test, see below) so we can conclude that there are no detectable

1 Modified Lempel-Ziv test [24] was used with 1 000 000 bit sequences.
2 Note that P -values generated by NIST test are not compatible with p-values generated

by DIEHARD test.

510 M. Drutarovský, V. Fischer, M. Šimka, F. Celle

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
-v
a
lu
e

Sorted p-value number

Result of the DIEHARD test

tested TRNG
ideal RNG

Fig. 6. DIEHARD test results of the tested TRNG (solid line) vs. ideal RNG

differences for ensemble of 1000 1-Megabit records. Results of these tests are in-
cluded in Table 2.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P -value Proportion Statistical Test

104 89 104 98 100 107 109 101 90 98 0.916599 0.9860 Frequency
92 111 123 85 101 107 84 101 109 87 0.092041 0.9940 Block-Freq.
105 98 97 107 98 95 92 105 110 93 0.939005 0.9870 Cusum
107 117 75 99 105 99 101 89 95 113 0.159910 0.9890 Runs
100 86 103 99 92 123 87 92 109 109 0.216713 0.9920 Long-run
84 108 99 101 102 86 104 101 114 101 0.599693 0.9900 Rank
113 92 97 114 82 101 105 95 101 100 0.520102 0.9910 FFT
92 118 124 83 102 103 111 85 86 96 0.032489 0.9870 Periodic-Templ.
119 89 85 93 108 108 103 107 101 87 0.267573 0.9790 Universal
96 110 88 113 91 96 110 97 105 94 0.641284 0.9910 Apen

98 101 100 114 92 92 103 98 99 103 0.940080 0.9860 Serial
92 90 116 86 136 76 78 118 103 105 0.307671 0.9880 Lempel-Ziv
112 110 89 97 89 99 93 97 97 117 0.482707 0.9890 Linear-Compl.

Table 2. NIST test results of the simplified TRNG (uniformity of P -values and proportion

of passing sequences) for the 1-Gigabit record that passed all tests

It was claimed in [10] that some 1-Gigabit TRNG records did not pass NIST
FFT tests. During the evaluation of the proposed new TRNG implementation we
have found errors in the NIST FFT test formulation (confirmed also in [24]). After
correction of these errors in the NIST package, all FFT tests passed without any
problems for all tested (1-Gigabit) records.

A Simple PLL-Based True Random Number Generator 511

5.3 Frequency (Monobit) Test of Very Long Records

The most common statistical test of the TRNGs is the Frequency (Monobit) test [21].
Good TRNGs should provide independent binary (Bernoulli) random variables 0
and 1 with the same probability. For a sequence of independent identically dis-
tributed Bernoulli random variables x(nNKD) we can define the variable

Sn = X1 + . . .+Xn, (10)

where Xn = 2x(nNKD) − 1 are antipodally encoded values {−1, 1}. By the clas-
sic De Moivre-Laplace theorem [21], for a sufficiently large number of trials, the
distribution of the normalized binomial sum

sn =
Sn√
n
=

X1 + . . .+Xn√
n

(11)

is closely approximated by a standard normal distribution N(0, 1), and, roughly
said, |Sn| < 3

√
n for almost3 all n. Note that we used extremely long TRNG record

in order to detect also very small deviations. Results for 74-Gigabit record with
decimation factor N = 1 (bottom curve a)) and 37-Gigabit record with decimation
factor N = 2 (upper curve b)) are shown in Figure 7.

0 1 2 3 4 5 6 7 8

x 10
10

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1
x 10

6 Cummulated "1" and "0" Difference

D
if
fe
re
n
c
e

Record Length

a)

b)

Fig. 7. Results of the Frequency (Monobit) test of very long TRNG outputs: curve a) is
for a 74-Gigabit record with the decimation factor N = 1; curve b) is for a 37-Gigabit
record with the decimation factor N = 2

3 The well-known rule for N(0, 1) distribution states that at 3 standard deviations
(3σ = 3 for N(0, 1)) to the right and left, 99.73% of all data should fall within that
range [1].

512 M. Drutarovský, V. Fischer, M. Šimka, F. Celle

Deviation for N = 1 is clearly visible. After a decimation by the factor N = 2,
the deviation is within expected values (marked as a parabola with a peak point
in 0), but it still remains visible. This is the only observable deviation from the
ideal RNG currently known to us. On the other hand, decreasing of the bias by the
use of the XOR decimator is applicable only for independent bits. The fact that the
decimation operation has reduced the bias, gives us an indirect evidence that the
output bits are almost independent and very close to perfectly random bits.

6 CONCLUSIONS

In this paper we have described and evaluated a simplified method of the true
random bitstream generation inside modern digital VLSI circuits. The design of
the TRNG and the method of randomness extraction guarantee that the output
depends on a physical undeterministic internal random process. The randomness
of the sequence of numbers has been extensively tested and only extremely small
differences from the ideal RNG have been detected.

The proposed solution is very cheap, it uses very small number of logic resources
and it is faster than other comparable methods. Although the functionality of the
proposed solution has been demonstrated for Altera Apex FPLD family, the same
principle can be used for all recent high-performance ASICs or FPLDs that include
an on-chip reconfigurable analog PLL(s) for internal clock synthesis.

Since the quality of the random output depends mainly on the parameters of
the jitter, a good knowledge of the jitter is very valuable. For this reason, we will
concentrate our effort to the real-time jitter measurement and on-line testing in our
future research activities.

Acknowledgments

This work has been done in the frame of the project CryptArchi included in the
French national program ACI Cryptologie (project number CR/02 2 0041) and the
Slovak scientific project VEGA 1/1057/04.

REFERENCES

[1] Menezes, J. A.—Oorschot, P. C.—Vanstone, S. A.: Handbook of
Applied Cryptography. New York: CRC Press, October 1996. Available on:
http://www.cacr.math.uwaterloo.ca/hac/.

[2] Eastlake, D.—Crocker, S. D.—Schiller, J.: Randomness Recommendations
for Security, Internet Engineering Task Force, RFC 1750. December 15, 1994. Avail-
able on: http://www.rfc-editor.org/rfc/rfc1750.txt.

[3] Jennewein, T.—Achleitner, U.—Weihs, G.—Weinfurter, H.—Zeilinger,

A.: A Fast and Compact Quantum Random Number Generator. Rev. Sci. Inst. 71,
2000, pp. 1675–1680.

A Simple PLL-Based True Random Number Generator 513

[4] Walker, J.: Hotbits: Genuine Random Numbers, Generated by Radioactive Decay.

2002. Available on: http://www.fourmilab.ch/hotbits/.

[5] Faifield, R. C.—Mortenson, R. L.—Coulthart, K. B.: An LSI Random
Number Generator (RNG). Lecture Notes in Computer Science, Vol. 0196. Berlin,

Germany: Springer-Verlag, 1984, pp. 203–230.

[6] Jun, B.—Kocher, P.: The INTEL Random Number Generator. Cryptography Re-

search, Inc., White Paper prepared for Intel Corporation, April 1999, pp. 1–8. Avail-
able on: http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf.

[7] Dichtl, M.: How to Predict the Output of a Hardware Random Number Generator.

In: C. D. Walter, C. K. Koc, and C. Paar (Eds.): Workshop on Cryptographic
Hardware and Embedded Systems – CHES 2003, Lecture Notes in Computer Science,
Vol. 2779. Berlin, Germany: Springer-Verlag, September 2003, pp. 181–188.

[8] Tsoi, K.—Leung, K.—Leong, P.: Compact FPGA-Based True and Pseudo
Random Number Generators. In: Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), California, USA, 2003,
pp. 51–61.

[9] Kohlbrenner, P.—Gaj, K.: An Embedded True Random Number Generator for
FPGAs. In: Proceeding of the ACM/SIGDA 12th international symposium on Field
Programmable Gate Arrays. ACM Press, 2004, pp. 71–78.

[10] Fischer, V.—Drutarovský, M.: True Random Number Generator Embedded
in Reconfigurable Hardware. In: B. S. Kaliski, Jr., C. K. Koc, and C. Paar (Eds.):
Workshop on Cryptographic Hardware and Embedded Systems – CHES 2002, Lecture
Notes in Computer Science, Vol. 2523, Berlin, Germany: Springer-Verlag, August
2002, pp. 415–430.

[11] Using the ClockLock&ClockBoost PLL Features in Apex Devices. Altera Application
Note 115, v. 2.3, May 2002, pp. 1–55. Available on: http://www.altera.com.

[12] Using PLLs in Stratix Devices. Altera Application Note 200, v. 1.0, February 2002,
pp. 1–70. Available on: http://www.altera.com.

[13] Maneatis, J. G.: Selecting PLLs for ASIC Applications Requires Tradeoffs. Planet
Analog Magazine 9/2003. Available on: http://www.planetanalog.com.

[14] XpressArray High Density 0.18 um Structured ASIC. Web site of the AMI Semicon-
ductors Company.
Available on: http://www.amis.com/pdf/xpressarray hd datasheet.pdf.

[15] Superior Jitter Management with DLLs. Virtech Tech Topic VTT013, v. 1.2, January
21, 2003, pp. 1–6. Available on: http://www.xilinx.com.

[16] Nios Embedded Processor Development Board. Altera Data Sheet, v. 2.1, April 2002,
pp. 1–22. Available on: http://www.altera.com/nios.

[17] Metastability in Altera Devices. Altera Application Note 42, v. 4.0, May 1999,
pp. 1–10. Available on: http://www.altera.com.

[18] Davies, R. B.: Exclusive OR (XOR) and Hardware Random Number Generators.
February 28, 2002, pp. 1–11.
Available on: http://www.robertnz.net/pdf/xor2.pdf.

[19] Fischer, V.—Drutarovský, M.—Šimka, M.—Bochard, N.: High Perfor-
mance True Random Number Generator in Altera Stratix FPLDs. In: J. Becker,

514 M. Drutarovský, V. Fischer, M. Šimka, F. Celle

M. Platzner, S. Vernalde (Eds.): Field-Programmable Logic and Applications – FPL

2004, Lecture Notes in Computer Science, Vol. 3203. Berlin, Germany: Springer-
Verlag, September 2004, pp. 555–564.

[20] Marsaglia, G.: A Battery of Test for Randomness.

Available on: http://stat.fsu.edu/∼geo/diehard.html.
[21] Rukhin, A.—Soto, J.—Nechvatal, J.—Smid, M.—Barker, E.—Leigh, S.—

Levenson, M.—Vangel, M.—Banks, D.—Heckert, A.—Dray, J.—Vo, S.:

A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryp-
tographic Applications. NIST Special Publication 800-22 (revised May 15, 2002).
Available on: http://csrc.nist.gov/rng.

[22] Killmann, W.—Schindler, W.: A Proposal for: Fuctionality Classes and Evalua-

tion Methodology for True (Physical) Random Number Generators. pp. 1–38, Septem-
ber 2001.
Available on: http://www.bsi.bund.de/zertifiz/zert/interpr/trngk31e.pdf.

[23] NIST FIPS PUB 140-2, Security Requirements for Cryptographic Modules. Fed-
eral Information Processing Standards, National Institute of Standards and Tech-
nology, U.S. Department of Commerce, Tech. Rep., May 25, 2001. Available on:
http://csrc.nist.gov/publications/fips.

[24] Kim, S.—Umeno, K.—Hasegawa, A.: Corrections of the NIST Statistical Test
Suite for Randomness. Cryptology ePrint Archive, Report 2004/018, 2004. Available
on: http://eprint.iacr.org.

Miloš Drutarovsk�y received the M.Sc. degree in radioelectro-
nics and Ph.D. degree in electronics from Technical University
of Košice, Slovak Republic, in 1988 and 1995, respectively. He
defended his habilitation work – Digital Signal Processors in Di-
gital Signal Processing – in 2000. He is currently working as an
Associated Professor at the Department of Electronics and Mul-
timedia Communications, Technical University of Košice. His
current research interests include applied cryptography, digital
signal processing, and algorithms for embedded cryptographic
architectures.

A Simple PLL-Based True Random Number Generator 515

Viktor Fisher received the M.Sc. and Ph.D. degrees in elec-

tronics from Technical University of Košice, Slovak Republic,
in 1981 and 1991, respectively. From 1982 to 1991 he was an
Assistant Professor at the Department of Electronics, Techni-
cal University of Košice. Since 1991, he has been working at
the Jean Monnet University of Saint-Etienne, France, as an In-
vited Professor in electronics and computer science. In the La-
boratory Traitement du Signal et Instrumentation (TSI), UMR
5516 CNRS/University of Saint-Etienne, he works on signal and
image processing, information security and embedded crypto-

graphic systems. He is also currently working with Micronic in Košice, Slovak Republic,
a company oriented toward the development and production of data security hardware
and software.

Martin �Simka received the MSc degree in electronics and com-
munications from Technical University of Košice, Slovak Repub-
lic, in 2002 after defending his Master’s Thesis – Conception of

connection of embedded processor to arithmetic coprocessor in
SOPC Altera. Currently he is a Ph.D. student at the Depart-
ment of Electronics and Multimedia Communications, Technical
University of Košice. His current research interest includes im-
plementation of cryptographic blocks on FPGAs.

Frédéric Celle received the National University Institute of
Technology Graduate diploma in electrical engineering and in-

dustrial computing and B.Sc. degree in telecommunications from
University of Saint-Etienne, France, in 1989 and 1997, respec-
tively. Since 1990, he has been a design engineer at the TSI
(Traitement du Signal et Instrumentation) laboratory of the
UMR CNRS 5516 in France. He is associated with embedded
electronic projects, using FPGA, PCB prototyping, and VHDL
programming for real time processing projects.

