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Abstract. EXtended Generalized Fat Trees (XGFT) are Bidirectional Multistage
Interconnection Networks (BMIN). They are more scalable for different system sizes

and different performance requirements than fat trees from which they have evolved.
The improved scalability has been achieved by allowing switches with different num-
ber of ports to be used in different switch stages of these hierarchical networks.
XGFTs can be constructed from two separate networks for routing packets up-
wards and downwards in the XGFT. These up-routing and down-routing networks
can be implemented separately with small switches which are connected to each
other within the switch nodes of the XGFT. This kind of XGFT achieves higher
performance if its topmost root switches are connected to each other with additional
links, and if adaptive Turn-Back-When-Possible (TBWP) routing algorithm is used
instead of shortest-path routing algorithms. This paper shows that the TBWP has
always simple and feasible hardware implementations independently of the struc-
ture of the XGFT. This is achieved by address space encoding which eliminates
complex computations from the routing decision functions. This paper presents
also a new shortest-path routing algorithm named Turn-Back (TB). The TB al-
gorithm was designed for such XGFT implementations where the up-routing and
down-routing of the packets is performed with one larger switch block within the
switch nodes, and where shortest-path routing produces good performance. It is
shown in this paper that the TBWP and TB route packets correctly to their desti-

nations. In addition, the performances of the routing algorithms are evaluated with
simulations and compared. Simulation results show that the TB is able to produce
higher performance than the TBWP with different traffic patterns. They also show
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that the performance of the XGFTs could be improved by suitable mapping of

the communicating processes to the processor leaf nodes.

Keywords: eXtended Generalized Fat Tree (XGFT), top-down recursive genera-
tion of the XGFTs, address space encoding, adaptive Turn-Back-When-Possible
(TBWP) routing algorithm, adaptive Turn-Back (TB) shortest-path routing algo-
rithm, Network-On-Chip implementations, performance simulations

1 INTRODUCTION

Platform-based design flows are becoming commonly used in System-on-Chip (SoC)
circuit design [1, 2, 3], and an increasing number of the functions of the SoC circuits
will be implemented with software [4]. For this reason, future SoC circuits will con-
tain several programmable processors and reconfigurable logic blocks so that they
could be flexibly modified for different applications. As a consequence of this, their
communication infrastructures should be suitable for different traffic patterns pro-
duced by various applications, which can be modeled as e.g. Kahn process networks
(KPN) [5, 6] mapped to computing resources. The applications could be e.g. wire-
less communication, voice and video compression and decompression, and computer
graphics.

If Network-On-Chip (NOC) communication infrastructure would be designed
for a group of some particular applications, its routing resources and capacity could
be dimensioned more optimally to fulfill the requirements, and the network topo-
logy would become irregular [7]. However, it is not always necessary to do static
allocation of computing resources to application processes, if programmable and re-
configurable general-purpose computing platforms are used. In addition, dynamic
run-time allocation of computing resources for processes would make it possible to
run multiple applications on platforms of limited sizes while it would also allow high
utilization of computing resources. Because standards and applications may also
change in short terms, programmability, reconfigurability, and general-purposeness
will also be required properties. For this reason also, the communication infrastruc-
ture should be flexibly configurable so that it would be able to produce sufficient
performance for various platform configurations with different mappings of the ap-
plication processes to computing resources.

EXtended Generalized Fat Trees (XGFT) [8, 9], which have been developed
from fat trees [10], are suitable communication infrastructures for general-purpose
single-chip computing platforms. They are more scalable for different system sizes
and different performance requirements than fat trees, which has been achieved
by allowing switches with different number of ports to be used in different switch
stages of these hierarchical networks. Simulation results presented in this paper
show that the XGFTs are able to produce good performance with random traffic
patterns produced typically by randomly mapped processes. The results show also
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that the performance can be improved by mapping the communicating processes
to the computing leaf nodes suitably in such a way that they produce more local
cluster traffic.

XGFTs can be constructed from separate up-routing and down-routing networks
with small switch blocks which are connected to each other with one or more unidi-
rectional channels within switch nodes called dual-switch nodes in this paper. This
arrangement has at least three advantages. Firstly, the small switch blocks of the
dual-switch nodes are easier to design to achieve higher operation speed than larger
switch nodes which contain only one large switch block and which are called mega-
switches in this paper. Secondly, it is easier to place and route the small switch blocks
than mega-switches and implement both dense and fast circuit layout. Thirdly, the
up-routing and down-routing networks use different routing mechanisms which are
simpler to implement separately with two distinct switches. One of the disadvan-
tages of this arrangement is that commonly used shortest-path routing algorithms
like Turnaround [11] do not produce good performance with it. In addition, the
Turnaround and other similar earlier presented routing algorithms [12, 13, 14] can
be used only in such BMINs where all of the switch nodes have the same number
of ports, which limits their usability and makes them basically unusable in XGFTs.
The number of ports must also usually be equal to 2k for some positive integer k,
so that these routing algorithms would be usable. However, these problems can be
eliminated with an adaptive Turn-Back-When-Possible (TBWP). It can be shown
that the performance of fat trees and XGFTs implemented with dual-switch nodes
can be considerably improved by connecting the up-routing network to the down-
routing network with extra links on top of the networks and by using the TBWP
routing algorithm instead of shortest-path routing algorithms [9, 15].

In addition to the TBWP, this paper presents also a new adaptive shortest-
path routing algorithm named Turn-Back (TB) which is usable in all of the XGFTs
constructed from mega-switch nodes. One of the main objectives of this paper is to
show that the TBWP and the TB have simple and feasible implementations for all
kind of XGFTs independently of their topology. This is achieved by encoding the
addresses of the communicating leaf nodes suitably in order to eliminate complex
computations from the routing decision functions of the TBWP and the TB. The
other objective of this paper is the evaluation and comparison of the performances
of these two routing algorithms by simulations. The results of these simulations
show that the new TB routing algorithm used with mega-switch nodes is able to
produce higher performance than the TBWP used with dual-switch nodes.

This paper is organized as follows. Section 2 presents the topology of the XGFT
and shows how the XGFTs can be generated top-down recursively. The same section
presents also the architectures of the dual-switch and mega-switch nodes. Section 3
presents practical implementations of the TBWP and the TB routing algorithms
which use encoded addresses. The recursive generation rules presented in Section 2
are used for explaining how the address space can be encoded. In addition, it is
shown in Section 3 that the TBWP and TB route packets correctly to the desti-
nations. This is done by showing that the original TBWP, which does all of the
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necessary computations by itself, routes packets correctly. Section 4 presents simu-
lation results which are used for evaluating the performances of the routing algo-
rithms. The performances are also compared in this same section. Finally, Section 5
concludes this paper.

2 THE TOPOLOGY OF THE XGFT

EXtended Generalized Fat Trees (XGFT) are Bidirectional Multistage Interconnec-
tion Networks (BMIN) which can be scaled for different systems sizes and different
performance requirements. This has been achieved by allowing switches in diffe-
rent switch stages of the network to have different numbers of bi-directional ports.
Owing to the regular topology, the XGFTs can be generated following certain rules
which define the number of switch nodes in different switch stages of the network
and how these switch nodes are connected to each other. The first of the following
two subsections presents the topology of the XGFTs. It presents also the architec-
ture and operation of the switch nodes. The second subsection presents generation
rules which can be used for generating the XGFTs top-down recursively. The terms
“stage” and “switch stage” are used equally in the following text.

2.1 The Topology and Structure of the XGFTs

The XGFTs are hierarchical BMINs where switches in different stages of the network
can have different numbers of ports. The XGFT of height h can be defined as a tuple
XGFT(h,m1, m2 . . . , mh, w1, w2 . . . , wh) where switch nodes in stage i (1 ≤ i ≤ h)
have been connected to mi child nodes and wi parent nodes with bi-directional links.
Switches in stage one, which is the lowest switch stage, have been connected to leaf
nodes which use the network for communicating with each others. The leaf nodes
can be connected to only one of the switches of stage one. The height h, which is
the number of switch stages, and numbers mi and wi specify unambiguously the to-
pology of the XGFT. Although this is a slightly different definition from the original
definition of the XGFT [8], it still defines basically the same network topology.

Figure 1 a) depicts XGFT(3, 4, 3, 5, 2, 2, 2) which has three stages of switches
and 60 leaf nodes. Switches in different stages of the network have been numbered
with the corresponding stage numbers from one to three. Small black squares below
switch nodes are communicating leaf nodes. The overall number of leaf nodes can be
expressed as the productm1×m2×. . .×mh. For example, the number of leaves of the
XGFT(3, 4, 3, 5, 2, 2, 2) is 4×3×5 = 60. It is assumed that the leaves are numbered
from left to right in ascending order in such a way that the leftmost leaf has address
zero and the rightmost leaf has address m1 × m2 × . . . × mh − 1 like Figure 1 a)
illustrates. Figure 1 b) on the right illustrates how the topology of the XGFTs can
be changed. The XGFT(3, 4, 3, 5, 3, 1, 2) in Figure 1 b) has still 60 leaf nodes, but
the number of switches in stage two has been increased in order to increase the
amount of routing resources for local traffic within the five sub-XGFT(2, 4, 3, 2, 2)s
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of height two. At the same time the number of topmost switches, which connect the
sub-XGFTs of height two, has decreased from four to three. Generally speaking, the
network on the right has more routing capacity for so called cluster traffic than the
network on the left. This simple example illustrates how XGFTs can be suitably
constructed for various applications which produce different network traffic.
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Fig. 1. a) XGFT(3, 4, 3, 5, 2, 2, 2) and b) XGFT(3, 4, 3, 5, 3, 1, 2)

In XGFTs the switch nodes are connected to each other with bi-directional links.
They have bi-directional ports for connecting to links which consist of two unidi-
rectional channels for transferring data to opposite directions. This is illustrated
in Figures 2 a) and 2 b) which depict a) dual-switch and b) mega-switch nodes.
Switch nodes are connected to their parent nodes through bi-directional P -ports
and to their child nodes through bi-directional C-ports. Each of the bi-directional
P -ports consists of a pair of unidirectional input PDR-port and output PUR-port.
Similarly bi-directional C-ports consist of unidirectional CUR-ports and CDR-ports.
The numbering of the bi-directional P and C ports shows which parent and child
nodes these ports are connected to. The index numbers are within value ranges 0
to wi − 1 and 0 to mi − 1 respectively (1 ≤ i ≤ h). For example, switches send
packets to parent number zero through PUR[0]-port, and receive packets from it
through PDR[0]-port. They receive packets respectively from child node number
three through CUR[3]-ports, and send packets to it through CDR[3]-port.

Switch nodes can be implemented in two different ways. Figure 2 a) depicts
a dual-switch node which has been constructed from two separate switch blocks.
The switch block on the left routes packets upwards in the network and the switch
block on the right routes them downwards. These switch blocks can be called up-
routing and down-routing switches, respectively. The up-routing switch is connected
to the down-routing switch with one or more unidirectional channels named Turn-
Back (TB) channels which are used for routing packets from the up-routing switch
to the down-routing switch. Within the switch blocks the input port blocks (IP) are
connected to the output port bocks (OP) through crossbars (CB). In the topmost
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switch stage the number of connections between the up-routing and down-routing
switches can be increased easily by connecting free PUR-ports to free PDR-ports.
Otherwise, these ports would remain unconnected and unused, because switches
in the topmost stage do not have parent nodes. Although in Figures 1 a) and 1 b)
these connections have been drawn with extra links between different topmost switch
nodes of the networks, it would also be possible to connect the PUR-ports and the
PDR-ports of the same topmost switch nodes. Figure 2 b) depicts a mega-switch node
where input ports are connected directly to all of the appropriate output ports over
one crossbar (CB) within one switch block. Owing to these direct connections from
input ports to output ports the extra links would be useless on top of the networks
constructed from mega-switches. For this reason, the topmost root switches of such
networks can be implemented without the PUR and PDR-ports which are used for
connecting to parent nodes. Because XGFTs constructed from different switch nodes
are actually two different networks, they need also different routing algorithms like
TBWP or TB in order to work properly and produce good performances.
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Fig. 2. The architectures of the a) dual-switch and b) mega-switch nodes

2.2 Recursive Generation of the XGFTs

Figures 1 a) and 1 b) depict simple XGFT networks which can be generated top-
down recursively. Network depicted in Figure 1 a) was also used in simulations
which were used for evaluating the performances of the TBWP and the TB routing
algorithms. The recursive generation of the XGFTs starts from the top of the
XGFT(h,m1, m2, . . . , mh, w1, w2, . . . , wh) of height h, and continues in the similar
way within each of its sub-XGFT(L,m1, m2, . . . , mL, w1, w2, . . . , wL)s of height L
(1 ≤ L ≤ h − 1) until finally within sub-XGFT(1, m1, w1)s of height one only one
switch is generated. The generation proceeds stage by stage through the whole
XGFT. The topmost root switches of the XGFTs of height h are generated at first.
In the next step sub-XGFTs of height h − 1 are generated and connected to the
root switches. After this the generation continues recursively within each of the
sub-XGFTs of height h− 1.

Connections between the root switch nodes in stage h and sub-XGFTs of height
h−1 follow certain rules. Firstly, each of the root switch nodes is connected to all of
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the sub-XGFTs, and secondly, each of the sub-XGFTs is connected to all of the root
switch nodes. For example, there are four topmost root switches in stage three, and
five sub-XGFT(2, 4, 3, 2, 2)s of height two in the XGFT(3, 4, 3, 5, 2, 2, 2) depicted in
Figure 1 a). All of the root switches have been connected to all of the sub-XGFTs,
and all of the sub-XGFTs have been connected to all of the root switch nodes, like
Figure 1 a) illustrates. Below is a list of various properties of the XGFT and the
sub-XGFTs of height L+1 (1 ≤ L ≤ h−1) which are used in defining recursively the
structure of the XGFTs. This list shows that the root switches and the sub-XGFTs
have appropriate number of ports for connecting to each other. In the following
it is also assumed that each pair of unidirectional PUR and PDR-ports forms one
bidirectional P -port, and that each pair of unidirectional CUR and CDR-ports forms
one bidirectional C-port.

1. The number of root switches of the sub-XGFTs of height L + 1: RL+1 = w1 ×
w2 × . . .× wL−1 × wL.

2. The number of CUR and CDR-ports of the root switches in stage L+ 1: CL+1 =
w1 × w2 × . . .× wL−1 × wL ×mL+1.

3. The number of sub-XGFTs of height L in sub-XGFT of height L+1: XL = mL+1.

4. The number of PUR and PDR-ports of the root switches of the sub-XGFTs of
height L: PL = w1 × w2 × . . .× wL−1 × wL = RL × wL.

For example, in Figure 1 a) R3 = 2 × 2 = 4 which is the number of topmost
root switch nodes, and X2 = m3 = 5, which is the number of sub-XGFTs of height
two. The overall number of PUR and PDR-ports (PL ×XL) of all of the sub-XGFTs
of height L is equal to the overall number of CUR and CDR-ports (CL+1) of all of
the root switches within each of the sub-XGFTs of height L + 1. In addition, the
number of top-most root switches (RL+1) of the sub-XGFTs of height L+1 is equal
to the number of PUR and PDR-ports (PL) of each of the sub-XGFTs of height L.
Furthermore, XL is equal to mL+1. The following two simple rules define how the
connections between the top-most root switches and the sub-XGFTs of height L are
generated within each of the sub-XGFTs of height L+ 1.

1. Up-routing port PUR[j][i] (0 ≤ i ≤ RL+1−1) of sub-XGFT j (0 ≤ j ≤ mL+1−1)
of height L is connected to port CUR[i][j] (0 ≤ j ≤ mL+1 − 1) of switch i
(0 ≤ i ≤ RL+1 − 1) in stage L+ 1.

2. Down-routing port CDR[i][j] (0 ≤ j ≤ mL+1 − 1) of the root switch i (0 ≤ i ≤
RL+1 − 1) in stage L + 1 is connected to port PDR[j][i] (0 ≤ i ≤ RL+1 − 1) of
sub-XGFT j (0 ≤ j ≤ mL+1 − 1) of height L.

Fat trees and XGFTs can be generated top-down recursively according to the
above properties and rules with hardware description languages like VHDL which
can be used for generating recursive structures [16]. Figure 3 shows a piece of pseudo
code which generates up-routing (CUR ⇐ PUR) and down-routing (PDR ⇐ CDR)
channels between the root switch nodes and the sub-XGFTs of height L within
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XGFTs of height L+ 1. This piece of generator code is executed repeatedly within
each of the sub-XGFTs when the XGFTs are generated top-down recursively. The
bi-directional P -ports of the top-most root switches in stage L+1 are connected to
bi-directional P -ports of the sub-XGFT of height L + 1. For example, port P [i][j]
(0 ≤ i ≤ w1 × w2 . . . × wL − 1, 0 ≤ j ≤ wL+1 − 1) of root switch i in stage
L + 1 is connected to port P [k] (k = i × wL+1 + j) of the sub-XGFT of height
L + 1. The bi-directional C-ports of the switches in stage one of the sub-XGFTs
are connected to the bi-directional C-ports of the XGFT within appropriate index
ranges. If the height of the sub-XGFT is L (1 ≤ L ≤ h−1) and its ordinal number is
p (0 ≤ p ≤ mh×mh−1× . . .×mL+1−1), this index range is p×mL×mL−1× . . .×m1

to (p+ 1)×mL ×mL−1 × . . .×m1 − 1. The leaf nodes are connected to the XGFT
through these C-ports.

 Connect switch i : FOR i IN 0 TO RL+ 1 − 1 GENERATE 
Connect sub−XGFT j : FOR j IN 0 TO mL+1 − 1 GENERATE 

"Port C UR[i] [j] of switch i in stage L+1 <= Port PUR[j] [i] of sub−XGFT j of height L" ; 
"Port PDR[j] [i] of sub−XGFT j of height L <= Port C DR[i] [j] of switch i in stage L+1";  

END GENERATE Connect sub−XGFT j  ; 
END GENERATE Connect switch i ;  

 

Fig. 3. A code segment which generates links between the root switches and sub-XGFTs
within XGFTs

3 THE OPERATION OF THE TBWP
AND THE TB ROUTING ALGORITHMS

The TBWP was designed for improving the performance of such XGFTs which have
been constructed from dual-switch nodes where shortest-path routing algorithms
like the TB and Turnaround [11] do not work properly and produce good perfor-
mance. The TB routing algorithm, which was designed for XGFTs constructed from
mega-switches, is almost similar to the TBWP. The routing decision functions of
both of these routing algorithms would use integer division and multiply operations
for computing the routing decisions if their implementations would not have been
simplified with address space encoding. This would have been a problem, because
the integer multiply and division operations do not have feasible hardware realiza-
tion usable in small switches of the on-chip networks. Owing to the address space
encoding, the routing decison functions of both of the routing algorithms can be
implemented with simple comparison and cut operations. The first of the following
two subsections describes the simplified versions of the TBWP and TB routing algo-
rithms which operate with encoded addresses, and the next subsection presents the
original TBWP routing algorithm which operates with unencoded integer addresses.
These subsections also show how the address space is encoded and why the TBWP
and TB route packets correctly.
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3.1 TBWP and TB Routing Algorithms with Encoded Address Spaces

There is exactly one routing path of length h from each of the top-most root switches
to each of the leaf nodes D (0 ≤ D ≤ m1 × m2 × . . . × mh − 1) in the XGFTs of
height h. This path can be unambiguously defined with output port numbers dL
(1 ≤ L ≤ h) of the switches along the path starting from any of the top-most root
switches. This follows from the rules presented in Section 2 which define how XGFTs
are generated top-down recursively. According to these rules output ports CDR[j]
(0 ≤ j ≤ mL+1 − 1) of all of the root switches of the XGFT and the sub-XGFTs of
height L + 1 (1 ≤ L ≤ h− 1) are connected to sub-XGFT j (0 ≤ j ≤ mL+1 − 1) of
height L. For this reason, the routing path from any of the topmost roots of the
XGFT to the destination leaf node can be represented as an output port number
sequence dhdh−1 . . . d1 where numbers dL (1 ≤ L ≤ h) are output CDR-port numbers
of the switches in stages L (1 ≤ L ≤ h). The width of the binary number represen-
tation of the numbers dL depends on the number of CDR-ports (mL) of the switch
nodes in stage L. It is equal to the smallest integer kL for which mL is smaller than
or equal to two to the power of kL, i.e. the smallest integer kL for which mL ≤ 2kL.
For this reason, addressesD (0 ≤ D ≤ m1×m2×. . .×mh−1) can be unambiguously
encoded by computing the kL bits wide output CDR-port numbers dL and by con-
catenating them. In other words, the encoded form Denc of address D is an output
port number sequence dhdh−1 . . . d1 where the width of numbers dL (1 ≤ L ≤ h) is
equal to kL which is the smallest such an integer for which mL is smaller than or
equal to two to the power kL. For instance, if switches in stage L have five (mL = 5)
CDR-ports, the binary number representation of number dL requires always three
(kL = 3) bits, because three is the smallest integer value of parameter kL for which
mL ≤ 2kL (5 < 8 = 23).

Below is a simplified version of the TBWP which operates with encoded source S
and destinations D addresses Senc = shsh−1 . . . s1 and Denc = dhdh−1 . . . d1 which
the packets carry in their headers when they are routed across the network. This
description presents the operation of the routing decision function of the switches
in the switch stage L of the XGFT. Part 1 of the TBWP is used in the input
port blocks connected to input CUR-ports of the dual-switch node depicted in Figu-
re 2 a), and Part 2 of the TBWP is used in the input port blocks connected to input
PDR-ports.

TBWP routing algorithm with encoded addresses:

Part 1 (Up-routing): If a packet arrives at the up-routing switch block of the
dual-switch node in stage L (1 ≤ L ≤ h− 1) through any of the CUR-ports and
shsh−1 . . . sL+1 = dhdh−1 . . . dL+1, route it to the turn-back channel. If the turn-
back channel is already reserved, then route the packet to one of the parent
nodes through any of the PUR-ports. If sequence shsh−1 . . . sL+1 is not equal
to dhdh−1 . . . dL+1, route the packet to one of the parent nodes through any
of the PUR-ports. In the top-most stage (L = h) route packets always either
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through the turn-back channel to the down-routing switch or through any of the
PUR-ports.

Part 2 (Down-routing): If a packet arrives at the down-routing switch of the
dual-switch node in stage L (1 ≤ L ≤ h) through any of the PDR-ports or
through the turn-back channel, route it downwards through CDR[dL]-port.

Part 1 of the TBWP algorithm above routes packets upwards in the XGFTs. It
implements an adaptive routing, because it is able to adapt its routing decisions to
the state of the switch nodes. It depends on the operation of the arbiters how the
transfers are scheduled from input ports to free PUR-ports and turn-back-channels.
If the switch node is one of the common ancestors of both the source and destination
leaf nodes, Part 1 routes the packet downwards when it is possible. The switch is
one of the common ancestors, if the most significant numbers of the encoded source
and destination addresses are equal, i.e. if shsh−1 . . . sL+1 = dhdh−1 . . . dL+1. This is
because the sequences shsh−1 . . . sL+1 and dhdh−1 . . . dL+1 determine unambiquously
the sub-XGFTs of height L where the source and destination nodes are. Therefore,
the routing decisions can be based on testing the equality of the most significant
kh + kh−1 + . . . + kL+1 bits of the source and destination addresses. Part 2 of
the TBWP simply cuts the output port numbers from the destination address. It
routes packets downwards deterministically, because output port numbers determine
completely the routing path downwards.

The TBWP can be easily modified to the new TB shortest-path routing algo-
rithm the operation of which is described below. The adaptive TB was designed for
the XGFTs constructed from mega-switch nodes depicted in Figure 2 b).

TB routing algorithm with encoded addresses:

Part 1 (Up-routing): If a packet arrives at a mega-switch node in stage L (1 ≤
L ≤ h− 1) through any of the CUR-ports and shsh−1 . . . sL+1 = dhdh−1 . . . dL+1,
then route it downwards through CDR[dL]-port. Otherwise, route the packet
upwards through any of the PUR-ports. In the top-most stage (L = h) route
packets always downwards through CDR[dh]-port.

Part 2 (Down-routing): If a packet arrives at a mega-switch node in stage L
(1 ≤ L ≤ h−1) through any of the PDR-ports, then route it downwards through
CDR[dL]-port.

3.2 Deadlock-Free Routing

Like Turnaround, both TBWP and TB are deadlock-free routing algorithms. This
is because, like in all of the networks wich have a treelike acyclic topology, in the
XGFTs none of the routing paths can start and end at the same network node
or contain cycles. In addition, the operation of the TBWP and the TB consists
of distinct up-routing and down-routing phases, and they switch the packets from
the up-routing paths to the down-routing paths only once when they route them
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from sources to destinations. For this reason, there can be no cycles in the depen-
dency graphs of the possible routing paths either, and it is impossible that packets
would wait in a cycle for each other to be routed forward. As a consequence of
this, the TBWP and the TB must be deadlock-free routing algorithms [17]. In ad-
dition, because the TB turns packets always downwards from the nearest common
ancestors of the source and destination nodes, it must be a shortest-path rout-
ing algorithm. This is because the TB turns packets back from the first switch
node where condition shsh−1 . . . sL+1 = dhdh−1 . . . dL+1 is true. Because CDR-port
number sequences shsh−1 . . . sL+1 and dhdh−1 . . . dL+1 determine unambiguously the
sub-XGFT of height L the leaves of which both source and destination leaf nodes
are, this switch node is one of the roots of sub-XGFT of height L and it must be
one of the nearest common ancestors too.

3.3 Operation Examples with Encoded Addresses

Figure 4 illustrates the encoding of address 11 in XGFT(3, 4, 3, 5, 2, 2, 2)where down-
routing paths from the topmost roots to leaf node 11 are drawn with dot lines. It
is assumed that all of the ports of the switch nodes have been numbered in an
ascending order starting from the left like Figure 2 depicts. As one can see, all of
the top-most roots are connected through CDR[0]-port to the same sub-XGFT of
height two the leaf of which leaf number 11 is. Switches in stage two along all of the
down-routing paths are connected through CDR[2]-port to the last switch in stage
one which is connected to the destination leaf node through CDR[3]-port. Thus, the
encoded address is output port number sequence d3d2d1 = (0, 2, 3)enc. The encoded
address is represented here as a three tuple where the individual output port numbers
have been separated with commas from each other, and the number sequence has
been enclosed to brackets in order to separate it from the other parts of the text.
The precomputed encoded addresses can be stored into read-only-memories (ROM)
placed at packet sources which can use them for fast address translations without
complex computations.

Figure 4 illustrates also an example of how the TBWP can route a packet from
leaf processor node 27 to processor node 35 in XGFT(3, 4, 3, 5, 2, 2, 2). In this exam-
ple it is assumed that the network has been constructed from dual-switch nodes
where up-routing and down-routing switches have been connected with only one
turn-back channel. The encoded addresses of the leaf nodes 27 and 35 are tup-
les (2, 0, 3)enc, and (2, 2, 3)enc in a respective order. The routing path from the
source to destination has been drawn with dashed line arrows, and switches along
the routing path have been numbered with numbers one to six. Switch number one
along the routing path routes the packet upwards, because most significant numbers
of the encoded addresses are not equal, i.e. (2, 0)enc 6= (2, 2)enc. This is because the
source and destination nodes are not leaves of the same sub-XGFT of height one.
Although (2)enc = (2)enc, which indicates that the source and destination nodes are
leaves of the same sub-XGFT of height two, switch number two routes the packet
also upwards. This is because the turn-back channel of the dual-switch node is al-
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Fig. 4. Examples of the address space encoding and the operation of the TBWP

ready reserved and it can not be used for routing the packet to the down-routing
switch. Switch number three routes the packet upwards to another root switch,
because of this same reason. Switch number four routes the packet through output
port CDR[2] to switch number five which routes it to switch number six through out-
put port CDR[2]. Finally, switch number six routes packet to its destination through
output port CDR[3]. The shortest-path TB would route the packet downwards from
switch number 2 which is the nearest common ancestor of the source and destination
leaf nodes. Furthermore, it would not be able to use additional links on top of the
networks if the packet would be routed via any of the topmost root switches.

3.4 The Original TBWP Routing and Address Space Encoding

The operation of the TBWP and TB routing algorithms presented above is based
of the operation of the original TBWP which uses unencoded integer addresses and
which was designed for XGFTs constructed from dual-switch nodes. The routing
decisions of the original TBWP are based on computations which can also be used
for address space encoding. The leaf addresses can be encoded with Part 2 of
the original TBWP routing algorithm in the following way in three steps. In the
first step the output CDR-port numbers dL are computed for all L (1 ≤ L ≤ h) with
a formula dL = (DDIV m0×m1×m2×. . .×mL−1)MODmL where DIV- and MOD-
operations compute integer quotient and remainder of the division of two integers.
In the second step numbers dL are converted to binary numbers the width of which
is the smallest positive integer kL for which mL ≤ 2kL. In the third step, the encoded
binary number representations of the output port numbers dL are concatenated to
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form the encoded address Denc = dhdh−1 . . . d1. In the description of the original
TBWP below parameters S and D are unencoded source and destination addresses
carried in the packet headers, and parameter m0(= 1) has been inserted to formulas
so that Part 2 would work properly also in stage one.

Original TBWP routing algorithm:

Part 1 (Up-routing): If a packet arrives at the up-routing switch block of the
dual-switch node in stage L (1 ≤ L ≤ h) through one of the CUR-ports and
SDIVm0 ×m1 ×m2 × . . .×mL = DDIV m0 ×m1 ×m2 × . . .×mL, then route
the packet through the turn-back channel to the down-routing switch block,
else route it through one of the PUR-ports. If the turn-back channel is already
reserved, then route the packet through any of the PUR-ports.

Part 2 (Down-routing): If a packet arrives at the down-routing switch block of
the dual-switch node in stage L (1 ≤ L ≤ h) through one of the PDR-ports or
through the turn-back channel, then route it through CDR[(D DIV m0 ×m1 ×
m2 × . . .×mL−1)MODmL]-port downwards.

It can be shown that the presented simplified versions of the TBWP and TB al-
gorithms route packets correctly by showing that the original TBWP routes packets
to their desired destinations in the XGFTs and especially that its Part 2 computes
output CDR-port numbers correctly.

Assume that the leaf nodes have been given addresses in ascending order starting
from the left in such a way that the leftmost leaf has the smallest address zero and
the rightmost leaf has he highest address m1 × m2 × . . . × mh − 1 like Figure 1
illustrates. Let NL−1 = m0 ×m1 × . . . × mL−1 be the number of leaves in each of
the sub-XGFTs of height L − 1 the root of which the node in stage L is. Then
NL = NL−1 ×mL = m0 × m1 × . . . × mL−1 × mL is the total number of leaves in
all of the sub-XGFTs connected to the switch node in stage L. In Part 1 condition
SDIV NL = SDIV m0×m1× . . .×mL = DDIV m0×m1× . . .×mL = DDIV NL

tests whether the source and destination nodes are both leaves of the sub-XGFTs
connected to the switch node in stage L. In order to show this assume that the
destination addressD = pD×NL+qD and the source address S = pS×NL+qS where
numbers pD and pS (0 ≤ pD, pS ≤ mL+1×mL+2× . . .×mh− 1) are ordinal numbers
of the sub-XGFTs of height L, and numbers qD and qS (0 ≤ qD, qS ≤ NL − 1) are
ordinal numbers of the source and destination leaves of the sub-XGFTs of height L.
Then D DIV NL = pD = pS = S DIV NL only if destination and source nodes are
leaves of the same sub-XGFT of height L. For this reason, both of them must be
leaves of the sub-XGFTs of height L−1 connected to the same switch node, and the
packet can be switched to the turn-back channel if the condition is true. Otherwise it
must always be sent to one of the parent switches so as to find the common ancestor
switch node. In Part 2 the destination address D can also be written in the form
D = p × NL−1 + q, where q and p are such integers that 0 ≤ q ≤ NL−1 − 1 and
0 ≤ p ≤ mL×mL+1× . . .×mh− 1 where mL×mL+1× . . .×mh is the total number
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of sub-XGFTs of height L−1. Number p is the ordinal number of the sub-XGFT of
height L− 1 the leaf of which the destination leaf node is. Thus, if the destination
address D is divided by NL−1, then the quotient D DIV NL−1 = p is the ordinal
number of the destination sub-XGFT of height L−1, and the remainder pMODmL

is the appropriate output CDR-port number of the down-routing switch in stage L.
Figure 5 illustrates how the TBWP computes the output port numbers in Part 2.

In this example source (S) and destination (D) leaf nodes are in adjacent sub-XGFTs
of height L − 1. Since the leaves have been numbered in ascending order starting
from the left, the source address S is smaller number than the destination addressD.
The ordinal numbers pS and pD of the sub-XGFTs can be computed by dividing
the addresses by the number of leaf nodes of the sub-XGFTs of height L − 1, i.e.
by NL−1. This is what the TBWP does in Part 2 to destination address D with
D DIV m0 ×m1 × . . .×mL−1 = pD. The output port numbers are remainders sL
and dL which can be computed by dividing the ordinal numbers by mL which is
the number of sub-XGFTs of height L − 1 in each of the sub-XGFTs of height L.
The TBWP does this with formula dL = pD MODmL = (DDIV m0 ×m1 ×m2 ×
. . . × mL−1) MOD mL. All of the switches in stage L do the same computations,
although in Figure 5 it is assumed that a packet is switched through switch zero
from sub-XGFT pS to sub-XGFT pD.

 

0 1 mL−1 

0 1  w1w2... wL−1−1 

pD = D DIV NL−1 

D = pD×NL−1+qD 

dL = pD MOD mL 

S = pS×NL−1+qS 

pS = S DIV NL−1 

sL = pS MOD mL 

L−1 

L 

 

Fig. 5. Routing in sub-XGFT of height L

4 PERFORMANCE EVALUATION

The performances of the TBWP and the TB routing algorithms were evaluated by
simulating their operation with different network configurations. Simulations were
performed with high-abstraction level behavioral models so as to shorten the simula-
tion time, and because more accurate Register-Transfer-Level (RTL) models would
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not have produced any useful additional information essential for the comparison
of the routing algorithms. Because the behavioral models are faster to simulate
than RTL models, they could also be used for speeding up simulations of complete
systems where part of the components could also be RTL models.

These performance simulations were accomplished with two different traffic pat-
terns. The first simulations with uniformly distributed artificial traffic can be con-
sidered a kind of general case where randomly placed processes send packet traffic
to each other. Simulations with more local cluster-traffic can be considered a more
realistic case. This is because in true systems communicating hardware blocks and
software processes executed by processors are often placed as near to each other
as possible in order to prevent traffic from spreading all over the network, which
reduces the amount of required hardware resources and communication latencies.

4.1 Implementation of Simulations

Simulations were done with XGFT(3, 4, 3, 5, 2, 2, 2) depicted in Figure 1 a) with dual-
switch and mega-switch nodes. Although in Figures 1 a) and 1 b) additional bi-
directional links on top of the network connect different topmost root switches to
each other, simulations were done with such networks where PUR-ports and PDR-
ports of the same topmost root switches were connected to each other with uni-
directional channels. Network constructed from dual-switches was simulated with
both the TBWP and the TB routing algorithms. For this reason, the TB was also
modified for dual-switches so that it was possible to compare the performance of the
TBWP with that of some shortest-path routing algorithm. Network constructed
from mega-switches was simulated with the TB routing algorithm presented in sub-
section 3.1 only. Simulation time was divided into time slots which were equally
long with operation cycles (or clock cycles) of the switch nodes.

Switch nodes were modelled as input-output buffered crossbar switches with
input and output buffers of only eight words, which was also the size of the smallest
packets used in simulations. It was possible to use buffers which were smaller than
the average packet size, because switches used wormhole routing strategy. Wormhole
switches do routing decisions according to the routing information carried in the
packet headers immediately after they have received the headers and route packets
forward. It would have been possible to use larger buffers in the switch nodes in
order to improve the performances. However, larger buffers are practically unusable,
because the increment of the buffer size would also increase the size of the real NOC.

In packet switched networks packets are usually routed through switches in
three steps. In the first step the packets arrive at the input ports of the switch,
and routing algorithm does routing decisions according to the information carried
in the packet headers. In the second step the switch arbiter schedules appropriate
output ports so that the packets can be sent to the next switch, and in the third
step the packets are transferred from the input ports to the output ports. The
behavioral models of the switches operated slightly differently. In the behavioral
switch models the same processes did the routing decisions and scheduled several
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packet transfers from the input ports to output ports during one time slot. This
process used rotating priority (round-robin) arbitration to choose the next input
and output ports for which it scheduled the transfers. After this another process
performed the transfers from input ports to output ports.

Packets were transferred from one switch to another across asynchronous chan-
nels. Instead of transferring packets word by word over the channels a record type
data-signal was used for this purpose. These record type packets contained distinct
fields for source and destination addresses, packet length, and data. The transmit-
ting side started the transfer by putting the packet on the data-signal. The transfer
of distinct words was modeled with request-signal pulses the number of which was
equal to the length of the packet. The length of the request-signal pulse was half of
the length of the time slot, and the transfer of one word took time one time slot.
The receiving side could stop the transfer by setting a ready-signal to low, and it
allowed the transfer to be continued again by setting the ready-signal to high. Both
the transmitting and the receiving sides of the channels used counters for counting
the number of pulses and for controlling the starting and ending of the transfer of
the packets.

Simulations were performed with artificially generated packet traffic. There
were separate traffic sources for generating and transmitting traffic to each of the
input ports of the XGFTs in the simulated system. Traffic sources generated new
packets only when they were either transmitting or idle, i.e. during the time slots
when the ready-signal was high and it would have been possible to transmit packets
to the network. During these time slots they generated a uniformly distributed
pseudo random number prn which got values from real number interval [0.0, 1.0].
This pseudo random number prn was compared to a quotient ρ/averpcktlen where
parameter ρ was a load factor and parameter averpcktlen was the average packet
length which was 20 words in these simulations. Traffic sources generated a new
packet and stored it into a packet queue, if prn was smaller than or equal to the
quotient ρ/averpcktlen. Another uniformly distributed pseudo random number,
which got values 8 to 32, was used for generating the length of packets. Packet
sources transmitted the next packet to the network immediately after the previous
one if their packet queue was not empty.

This kind of traffic generation method implements also a feedback mechanism
which affects sligthly the statistical properties of the generated traffic. However, be-
cause the same method was used in all of the simulations, its usage does not affect
the order of superiority of different network configurations and routing algorithms,
and in any case, the traffic was artificially generated for the purpose of the com-
parison of the performances only. In addition, it was possible to do the simulations
without any knowledge of the performances and saturation points of the different
network configurations by changing only ρ’s value within the real number range 0.0
to 1.0. During simulations the utilization of the time slots usable for transmissions
corresponded quite accurately to the value of parameter ρ when traffic sources loaded
the network equally according to ρ’s value. As ρ’s value was increased the effective
throughput also increased respectively. Near the point where the network became
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saturated and average routing delays grew very quickly the increment of ρ’s value
had only a negligible effect on the effective throughput. In this point the proportion
of the transmission time to the overall time usable for transmissions was only slightly
smaller than ρ = 1.0, and traffic sources transmitted practically as much traffic to
the network as it was able to receive.

4.2 Simulation Results

In simulation results throughputs show the proportion of the average number of
time slots which different traffic sources were able to use for transmission to the to-
tal number of time slots in percentages. Average latencies show the average number
of time slots between the time instants of the transmission and reception of the first
word of the packets. Simulations with all of the network configurations produced
almost equal latencies before the point where the networks became saturated and
latencies increased very quickly like e.g. in Figures 6 a) and 6 b) which show the re-
sults of the first simulations. These first simulations were performed with uniformly
distributed traffic load, and their length was 250 000 time slots like the lenghts of all
of the other simulations too. For example, an average throughput of 23.1% per traf-
fic source corresponds to an average transmission time of approximately 57 750 time
slots per traffic source. This corresponds to a total of about 173 250 packets through
the whole network when there are 60 traffic sources in the system and the average
packet length is 20 words. This can be considered high enough number of packets
for calculating reliable estimates of the average latencies and throughputs.
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Fig. 6. Performances produced by the TB and TBWP routing in networks constructed
a) from dual-switch nodes, and b) from mega-switches and dual-switches with different
number of turn-back channels

Like Figure 6 a) and results in Table 1 show the TBWP (TBWP(DUAL/1))
produces twice as high maximum average throughput as the TB (TB(DUAL/1)) in
a network constructed from such dual-switch nodes where the switch halves are con-
nected with only one turn-back channel (TBC). This is because the TBWP can route
packets through upper switch stages, if the turn-back channel of the nearest com-
mon ancestor is already reserved. The TBWP is also able to use additional channels
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within the top-most root switches, which the TB is not able to do. Figure 6 b) shows
how this situation changes when the TB is used with mega-switches (TB(MEGA)).
Like Figure 6 b) and results in Table 1 show it produces clearly higher maximum ave-
rage throughput per source (TB(MEGA)) than the TBWP with dual-switch nodes.
This is owing to the larger number of internal switching resources of the mega-switch
nodes. However, the performance of the TBWP can be improved by increasing the
number of turn-back channels between switch halves within dual-switch nodes from
one to two (TBWP(DUAL/2)) or three (TBWP(DUAL/3)). With three turn-back
channels (TBWP(DUAL/3)) the TBWP is able to produce almost equally high
maximum average throughput as the TB (TB(MEGA)). The average latencies are
not very much higher than those produced by the TB, although the TBWP must
use also upper switch stages for routing the packets through the network.

Switch type and Routing Max. Average Max. Average
the number of Algorithm Throughput Latency

TB-channels (TBC) [%] [time slots]

Dual with 1 TBC (DUAL/1) TB 8.18 415.0
Dual with 1 TBC (DUAL/1) TBWP 17.8 196.7
Dual with 2 TBCs (DUAL/2) TBWP 20.2 186.6
Dual with 3 TBCs (DUAL/3) TBWP 22.3 175.4
Mega with no TBCs (MEGA) TB 23.1 145.6

Table 1. Simulated performances with uniformly distributed traffic load

Processes, which require a lot of bandwidth for communication with each other,
will most probably be placed at neighboring processing nodes as near to each other
as possible in order to reduce communication latencies and the amount of required
network resources. In the systems where XGFTs are used the distance between
communicating processes can be minimized by placing the processes at the leaves
of the same sub-XGFTs. As a consequence of this, larger proportion of the traffic is
transferred within the sub-XGFTs. Because there are five sub-XGFT(2, 4, 3, 2, 2)s
with 12 leaf nodes in the XGFT(3, 4, 3, 5, 2, 2, 2), the effect of the increased locality
of the traffic on the performance was studied with simulations with clusters of 12 leaf
processing nodes. Each of these five clusters was placed as a whole at the leaves of
the same sub-XGFT(2, 4, 3, 2, 2)s.

In these simulations the TBWP was used with dual-switch nodes with one turn
back channel, and the TB was used with mega-switches. These simulations were
performed with a cluster load of 0.75, which means that in 75% of the transmitted
traffic was transferred within the clusters and only 25% of it between the clusters.
The simulated system produces clearly more local traffic with this cluster load value,
because, for example, smaller cluster load of 0.2 would correspond to fully uniformly
distributed traffic.

Like simulation results in Figure 7 a) show both the TBWP and TB produce
higher throughputs as the traffic becomes more local. In addition, the TB produces
clearly higher maximum average throughput of 40.7% (TB) per traffic source than
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Fig. 7. a) Average delays and b) average maximum delays with cluster-traffic

the TBWP which produces maximum average throughput of 28.4% (TBWP). De-
spite this, the TBWP does not produce considerably higher average routing delays
than the TB before network becomes saturated. The corresponding average maxi-
mum routing delays, which are averages of 60 maximum delay values measured by
the leaf computing nodes, are shown in Figure 7 b). As lines in Figure 7 b) show,
the TBWP produces higher average maximum routing delays than the TB. This is
because it must route packets via upper switch stages when the turn back channels
are reserved. The difference between average routing delays (Figure 7 a)) and aver-
age maximum routing delays (Figure 7 b)) grows fastest between the points of 20%
and 28.4% where the network constructed from dual-switch nodes saturated. As
a summary it can be said that these results show that the TB is able to produce
higher performances than the TBWP with both uniformly distributed and cluster-
traffic, which is owing to the higher switching capacity of the mega-switches.

5 CONCLUSIONS

This paper presents simple and feasible implementations of the TBWP and the TB
routing algorithms usable in the XGFTs constructed from dual-switch and mega-
switch nodes. This is achieved by address space encoding which eliminates complex
computations from the routing decision functions. Owing to the address space en-
coding routing decision functions can be implemented with simple compare and
cut operations which have small and fast hardware implementations. According to
the results of the performance simulations with behavioral models of different net-
work configurations and with different traffic patterns the new TB, which is used
in XGFTs constructed from mega-switch nodes, is able to produce higher perfor-
mance than the TBWP, which is used in XGFTs constructed from dual-switches.
Although this became evident especially with cluster-traffic, performances were still
comparable. In addition, it would be possible to improve the performance of the
TBWP by increasing the number of turn-back channels between the switch halves
of the dual-switch nodes.
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