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Abstract. A multiparadigm language provides an opportunity to a user for exploit-
ing more programming methodologies. It simplifies the language syntax, and ex-
tends the application areas by the extended semantics. That is why multiparadigm
languages can align a problem in wider application areas and more flexibly than
that based on a single paradigm. In this paper, we present the idea of separating
three essential concerns of programming currently being implemented in PFL – a
process functional language. We separate data, control, and actions by the defini-
tion of a purely control structure. Then, by the structured application of a structure
of actions to a purely control structure, we will express the computation of acti-
vated actions in a structured way, considering explicitly defined synchronization in
computation.
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1 INTRODUCTION

Nowadays, many programming paradigms, such as functional, imperative, struc-
tured, object-oriented, component based, and aspect-oriented ones, are less or more
combined when exploited by a programmer. In this sense, the paradigm means the
pattern or approach when expressing an algorithmic problem in terms of a program,
which is executable on the computer.

A programming paradigm can be exploited better if supported by correspond-
ing programming language. Multiparadigm languages provide an opportunity to
exploit multiple programming paradigms. In this sense, even Pascal can be seen as
a multiparadigm language, since it integrates imperative paradigm and structured
paradigm. Similarly, C++ or Java are multiparadigm languages, since they combine
imperative, structured and object oriented paradigm.

In Haskell [13], both functional and imperative paradigms [12] are combined
by the definition of monads [20, 21], as a uniform tool for expressing imperative
paradigm in terms of functional paradigm. It means that a source program is written
in a purely functional manner, and all imperative actions are performed via monads,
hiding actions to a programmer.

Combining two or more paradigms directly by an extension of an existing pro-
gramming language, such as Java, when extending it to AspectJ [3, 4], seems to
be less efficient method for building multiparadigm languages, since of the rare but
still occurring situations, in which the enveloped language (such as Java) does not
conform with the new paradigm [5].

That is why it is better to extract the substances of multiple paradigms, then
to define a new multiparadigm pattern and finally to define a new multiparadigm
language, as it was done in Haskell.

We use the same approach in PFL – a process functional language development,
in which we have combined imperative, functional, and object oriented paradigms [6,
7, 8, 9]. It was performed by unification of paradigms, followed by PFL definition,
and the compiler to Java and Haskell construction [17, 18, 19].

As a result, we have obtained a systematic hierarchy of processes, global and
local scopes, classes, instances and objects, free of mixed language concepts, such as
the definitions of processes in classes, or concepts dealing with organization (such as
public, private or static modifiers in Java). This is a good proposition for a trans-
parent selection of join point, considering lexical scope, as required in pointcuts in
aspect-oriented languages [1, 2, 11, 10, 22].

Except that, each value (including those produced by built-in operations) could
be reflected into an external environment [9], if needed. This fact is meaningful
when considering dynamic aspects of computation [16].

Based on an experiment with profiling of process functional programs [14, 15], we
understood that three basic concerns of computation – data, control, and actions –
must be clearly separated before unifying object paradigm with aspect paradigm.

In this paper we present the idea of separating data, control and actions as
a proposition for expressing all of them explicitly. In this way, as we believe, a pro-
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gram is expressed in an accurate and concise source form, which is substantial for
extending PFL to an aspect-oriented language. The work on aspect version of PFL
goes on. Some remarks on the importance and advantages of separated concerns in
implementing aspect languages conclude the paper.

First, in Section 2, we briefly summarize the current state in the development
of PFL. In Section 3, we introduce the notion of purely control structures and
purely control functions. Then we define the operation of structured application in
Section 4, as an application of a structure of actions to a control structure, support-
ing the idea of computation in the separated manner. In the section Examples, we
compare the classical imperative approach and the functional approach using the
structured application.

For PFL programs, we will use well known mathematical notation, in which →
is used instead of ->, [ ] is used instead of [], etc. To express ‘is of the type’, we
will use double colon (::).

2 PFL – CURRENT STATE

Using PFL – an experimental process functional language, the following trans-
formations are supported: Data-to-Data (DD), Data-to-Control (DC), Control-to-
Data (CD), Control-to-Control (CC), Data-to-Environment data-to-Data (DED),
Data-to-Environment data-to-Control (DEC) Control-to-Environment data-to-Data
(CED), and Control-to-Environment data-to-Control (CEC). These transformations
are shown in Table 1, in terms of applications of a single argument function λx. e to
an argument m. In this table, T and T ′ are data types, () is the unit type, ρ[v = ev]
is an initial environment, comprising the variable v of the value ev, both of the data
type T , ρ[v = m] is an environment with variable v of the value m, e[m/x] is an
expression in which each occurrence of lambda variable x is substituted by an ex-
pression m or its value, e[ev/x] is an expression in which each occurrence of lambda
variable x is substituted by an expression ev or its value, and ρv is the current value
in environment variable v.

In PFL, type definitions for all processes are obligatory, not optional, as it is for
functions. This is true even for local processes that are defined using the keyword
where, as it is in Haskell.

The transformations DD, DC, CD and CC are performed by application of pure
functions (λx. e), as in any functional language, provided that function body e is
purely functional. However, since of environment affecting transformations DED,
DEC, CED and CEC, PFL semantics is fully imperative, preserving the pure fun-
ctional source style based on expressions, without statements and assignments.

An environment affecting transformation is determined by a “strange” argument
type (v T ), which is the source form of attributed type. Then the environment
variable v with the stored value ev is a proposition of this transformation (ρ[v =
ev] ⊢).
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DD
(λx. e) :: T → T ′ m :: T

Eval[[ (λx. e) m ]] = e[m/x]

DC
(λx. e) :: T → () m :: T

Eval[[ (λx. e) m ]] = e[m/x]

CD
(λx. e) :: ()→ T m :: ()

Eval[[ (λx. e) m ]] = e

CC
(λx. e) :: ()→ () m :: ()

Eval[[ (λx. e) m ]] = e

DED
ρ[v = ev] ⊢ (λx. e) :: v T → T ′ m :: T

Eval[[ (λx. e) m ]] ρ = Eval[[ (λx. e) (ρ v) ]] ρ[v = m] = e[m/x]

DEC
ρ[v = ev ] ⊢ (λx. e) :: v T → () m :: T

Eval[[ (λx. e) m ]] ρ = Eval[[ (λx. e) (ρ v) ]] ρ[v = m] = e[m/x]

CED
ρ[v = ev] ⊢ (λx. e) :: v T → T ′ m :: ()

Eval[[ (λx. e) m ]] ρ = Eval[[ (λx. e) (ρ v) ]] ρ = e[ev/x]

CEC
ρ[v = ev ] ⊢ (λx. e) :: v T → () m :: ()

Eval[[ (λx. e) m ]] ρ = Eval[[ (λx. e) (ρ v) ]] ρ = e[ev/x]

Table 1. Transformations supported by PFL

Further, a kind of environment affecting transformation is determined by the
type of argument. Provided that m :: T , then the transformation is data reflecting
transformation, with either data (DED) or control (DEC) value. Provided that
m :: (), then the transformation is data accessing transformation, with either data
(CED) or control (CEC) value.

Environment affecting transformations are implemented by source-to-source
transformation, which, in terms of aspect-oriented languages, is a specific weav-
ing considering each application of the process as a join point. The details of this
transformation are introduced in Section 4.

Operationally, data affecting transformations are performed in two indivisible
steps. An environment variable is either accessed by control argument or updated
by data argument in the first step, and the value of environment variable is used as
an argument in the application itself in the second step.

As an illustrating example, let us define a process p as follows:

p :: v Int→ Int

p x = 2 ∗ x.

Suppose that the value of the environment variable v is 2, and let us consider
the evaluation of the application (p (p ()) in innermost order.

So we have ρ[v = 2] as a proposition, and p in terms of typed lambda calculus
as follows: (λx. 2 ∗ x) :: v Int→ Int.
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Then (p ()) = ((λx. 2 ∗ x) ()) is CED transformation as follows

ρ[v = 2] ⊢ (λx. 2 ∗ x) :: v Int→ Int () :: ()

Eval[[ (λx. 2 ∗ x) () ]] ρ = Eval[[ (λx. 2 ∗ x) (ρ v) ]] ρ = (2 ∗ x)[2/x] = 4
,

which accesses the environment value ρv = 2, yielding the result 4.

Notice that since of (v Int) argument type of p, the application ((λx. 2 ∗ x) ())
has quite different semantics than in an ordinary lambda calculus, since it is not
reduced to 2 ∗ (), but rather to 2 ∗ (ρ v) = 2 ∗ 2.

Since p () = 4, we have (p (p ()) = (p 4) = ((λx. 2 ∗ x) 4).
Then ((λx. 2 ∗ x) 4) is DED transformation as follows:

ρ[v = 2] ⊢ (λx. 2 ∗ x) :: v Int→ Int 4 :: Int

Eval[[ (λx. 2 ∗ x) 4 ]] ρ = Eval[[ (λx. 2 ∗ x) (ρ v) ]] ρ[v = 4] = (2 ∗ x)[4/x] = 8
.

The application ((λx. 2 ∗x) 4) has the same value as when reduced directly, but
value 4 of argument is reflected in v (see ρ[v = 4] above). This semantics comes
again from the attributed type (v Int).

Informally, CED and CEC use the value of v as an argument instead of the con-
trol (unit) value (), leaving this value unchanged. Transformations DED and DEC
use the value of data argument, since this value is assigned to v before it is used in
application.

As shown above, PFL conception is based rather on processes than on pure
functions, since any grain of computation can be stateful. Considering a process
of multiple arguments, data types T , the unit type () and attributed types (v T )
may be freely mixed for arguments. Attributed types are never used for values of
processes.
PFL supports type polymorphism using type variables (a, b, . . . ) in type expres-

sions, algebraic types using data definitions, type synonyms using type definitions
and abstract typing using class and instance definitions.

Our aim was to preserve the visibility of environment variables – the memory
cells external to expressions in a program. That is why an environment variable is
never used in expressions, but rather in type expressions. This is our mention that
the visibility of memory cells is useful from the viewpoint of software engineering,
and if supported by affecting them indirectly (this idea comes out from monadic
approach), then their use is far more disciplined as in an imperative language.

This approach allows to exploit abstract typing in an object oriented manner.
First, a PFL class C contains just the type definitions. All definitions of processes
and functions are introduced in the instances, even if they are identical. In this
matter we have separated the definitions of class members from their type definitions
systematically.

Second, if type definitions in a class comprise environment variables using at-
tributed types, and a class member is applied to expressions e1 . . . en, in the form
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(C ⇒ f e1 . . . en), then the allocated environment together with all processes in
derived instance form an object.

Moreover, an object can be shared by multiple objects since PFL supports mul-
tiple superclasses.

In case a class is monomorphic, then exactly one instance for this class is defined.
If type definitions in a class comprise no environment variables, then the application
of class members (or instantiated class members, in polymorphic case) does not
allocate a memory. Then the situation is the same as in purely functional languages
with abstract typing, in which overloaded functions are applied, but not in object-
oriented manner.

We do not provide lambda abstraction (\x → e) to a programmer. From one
point of view, abstracting of any expression is a powerful Haskell concept; on the
other hand, its extensive use makes programs non-transparent.

We mention that the transparency of the source program is the proposition for
transparent lexical scoping as required for aspect-oriented programming languages.
That is why separating the definitions of processes from classes seems to be a good
idea.

On the other hand, mixing the transformations freely is the weakness of both
current implementation of PFL as well as of any imperative language (in which they
are mixed even in a more hidden way). In this paper, we propose the structured
application operation as a possible solution to this problem. This approach is less
general than the monadic one, but tends to the separation of data and control in
programs in a transparent way.

Since data manipulation using pure functions is a well known concept in purely
functional languages, we will concentrate on the mutual relation of control and
actions and on the style, in which actions are activated by control in a structured
way.

3 CONTROL STRUCTURES AND CONTROL FUNCTIONS

By an analogy to data structures, we propose control structures be defined (but not
constructed) by algebraic type constructors.

A new algebraic type in PFL is defined using the general form introduced in
Definition 1. In this paper we use algtype keyword instead of data for the first time,
expressing the fact that an algebraic type unifies quite different kinds of values –
data and control ones.

Definition 1 (Algebraic type). A new algebraic type T is defined as follows

algtype T a1 . . . au = C1 T1,1 . . . T1,n1

| C2 T2,1 . . . T2,n2

...
...

. . .
...

| Cm Tm,1 . . . Tm,nm
,
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where T is the new type, ak, k = 1, . . . , u are type variables, Ci, i = 1, . . . , m, are
constructors, and Ti,j , i = 1, . . . , m, j = 1, . . . , nm, are type expressions consisting
of primitive types, type variables, or applications of algebraic types, that have been
defined already.

According to Definition 1, each constructor Ci is a canonical function of the type

Ci :: Ti,1 → . . .→ Ti,ni
→ T a1 . . . au (1)

and may be applied to expressions e1 . . . eni
.

The role of constructors is as follows:

1. They are introduced in algebraic type definitions to define a new algebraic type.

2. They are applied to data expressions to construct new data structures.

3. They are applied to control expressions to define new control structures.

Examples of some algebraic types are introduced in Figure 1.

Variant type:
algtype V ariant = C Char | I Int | F Float

n-tuple types:
algtype Pair a b = Pair a b
algtype Triple a b c = Triple a b c

List type:
algtype List a = Nil | Cons a (List a)

Binary tree type:
algtype Btree a = Tip a | Bin (Btree a) (Btree a)

Binary search tree type:
algtype Bstree a = Tips | Bins a (Bstree a) (Bstree a)

Fig. 1. Examples of some frequently used algebraic types

While V ariant is the monomorphic data type, other types are polymorphic and
then they can be either data or control types.

So, the data binary tree (Bin (Bin (Tip 5) (Tip 2)) (Tip 3)) is of data type
(Btree Int), while the control binary tree (Bin (Bin (Tip ()) (Tip ())) (Tip ())) is of
control type (Btree ()).

Similarly as for data expressions we may write control lists in the form [() : () :
() : [ ]] or [(), (), ()] instead of (Cons () (Cons () (Cons () Nil))), of control type [()]
instead of (List ()).
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A syntactic support for n-tuples is also available. Then the form ((), (), ())
instead of (Triple () () ()) may be used for control triples. In case of n-tuples, the
same form is used for expressions and types.

To separate data and control in programming, we propose to suppress the mixed
algebraic types, such as (Int, ()). This problem arises when a polymorphic type has
more than one type variable, such as the pair (a, b). Then, if constructor Pair is
applied to expressions e1, e2, both must be of (possibly different) data types, i.e.
(e1, e2) :: (T1, T2) or both are of control types such as (e1, e2) :: ([()], ()).

If constructors of algebraic types are applied to control expressions, their seman-
tics is different than when they are applied to data expressions, as will be shown
below.

3.1 Control Structures

The result of transformations DC, CC, DEC and CEC are unit values. The unit
value represents primitive control, of primitive control type, called the unit type.
At the same time, the unit value is the simplest control expression. If a constructor
is applied to control expressions, the result will be control structure – a structure
consisting of unit values.

In contrast to data structures that are constructed using data expressions, the
meaning of control structures is different, since they just synchronize the computa-
tions that have yielded unit values.

Essentially, corresponding to the sequential evaluation order of arguments (cur-
rying), the evaluation of arguments in the form of control expressions is synchronized
sequentially.

Both the unit value and constructor in a control expression are evaluated in zero
time using no memory resources. Hence, even a complex control expression, such as

[((), [(), ()]), ((), [(), (), ()]), ((), [()])]

is also evaluated in zero time using no memory resources.
The definition of partial order of evaluation as defined by a control expression

is introduced below.

Definition 2 (Partial order of evaluation). A control expression is either of the
unit type (), i.e. such that is evaluated to control value (), or it is in the form of the
application of a constructor to control expressions (of control types), as follows:

C e1 e2 . . . en. (2)

Then partial order of evaluation of control expressions in control structures is
defined as follows:

1. For all expressions ei, ei+1 in (2), such that they are both in the form of (2),
ei ‖ ei+1 holds, i.e. ei and ei+1 are evaluated in parallel.
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2. If at least one of expressions ei and ei+1 in (2) is of the unit type (), then ei ≺ ei+1

holds, i.e. they are evaluated sequentially.

3. The priority of ‖ operation is higher than that of sequential ordering operation≺.

Hence, the effect of a constructor in control expression is to synchronize (theo-
retically in zero time) the evaluation of its arguments. According to Definition 2,
control lists define sequential (dependent) execution order, and binary control trees
define parallel (independent) execution order.

Example 1. To introduce the example of control list, let us define processes as
follows:

f :: u Int → ()
f x = ()

g :: v Int → ()
g x = ()

h :: u Int → ()
h x = ().

The control expression [f 2, g 3, h 4] yields the value [(), (), ()] of the type [()].
Since it is equivalent to (Cons (f 2) (Cons(g 3) (Cons (h 4) Nil))), it defines the
following set:

{(f 2), {(g 3), {(h 4), {} } } }.

Since (f 2) ≺ {(g 3), {(h 4), {} }}, (g 3) ≺ {(h 4), {} }, and (h 4) ≺ {}, it
follows:

(f 2) ≺ (g 3) ≺ (h 4).

The expression [f 2, g 3, h 4] requires that (f 2) terminates before (g 3) starts
and (g 3) terminates before (h 4) starts. Besides, we may be sure that final value
of u will be 4.

The next example deals with the binary control tree.

Example 2. Let us consider the same processes as in Example 1.
Then a binary control tree

Bin (Bin (Tip (f 2)) (Tip (g 3)) (Bin (Tip (f 4)) (Tip (h 5))

yields the value

Bin (Bin (Tip ()) (Tip ()) (Bin (Tip ()) (Tip ())

of the type Btree ().
The sets defined by binary control tree are as follows

{ { {(f 2)}, {(g 3)} }, { {(f 4)}, {(h 5)} } },
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in that all applications are independent, i.e.

(f 2) ‖ (g 3) ‖ (f 4) ‖ (h 5)

and the execution terminates, when all applications are terminated.

3.2 Control Functions

Pure control functions are the transformations on control values, including control
structures. As for constructors, just polymorphic functions can be used as control
functions. As for constructors, the applications of control functions are executed in
zero time using no memory resources.

For example, let us define the polymorphic functions (++) and reverse as follows:

(++) :: [a]→ [a]→ [a]
[ ] ++ ys = ys
(x : xs) ++ ys = x : xs++ys

reverse :: [a]→ [a]
reverse [ ] = [ ]
reverse (x : xs) = reverse xs++[x].

In Example 3, we will compare the effect of the application of function reverse

to data expression and its application to the control expression.

Example 3. According to the definition of function (++) above, it concatenates
two lists. The value of the application of reverse to a list is reversed list.

For example, the value of an application (reverse [1, 3, 5, 7]) is the list [7, 5, 3, 1]
(data). In this case reverse was applied as a data function.

On the other hand, the value of (reverse [f 2, g 3, h 4]) may be thought as the
list [h 4, g 3, f 2], which implies the evaluation order as follows

(h 4) ≺ (g 3) ≺ (f 2). (3)

3.3 Implementation Remarks

Although this paper is not about implementation, we expect that the code generation
considering control structures and functions is not straightforward. To produce
an efficient code, we must perform interpretation (partial evaluation) of control
expressions in compile time.

First, each expression of the unit type is associated with the unit value. For the
purpose of simplicity, let us mark unit values by indices. We will get control expres-
sion (reverse [()1, ()2, ()3]) and the association set {f 2↔ ()1, g 3↔ ()2, h 4↔ ()3}.
Using interpreter, all control functions (such as reverse) are applied. The result
of interpretation will be the set of canonical control values, expressed in terms of
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applications of constructors, (in our case it will be [()3, ()2, ()1]). After that, the
partial order according to Definition 2 is derived as follows: ()3 ≺ ()2 ≺ ()1. Finally,
based on the association set, the target code for application in the derived order (3)
is generated, which is executed in the run-time.

Since both the evaluation of control expressions and the transformation of ca-
nonical control expressions into the execution order is the matter of compile time,
we can say that control expressions are executed in zero time using no memory
resources in the run-time.

As we will show in the next section, canonical control values, such as () or
[((), ()), ((), ()), ((), ())] (control list of control pairs), can be used to activate actions.

4 ACTIONS

Intuitively, each action must be activated. In the simplest case, action is activated
by the unit value – the non-data constant representing control. In Table 1, an action
is one of transformations CD, CC, CED, or CEC. As can be seen, each action can
be applied to the argument in the form of the unit value, which is either initiating
constant mentioned above, or the result of argument computation.

In contrast to transformations DD, DC, DED and DEC that are activated im-
plicitly by argument data (by program), the actions are activated explicitly by con-
trol (by programmer). The role of control is increasing, if the evaluation is not
purely functional, i.e. restricted just to DD and DED transformations. (In case of
DED transformations, the values are reflected in an external environment, but the
evaluation remains still purely functional, because no environment value is used in
expressions.)

4.1 State Affecting Processes in PFL

Currently we provide a general mechanism in which memory cells external to pro-
cesses can be affected by applications of processes. Syntactically, this mechanism
is supported by attributing the types of arguments of processes with the names of
environment variables as follows

p :: v1 T1 → . . . → vn Tn → T
p x1 . . . xn = e,

(4)

where T1, . . . , Tn are data types of arguments, v1, . . . , vn are environment variables –
external memory cells, and T is either a data type T or the unit type ().

Data types in type definitions of processes are attributed with environment va-
riables that, on the other hand, cannot be used in definitions (i.e. in expressions).
The processes can be applied not just to data arguments but also to unit values.
After some steps of the translation of the source form (4), the variable environment
ρ[v1, v2, . . . , vn] and two functions for each variable in ρ are generated as follows:
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λx. let vk = x in vk (the update function)
λ(). vk (the access function)

(5)

for 1 ≤ k ≤ n.
Then, the source form of each application of process p in the form

p e1 e2 . . . en (6)

where ek, k = 1 . . . n are either data expressions or unit values are transformed,
substituting arguments by application of one from two functions above to argument
as follows:

1. If ek is data expression of the type Tk then it is substituted by

(λx. let vk = x in vk) ek.

2. If ek evaluates the unit value of the unit type, then it is substituted by

(λ(). vk) ek.

Since both applications above affect the environment variable, let us explain two
possible effects, supposing two extreme cases.

First, let all arguments be of data types. Then the application (6) (representing p
by lambda abstraction) is evaluated as follows:

ρ[v1 = e′1, . . . , vn = e′n] ⊢
(λx1. . . . λxn. e) :: v1 T1 → . . . → vn Tn → T

e1 :: T1 . . . en :: Tn

Eval[[ (λx1. . . . λxn. e) e1 . . . en ]] ρ =
Eval[[ (λx1. . . . λxn. e) (ρ v1) . . . (ρ vn)]] ρ[v1 = e1, . . . , vn = en] =

e[e1/x1, . . . , en/xn]

. (7)

The values of data arguments were reflected in environment variables in the
order corresponding to currying, i.e. as follows:

v1 = e1 ≺ . . . ≺ vn = en.

Second, if all arguments are unit values (or expressions of unit types), then the
application of p is evaluated as follows:

ρ[v1 = e′1, . . . , vn = e′n] ⊢
(λx1. . . . λxn. e) :: v1 T1 → . . . → vn Tn → T

e1 :: () . . . en :: ()

Eval[[ (λx1. . . . λxn. e) e1 . . . en ]] ρ =
Eval[[ (λx1. . . . λxn. e) (ρ v1) . . . (ρ vn)]] ρ =

e[e′1/x1, . . . , e
′

n/xn]

. (8)
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Then the values in environment variables remain unchanged and they are used
in the evaluation of the body e.

In PFL, the access of an environment data is the action, the update is just
reflective. In both cases, if e is of a data type, then the application (6) yields data
value. On the other hand, if e is of the unit type, then the application (6) yields the
unit value.

4.2 Activation of Actions

Clearly, the function of an action expressed by the expression emay be very complex;
but the action is still elementary, if it is activated by its application to the unit value.
It follows that elementary action is lambda abstraction, as follows

(λ(). e) (9)

where e : T , and (λ(). e) : ()→ T .
Then, the activation of an elementary action is the application of lambda ab-

straction as follows:
Eval[[ (λ(). e) () ]] = Eval[[ e ]]. (10)

After the action is activated, it is executed by evaluation Eval[[ e ]], yielding the
value of expression of the type T .

Understanding the difference between the executed action e and its abstraction
(λ(). e) is crucial for expressing more powerful transformations than those in an
imperative language.

In an imperative language, this difference is not so visible. Seemingly, the same
statements are executed as those written in programs. However, source program
statements are abstractions, and executed statements are the applications of these
abstractions, i.e. the expressions of the unit type.

To illustrate the difference between abstractions and expressions, it is possible
to introduce the application of fully abstracted form of the expression (x+3), which
is as follows:

( λ().((λ().x) () + (λ().3) ()) ) ().

While the flow of control in the expression (x+3) is hidden, the application of its
abstraction above expresses all possible activations of actions during the evaluation
of this expression.

4.3 Structured Application

Let us consider the activation of a set of actions forming a structured action. We
are interested in the way, in which “more powerful activation” of structured actions
than the activation of an elementary action can be expressed. By an analogy to (10),
the expected form of structured application is as follows:

A C,



454 J. Kollár, J. Porubän, P. Václav́ık

in whichA is a representation of structured action, consisting of the set of elementary
actions, as follows

(λ(). e1), (λ(). e1), . . . , (λ(). en), (11)

and C is a purely control expression, which activates all actions comprised in the
structured action A.

The solution can be found, based on the function zipWith for lists, slightly
re-defined as follows:

zipWith :: (a→ b→ c)→ [a]→ [b]→ [c]
zipWith ⊕ [ ] [ ] = [ ]
zipWith ⊕ (x : xs) (y : ys) = (x⊕ y) : zipWith ⊕ xs ys.

Clearly, the value of the application (zipWith (+) [1, 2, 4] [10, 20, 30]) is [11, 22,
34], and the value of (zipWith (+) [ ] [ ]) is empty list [ ]. On the other hand, the
evaluation of (zipWith (+) [1, 2, 4] [10, 20]) fails, since we do not allow argument
lists of different length.

A non-structured application (f e) is the source form for (f@e), in which the
application operation @ of the type (T0 → T1)→ T0 → T1 is applied to a function f ,
of the type (T0 → T1) and to an expression e, of the type T0.

Provided that T0 = (), we have (@) :: (() → T ) → () → T , which is exactly
what is needed; the first argument is an action of the type () → T and the second
is an expression of the unit type.

Then the value of application (zipWith (@) [f1, f2, f3] [(), (), ()]) is [f1@(), f2@(),
f3@()] or simply [f1 (), f2 (), f3 ()]. We have obtained the list of activated actions.

Suppose now, we define the overloaded operation (#), of the type

(#) :: (T ()→ T a)→ T ()→ T a (12)

where T is a polymorphic algebraic type.
For lists, we have (#) = (zipWith@), such that (#) :: ([()]→ [a])→ [()]→ [a]).
For binary trees, (#) is defined as follows:

(#) :: (Btree ()→ Btree a)→ Btree ()→ Btree a
(Tip x) # (Tip y) = Tip (x y)
(Bin tx1 tx2) # (Bin ty1 ty2) = Bin (tx1#ty1) (tx2#ty2).

For pairs, (#) is defined as follows:

(#) :: (((), ())→ (a, b))→ ((), ())→ (a, b)
(x1, x2) # (y1, y2) = (x1#y1, x2#y2).

Then, the general form for the structured application – the application of a struc-
ture of actions to the same structure of controls is as follows

# (C f1 . . . fn) (C e1 . . . en),
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where fk are abstractions of the type () → T , and ek are expressions of the unit
type.

Prefix form of structured application above can be written in the infix form as
follows:

(C f1 . . . fn) # (C e1 . . . en).

Provided that both (@) and all instances (#) are overloaded, it is even possible
to use (@) instead of (#) and then we get the structured application in the form

(C f1 . . . fn) (C e1 . . . en).

It means that A = (C f1 . . . fn) is a (data) structure of actions (abstracted
expressions) and C = (C e1 . . . en) is the same but control structure of control
expressions, as expected.

4.4 Abstracting Expressions to Actions

We propose the source form \e to express (λ(). e).
This form is useful whenever a programmer requires the evaluation of the ex-

pression e be controlled. As we have shown, the evaluation of e yields the same
result as the controlled evaluation \e ().

More general abstraction of e by (λx. e) which may be applied to a data ex-
pression is clearly redundant, since each process in the source program is defined in
terms of this abstraction.

5 EXAMPLES

Instead of complex application examples we will introduce the comparison of a clas-
sical imperative approach and the approach to programming using more powerful
structured application with respect of separated data, control and actions.

5.1 Imperative Approach

The execution of the assignment of an expression e to a variable v is expressed by
the application (assignv e), where e :: T (DEC transformation), and the process
assignv is defined as follows:

assignv :: v T → ()
assignv x = ()

Then (assignv e) :: (), and abstracted assignment is \(assignv e), of the type
()→ (). Then assignment may be executed by the application

\(assignv e) () instead of (assignv e).
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In general, if the application s is an executed statement, then s :: () and its ab-
stracted form is \s, such that \s :: ()→ (). Then, as for assignment, the statement s
may be executed by the application

\s () instead of s.

Notice that this application itself can be very complex, and the assignment
execution (assignv e) is just the simplest (but still complex) case.

Then, the execution of the sequence of the statements s1, . . . , sn is the applica-
tion, as follows:

(\sn) (. . . ((\s1) ()) . . .) or (\sn ◦ . . . ◦ \s1) ().

Hence, the abstraction of a statement sequence can be expressed in terms of
composition operation (◦) (defined by (f ◦ g) x = f (g x)), as follows:

\sn ◦ . . . ◦ \s1.

Then if-then-else statement is executed by the application as follows

\(if \e (\sTnT
◦ . . . ◦ \sT1 ) (\s

F
nF
◦ . . . ◦ \sF1 )) ()

or
if \e (\sTnT

◦ . . . ◦ \sT1 ) (\s
F
nF
◦ . . . ◦ \sF1 ),

provided that if is defined as follows:

if :: (()→ Bool)→ (()→ ())→ (()→ ())→ ()
if b x y | b () = x ()

| otherwise = y ().

Clearly, the abstraction of if-then-else statement is as follows:

\(if \e (\sTnT
◦ . . . ◦ \sT1 ) (\s

F
nF
◦ . . . ◦ \sF1 )).

By an analogy, the execution of while statement is defined by the application as
follows:

\(while \e (\sn ◦ . . . ◦ \s1)) () or while \e (\sn ◦ . . . ◦ \s1).

The definition of while is as follows:

while :: (()→ Bool)→→ (()→ ())→ ()
while b x | b () = \(while b x) (x ())

| otherwise = ().

Notice that both arguments – Boolean expression b and the statement sequence x
are abstractions, i.e. constants. After (x ()) is executed in an iteration step, its value
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is used as an argument for while abstraction again, which, when applied, yields the
application (while b x) of the same constant arguments as in the previous iteration
step. Then, the same context (on the stack) can be used for all iterations, and
jump-to-subroutine instruction can be replaced by simple jump instruction, when
implementing while call. Or even, as in imperative languages, instead of defining
all while’s separately using different names, while (and also if ) can be defined as
built-in operations, an then their bodies are included into the code (as macros),
instead of calling them as functions.

In the simplest form, input operation #input is built-in operation of the type:

#input :: T (13)

Whenever applied, in the form #input, it reads a value of the type T from an
external world of computation. Being a constant function, it is still referentially
non-transparent, since the values of two applications may be different.

If abstracted into the form \#input, of the type () → T , the application
(\#input) () is controlled.

Output operation#output is the other black box in computation, of the following
type:

#output :: T → () (14)

Then, if abstracted into the form \(#output e) of the type ()→ (), the applica-
tion \(#output e) () is controlled.

Notice that #output and assignv are very similar; #output assigns the value
of the argument e to an external device and assignv assigns it to environment va-
riable v. That is why the attributed type (v T ) used for assign is just a source
tool, which identifies, where the argument value is assigned. But the types of both
#output and assignv are T → ().

5.2 Functional Approach Using Structured Application

Compound assignment compoundAssign assigns the values of arguments subse-
quently to environment variables v1, . . . , vn, provided that it is defined as follows:

compoundAssign :: v1 T1 → . . .→ vn Tn → ()
compoundAssign x1 . . . xn = ().

Replacing the unit value () by an expression e in the definition, the assigned va-
lues can be immediately used in its evaluation since they are represented by lambda
variables x1, . . . , xn.

Replacing the unit type () by a data type T in the type definition e yields the
data value, possibly even in a purely functional manner, which, however, is out of
our interest in this paper.

As a consequence of separating data, control and actions, programs with vi-
sible environments can be written very concisely and expressively using functional
programming approach.
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Instead of writing the statement sequence in reversed order using composi-
tion (◦), the execution of statement sequence is in the form of list of executed
statements, as follows

[ s1, . . . , sn ],

or in the form of the structured application of the list of abstracted statements
to the control list of the same length, as follows:

[ \ s1, . . . , \ sn ] [ (), . . . , () ].

In both cases, the result is control list [ (), . . . , () ] of the type [()].
The transformation from control lists to the unit value may be defined as follows

unit :: [()]→ ()
unit x = (),

to obtain the form equivalent to \sn ◦ . . . ◦ \s1, as follows

\(unit [ s1, . . . , sn ]),

in which sk are executions of statements, not their abstractions.
Of course, the abstraction above would be used as an argument of while or

if-then-else statements representing a block of imperative statements.
On the other hand, there is no need to restrict a programmer to this imperative

approach. The sequences of actions can be concatenated, reversed, mapped, and
transformed by user-defined transformers using well known functions for lists, such
as (++), reverse, map, etc.

It is beyond the scope of this paper to enumerate the variety of applications to
illustrate the advantages of this approach. Instead, we will introduce just a simple
example of the definition of a process f , in which sk are the statements as any
applications yielding the unit value. The example below is not very transparent,
and it is far from good programming style, since the aim is to illustrate the effect of
separated control rather than to present programming methodology.

Example 4. For the purpose of simplicity, suppose we have a set of processes de-
fined, that applications s1, s2, etc., are all of the types (). So, their abstractions \s1,
\s2, etc. are all of the types ()→ (). We will use them in the next program:

f :: Int→ Bool→ [()]
f n e = [ s1 | i← [1 . . n] ] ++

branch e
\([s2, s3, s4] ++ reverse [s5, s6])
\(reverse [\s7, \s8] [s4, s5])

where

branch :: Bool→ (()→ [()])→ (()→ [()])→ [()]
branch e x y | e = x ()

| otherwise = y ()
main :: Int→ Bool→ [()]
main = f 3 True
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Then main evaluates to the control list of eight unit values, yielding control list
of the type [()] as its value. Nothing will be displayed. During the evaluation the
actions are performed in the following sequence:

s1 ≺ s1 ≺ s1 ≺ s2 ≺ s3 ≺ s4 ≺ s6 ≺ s5.

In particular, as a result of partial evaluation, the list

[for \s1 \1 \n, s2, s3, s4, s6, s5]

is formed, in which (for \s1 \1 \n) of the type () is the application of for which
implements the list comprehension [ s1 | i ← [1 . . n] ] iteratively. (The for im-
plementation is beyond the scope of this paper; nevertheless, the approach is very
similar to that used for while.)

On the other hand, if the definition of main will be changed to main = f 3 False,
the result will be the sequence of seven actions, as follows:

s1 ≺ s1 ≺ s1 ≺ s4 ≺ s5 ≺ s8 ≺ s7.

In this case, reverse is applied to the (data) list of actions [\s7, \s8], producing
the list [\s8, \s7], while [s4, s5] is evaluated before used as the argument in structured
application [\s8, \s7] [s4, s5]. That is why partially evaluated list will be as follows:

[for \s1 \1 \n, s4, s5, s8, s7]

Clearly, the expressions of unit types must be evaluated eagerly, in contrast to
expressions of data types, that may be evaluated either eagerly or lazily.

In both cases, the first three actions are produced iteratively by list comprehen-
sion [ s1 | i← [1 . . n] ] representing for statement (except that it is of the type [()],
not of the type () as in imperative languages).

6 CONCLUSION

Instead of considering execution order of actions directly, we have used structured
approach to building control structures by applying constructors of control types to
control expressions. This allows us to separate the control from the function of com-
putation systematically. As we have shown, this yields more powerful programming
methodology than mixing function and control in step–by–step manner using an
imperative language. Although a programmer never manipulates the environment
variable directly, all environment variables are visible and able to reflect the data in
computation expressed in the form of expression.

Seemingly, this paper is weakly related to aspect-oriented paradigm, but as we
believe, all the above mentioned supports more transparent and expressive defini-
tions of pointcut designators than when they are based on an imperative language.
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Moreover, control constructors are named points in a program that semantics
is defined by the definition of a control type. For example, control triple ((), (), ())
defines sequential order of arguments, and control triple ((()), (()), (())) would define
parallel (i.e. independent by control) evaluation of arguments. Notice that (()) is
just a shortcut for the type Unit (), provided that algtype Unit a = Unit a is
defined.

Pipeline processing can be expressed using (([()]), ([()]), ([()]) as parallel evalua-
tion of lists, each being evaluated sequentially. Expressing farm (trivial) parallelism
is left to a reader. On the other hand, it is impossible to express massive parallelism
using algebraic types, since this type of parallelism is based on PFL arrays, that are
beyond the scope of this paper.

The unification of programming languages on a multiparadigm basis, in the way
which makes their connections to the specification methods precisely defined, me-
thods of behavioral analysis, etc., would be great contribution to the stability, exten-
sibility, an reliability of software production in the future. In this sense, our research
in integrating process functional and aspect-oriented paradigm is just a particular
experiment, which provides an opportunity to understand the needs for a systematic
development of multiparadigm languages.

Originally, the development of PFL language was not related to aspect paradigm
at all. The aim was just to provide an experimental language integrating purely
functional syntax and fully imperative semantics, to make environment visible to
a user, as a software engineering concept, opposite to monadic ’more mathematical’
approach.

On the other hand, as shown in this paper, using process functional paradigm
any grain of computation can be affected using additional control, and any data can
be reflected in an external environment in a very systematic way. The reflection
and control evidence are clearly the properties inevitable for adding new aspects
to a system. The contribution of this paper is in making them exploitable in large
scale of graining, which is a proposition for the mutual connection of the program
structure and events that are related to both static and dynamic aspects of compu-
tation. Mechanisms needed for both static and dynamic weaving at fine grains of
computation are currently under development, and the selection of events related to
dynamic aspects and their specification using temporal logic is the future.
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ISBN 80-7099-879-2.
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1992 he is with the Department of Computers and Informatics at
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