
Computing and Informatics, Vol. 25, 2006, 405–420

USING HEURISTIC SEARCH FOR SOLVING SINGLE
MACHINE BATCH PROCESSING PROBLEMS

Thanh-Tung Dang, Baltazár Frankovič, Ivana Budinská

Institute of Informatics
Slovak Academy of Sciences
Dúbravská cesta 9
845 07 Bratislava, Slovakia
e-mail: utrrtung@savba.sk, dang.tung@ul.ie

Ben Flood

Center for Telecomunications and Value-Chain-Driven Research
Trinity College Dublin
Dublin, Ireland

Con Sheahan

Enterprise Research Centre
University of Limerick
Limerick, Ireland

Bao-Lam Dang

Department of Design of Machines and Robots
Hanoi University of Technology
Hanoi, Vietnam

Manuscript received 6 June 2005; revised 12 May 2006
Communicated by Imre J. Rudas

Abstract. This paper deals with scheduling for single machine batch processing,
specifically the transporting problem with one vehicle. Capacity restrictions of

406 T.T. Dang, B. Frankovič, I. Budinská, B. Flood, C. Sheahan, B. L. Dang

the machine are considered and the main objective is to find an assignment of

jobs to achieve the minimal processing time of all batches, given these capacities.
A polynomial algorithm is proposed for solving the case in which the jobs are non-
preemptive, non-identical, and are known before the realization of the schedule.
The proposed algorithm is implemented and shown to yield better results than
alternatives from the literature.

Keywords: Scheduling, batch-processing, optimization, heuristic search

1 INTRODUCTION

In a batch processing machine sets of jobs are processed simultaneously as batches.
The processing time of each batch is the maximum processing time of all jobs in-
cluded in the batch. Each job has a set of weights, and a batch processing machine
will have limited capacity.

One application in which batch-processing machines are used is the transporta-
tion problem in manufacturing. An automatic guided vehicle (AGV) has to deliver
products or packages of materials or components to a number of workstations in dif-
ferent locations, in the shortest time possible. Workstations are located in a ring or
on a straight line. A vehicle is a batch processing machine and a job is the delivery
of materials from the store to a workstation. The time it takes to complete a batch
is independent of the number of jobs in the batch and here is related only to the
furthest location. The vehicles have limited size and can carry a limited weight. As
a result, each vehicle is only able to deliver combinations of products or packages
with total size and weight not exceeding the capacity of the vehicle. Augustine and
Seiden [3], and Karuno and Nagamochi [7] describe examples where a vehicle visits
a set of places to execute jobs. The limitations of the vehicle are not considered
in these cases, since a vehicle, for example a robot, carries out tasks and does not
deliver quantities.

There are many other practical applications which use batch-processing ma-
chines, for example, testing materials, electrical circuits, and heat-treating ovens.
An interesting example is the kiln machine in ceramic production plants, used to
produce a range of industrial components such as beads, bridges, pillars, connector
blocks, and others (http://www.ceramicx.com/). These components are then used
in a variety of different products. All of the components are processed in the kiln
machine, but each type of component requires different pressure and temperature.
Each component type has different dimensions and weight, and the kiln machine
has physical limitations, including limited dimension and a total weight restriction.
Hence, the components must be grouped into similar batches, so that the total
processing time is minimized.

This paper deals with the scheduling problem for a single machine, in general,
that can process jobs in batches, where various restrictions such as limited size of

Using Heuristic Search for Solving Single Machine Batch Processing Problems 407

machine, limited carrying capacity, etc., will be considered. The main objective is to
find a schedule for assigning non-identical and non-preemptive jobs to single batches
so that the total processing time is minimized.

2 RELATED WORK

If there are n jobs to be processed on m machines, then there are (n!)m possible
schedules, implying the problem is NP hard [8]. Much work has been done in batch
processing problems similar to the one presented here. [2] show that the problem
can be solved in polynomial time when the sequence of the jobs is predetermined.
[5] present a polynomial algorithm to solve the scheduling problem for the special
case when the weights of each job are equal.

Many papers discuss problems in which the processing time varies for different
batches, and is dependent on the jobs used to form the batches. [14] discuss the
scheduling problem for a flowshop of batch processing machines. The jobs are as-
sumed to be processed in the same order on each machine. That is, if two jobs i and j
are processed in two different batches on machine Mk, and i is processed before j,
then job i will always be processed not later than job j on every subsequent machine
in the flowshop. Such an assumption reduces the complexity of the scheduling prob-
lem, as the calculation only needs focus on the machines whose capacity restrictions
are bottlenecks of the flowshop. Dynamic programming (DP) is used to minimize
the completion time heuristically. DP guarantees that the optimal solution will be
found. However, this requires the exploration of all possible schedules. As a result,
DP has very high complexity and it can only be applied for small problems. When
jobs are non-preemptive, i.e. when jobs are processed, they have to be completed as
a whole, job’s processing cannot be paused or resumed, and jobs can be processed
in any order, then applying DP is infeasible for large sets of jobs.

Other heuristic solutions to the scheduling problem are are genetic algorithms
(GA) [6], and simulated annealing (SA) [9]. The quality of solutions achieved by
these methods depends strongly on the running time of the algorithms. The crucial
step in the algorithms based on the evolutional principle is generating neighboring
solutions, which takes a lot of time because of the process of recalculating the plan
parameters. In the algorithm presented in [9], two randomly chosen jobs from differ-
ent batches are exchanged with each other to create a new solution, if the machine
capacity will not be violated. One of the selected jobs is the longest processing job
in its batch. This is called a mutation process. The mutation process stops when
the ratio between the improvement of completion time and a ‘temperature’ parame-
ter, T , which is regularly decreased by a predefined constant in each cycle, is equal
to or larger than a predefined constant.

Another approach to the scheduling problem is constraint programming (CP) [4].
The problem is considered as a set of variables (i.e. starting time of each job, assign-
ment of each job to a batch) and set of constraints (i.e. all batch restrictions). The
task is to find an assignment to the variables to satisfy all constraints. The main

408 T.T. Dang, B. Frankovič, I. Budinská, B. Flood, C. Sheahan, B. L. Dang

principle of these methods based on CP is to combine constraint propagation and
backtracking search to find a solution.

[17] review methods for solving batch processing machines scheduling problems
based on the Lagrangian relaxation (LR) principle. LR is used to decompose the
problem into disjoint sub-problems. The schedules are achieved by iteratively solv-
ing those sub-problems exactly, but resulting usually in a sub-optimal total solution.
Two methods in LR are backward dynamic programming (BDP) and forward dy-
namic programming (FDP). [16] use backward dynamic programming to find a so-
lution for the batch processing machine scheduling problem with a single machine,
assuming that each batch can process maximally b jobs simultaneously, regardless
of their capacity. A similar approach is discussed in [12], considering a stochastic
batch service problem in which the inputs and outputs of each batch are mutually
dependent.

This paper deals with the scheduling problem for one batch-machine, but with
some significant differences, namely that jobs are both non-preemptive and non-
identical in size or weight. That is, the batch-machine has limited size and weight-
carrying capacity. The objective is to find a schedule which minimizes the sum of
completion times of all of the batches.

3 PROBLEM FORMULATION

There are n packages {Pi|i = 1, . . . , n}. Each package Pi, is represented by a triple
(si, wi, ti), where si and wi are respectively the size and weight of package Pi,
and ti denotes the delivery time from the store to a workstation. The delivery time
includes the time required for loading and unloading the jobs. All workstations are
treated with the same priority.

Consider a vehicle with size s and carrying capacity c. The objective is to
schedule the jobs the vehicle takes, the batches, so that the total delivery time of
all jobs is minimized. The vehicle can take new packages only when it finishes the
distribution of all the packages included in its current batch. The processing time of
each batch is defined by the longest delivery time among all packages in the batch, as
a result of the assumption that workstations are located in a ring or a straight line.
Let k be the number of batches, {Bi|i = 1, . . . , k} be the set of packages included in
batch i, and Ti be the processing time of batch i. The following equations describe
the problem constraints.

∀i 6= j ∈ [1, k] : Bi ∩ Bj = 0 (1)

⋃

i=1,...,k

Bi = {Pi| i = 1, . . . , n} (2)

∀i ∈ [1, k]: ∑

j|Pj∈Bi

sj ≤ S (3)

Using Heuristic Search for Solving Single Machine Batch Processing Problems 409

and ∑

j|Pj∈Bi

wj ≤ C (4)

Ti = max
j|Pj∈Bi

{tj}. (5)

The objective is to find an allocation of packages to single batches with a small
value of the total processing time of all batches T ,

T =
k∑

i=1

Ti (6)

Equations (1) and (2) guarantee that each package is only assigned to one batch.
Constraints (3) and (4) ensure that the total size and weight of all packages included
in each batch do not exceed the capacity restrictions of the vehicle. Equation (5)
specifies the processing time of each batch. Equation (6) expresses the total time
of the schedule which should be minimized (also known as the makespan of the
schedule).

If the purpose is only to minimize the number of batches and not T , the total
processing time, then the problem is a classical minimum bin packing problem.
The minimum bin packing problem considers only one parameter, the package size.
It is an NP-hard problem, but can be approximated within 1.5, i.e. there is an
approximation scheme that guarantees that

numBatchessol/numBatchesopt ≤ 1.5,

where numBatchessol and numBatchesopt are the numbers of batches achieved by
using the approximation scheme, and the optimal number of batches needed to
process all jobs, respectively [13]. In problems with low correlation between the
parameters of the jobs, independency between size, weight, and processing time,
algorithms for solving the minimum bin packing problem would require many mo-
difications in order to solve the problem considered here.

4 SOLVING BY USING HEURISTIC SEARCH

The jobs discussed here are packages to be delivered. All parameters describing the
packages and the vehicle are assumed to be known at the beginning of the solving
process. Therefore, the optimal solution could be found by exploring all the possible
schedules. The given packages are of equal priority, however, and the number of
potential solutions is theoretically very large, growing exponentially with the number
of packages. Heuristic search algorithms must be used for practically sized problems.
The quality of the solution achieved by using heuristic search algorithms depends
on the proposed algorithm and the length of time the heuristic algorithm is run for.

410 T.T. Dang, B. Frankovič, I. Budinská, B. Flood, C. Sheahan, B. L. Dang

Many methods for solving the minimum bin packing problem are based on the
principle that packages are sorted according to their size and, subsequently, packa-
ges are inserted one by one to each batch, not violating the capacity constraints.
This process continues until no packages remain unassigned. In order to minimize
the number of batches, methods typically try to insert as many packages to each
batch as possible. A solution with minimal amount of batches does not, however,
automatically guarantee minimal total processing time, the main objective of this
paper.

One way to reduce the total processing time is to group packages with close
delivery time together to the same batch. Because capacities of the vehicle, packages
with close delivery time are not necessarily added to the same batch. Denote the
number of batches created by numBatch. In order to reduce empty space in each
batch, it is useful, before creating a new batch, to determine whether the unallocated
package can be added to a previously created batch. This is the basis for our
proposed algorithm.

4.1 Algorithm 1 – Filling Empty Spaces in Batches (FES)

Phase 1

Sort packages according to their delivery time into {Pi|i = 1, . . . , n}. such that
ti ≥ ti+1, for i = 1, . . . , n.

Phase 2

Let numBatch = 1;
For i = 1, . . . , n1.

1. Search for a batch which has enough space for package Pi;

2. If no such batch exists, then create a new batch and add the current package
to the new batch and increment numBatch by 1. If a batch with enough
space for Pi exists, then go to step 3;

3. Add package Pi to the first empty batch found;

End For

Phase 3

Calculate the total time of the created schedule.

Claim 1. The FES algorithm has complexity O(n2).

Proof. Phase 1 has complexity O(n ∗ log(n)) by using the quick-sort algorithm. In
Phase 2, since the number of batches is less than or maximally equal to i, step 1
requires maximally i (≤ n) checking operations. Steps 2 and 3 require only one
operation. As a result, the cycle of Phase 2 requires maximally n2 operations. In
phase 3, the processing time of each batch is calculated in order to get the total time
of the schedule. Since the number of batches is maximally n, then this phase needs

Using Heuristic Search for Solving Single Machine Batch Processing Problems 411

maximally O(n) operations. Hence, the proposed FES algorithm has complexity
O(n2).

Although FES is a polynomial algorithm, in some cases it might be improved
by some simple modifications. For example, consider the situation in which the
vehicle has limited size S = 5, and limited carrying capacity C = 10. Packages are
given with the following parameters P1 = {2, 3, 10}; P2 = {2, 2, 8}; P3 = {3, 2, 6};
P4 = {3, 2, 6}; and P5 = {4, 2, 2}. These parameters express size, weight and
delivery time of each package, respectively. By applying FES the following plan will
be achieved. Plan 1: batch 1: {P1, P2}, batch 2: {P3}, batch 3: {P4}, and batch 4:
{P5}. The total time of this plan is 24(= 10 + 6 + 6 + 2). However, it is easy to
recognize that Plan 2: { batch 1: {P1, P3}, batch 2: {P2, P4} and batch 3: {P5}}
has better processing time (20 = 10 + 8 + 2).

FES misses the better solution, since after Phase 1, the order of each package is
fixed. Packages P1 and P2 are scheduled to one batch, forcing the rest of packages
to be assigned each to a different batch due to their size. Plan 2 can be identified, if
packages {P1, P2} are scheduled after packages {P3, P4}. This idea can be generalized
by the following rule. Before applying FES, some packages with small size (or small
weight) are temporarily removed from the calculation process, and after achieving
a temporary plan, the remaining packages are sequentially added to a single created
batch if there is enough empty space. On this basis, the following modified version
of the FES algorithm is proposed. 2

4.2 Algorithm 2 – Partial Filling of Empty Spaces in Batches (PFES)

Let k = 0.

Phase 1

1. Sort packages according to their size (or weight);

2. Add (n−k) packages with large size (or weight) to one set, called set 1. Add
the remaining k packages to the second set, called set 2;

3. Sort the packages in each set according to their delivery time.

Phase 2

1. Apply the FES algorithm to the packages in set 1;

2. Apply the FES algorithm to the packages in set 2.

Phase 3

1. Calculate the total time of the created schedule;

2. If k < n, then let k = k + 1 and return to Phase 1. If k = n, stop.

Claim 2. PFES has complexity ∼= O(n3).

412 T.T. Dang, B. Frankovič, I. Budinská, B. Flood, C. Sheahan, B. L. Dang

Proof. By using the quick-sort algorithm, it can be seen that Phase 1 of PFES has
complexity ∼= O(n ∗ log(n)). Theorem 1 shows that FES has complexity ∼= O(n2).
As a result, Phase 2 requires maximally n2 operations. Since the number of batches
is maximally n, Phase 3 needs maximally n operations. Finally, each cycle of PFES
has complexity ∼= O(n2), and there are n such cycles. It follows that PFES has
complexity ∼= O(n3).

The FES algorithm is a special case of PFES, where k = 0. The PFES algorithm
will always achieve at least as good a solution as the FES algorithm. The following
section describes simulation results of the proposed algorithms, and compares the
performance of the algorithms with other published algorithms. 2

5 SIMULATION RESULTS AND COMPARISON

All of the algorithms used here are implemented in Java and have been verified
in a number of experiments. The SA algorithm, presented in [9], is selected for
comparison. The other method used for comparison is the BDP algorithm, presented
in [12]. In the BDP algorithm, the original set of packages is divided into two disjoint
sets, and DP is used to find an optimal schedule in each set. The final solution is
achieved by combining the partial schedules. If the number of packages is large,
BDP can also be recursively applied.

The numerical results of the simulations are shown in Table 1. The first column
shows the number of packages. The next columns show the completion times of
the schedules achieved by the four algorithms implemented and the running time of
each algorithm, measured by milliseconds. The completion time of each schedule is
measured by the same units, the delivery time of each package.

The package sizes and weights are generated randomly from a uniform distribu-
tion on the interval [1, 30]. The delivery time of each package is generated randomly
from a uniform distribution on the interval [1, 50]. The vehicle considered is limited
to 50 size units and 80 weight units. The number of packages is in the range 50
up to 104. All experiments are tested on the same PC with a 733MHz, Pentium 3
processor.

The simulation results show that when the number of packages n is small (up
to 100), BDP is realizable for two disjoint sets. However, when the number increases
to higher than 103 or more, recursive application of BDP is necessary in order
to reduce the running time. The DP algorithm can explore up to numPackage
different configurations, where (numPackage) ! is the number of packages included
in each disjoint part. Thus each disjoint part is constrained to include maximally
50 packages to make solution time practical.

The SA algorithm theoretically can run for a very long time before the stop
condition is matched. In order to compare the quality of solutions with respect to
running time, the results of SA and BDP are recorded after FES and PFES have
finished. These results are shown in Table 2.

Using Heuristic Search for Solving Single Machine Batch Processing Problems 413

In order to get a complete schedule at any time, BDP is implemented as follows.
At the beginning, the original set of packages is divided into a number of small
subsets. Each subset involves from 5 to 10 packages on average, depending on the
size of the original set. DP is applied to find an optimal schedule for each single
subset. The achieved schedules are merged to complete the total schedule. If the
time available for running does not expire, these subsets are sequentially merged
and the whole process applied again.

FES PFES SA BDP

n Plan

compl.
time

Running

Time

Plan

compl.
time

Running

Time

Plan

compl.
time

Running

Time

Plan

compl.
time

Running

Time

50 285 1 285 39 313 136 460 200

100 583 3 581 112 696 133 1 022 283

200 973 9 973 168 1 154 216 1 885 466

300 1 544 18 1 540 181 1 755 548 2 876 978

500 2 634 25 2 626 184 3 017 1 519 5 048 3 096

1 000 5 259 86 5 229 872 5 944 3 929 9 970 11 346

2 000 9 954 96 9 803 4 654 11 240 9 720 19 290 68 529

5 000 25 626 237 25 623 7 299 29 168 12 584 47 900 399 820

104 52 941 691 52 741 80 980 59 120 116 050 99 135
2 919 800

Table 1. Experiment results of all selected algorithms

Numerical testing for practical data sets shows that both proposed algorithms
achieve significant improvements over SA and BDP, particularly when the number
of packages is large. Both the SA and BDP algorithms achieve solutions of similar
value to FES and PFES, but after running for a much longer time. This leads to
a conclusion that FES and PFES are appropriate algorithms for solving large-scale
cases, when the number of packages is large and the time for running is restricted.

The reason that BDP does not achieve solutions of the same quality as FES and
PFES is that the original problem is divided into a large number of sub-problems.
The solution of each sub-problem may be optimal, but merging the achieved partial
solutions may not yield a good total solution. This is because the empty slice left
within the created batches is too large. The total empty slice can be reduced when
the number of packages included in each sub-problem increases, but it results in
exponentially increasing the running time.

BDP could be parallel processed, since it involves solving independent sub-
problems. However, parallel processing of BDP does not reduce the complexity
of this approach; it only reduces the time of running by solving many independent
tasks simultaneously.

The quality of solution achieved by SA depends on the first generated schedule.
As the number of cycles increases, the average improvement in the solution per cycle
decreases. In the simulations, SA required a lot of time to search before it achieved

414 T.T. Dang, B. Frankovič, I. Budinská, B. Flood, C. Sheahan, B. L. Dang

FES PFES SA BDP

n Plan
compl.
time

Plan
compl.
time

Plan
compl.
time

Plan
compl.
time

Running
Time
(ms)

50 285 285 345 489 39

100 583 581 756 1 422 117

200 973 973 1 357 1 785 168

300 1 544 1 540 1 965 3 176 181

500 2 634 2 626 3 214 5 348 184

1 000 5 259 5 229 6 440 10 950 872

2 000 9 954 9 803 12 238 22 290 4 654

5 000 25 626 25 623 31 062 50 404 7 299

104 52 941 52 741 63 282 11 239 80 980

Table 2. Experiment results of all selected algorithms after the same time of running

solutions as good as those found by FES or PFES. On the other hand, SA is an
anytime algorithm, able to provide a solution whenever the program stops. For this
reason, SA is suitable for instances in which the time allotted to find a schedule is
not fixed in advance.

When the number of packages is large, more than 1 000, the simulation results
(see Tables 3, 4 and 5) show that PFES does not achieve significantly better results
than FES. PFES achieved solution with about 0.1% better quality. This improve-
ment is not much, given the amount of extra time required to run PFES. In general,
PFES takes much more time than FES, about 10–20 times more, to complete its
search. For illustration, both algorithms were tested with 5000 packages and the
quality of the achieved solutions is compared and shown in Figure 1. Figure 2 shows
a comparison of the running time of these algorithms. More numerical results of
experiments with large number of packages are shown in Tables 3, 4 and 5. Applying
FES seems to be the most suitable approach to use when solving cases with large
numbers of packages

FES PFES SA BDP

n Plan
compl.
time

Running
Time

Plan
compl.
time

Running
Time

Plan
compl.
time

Running
Time

Plan
compl.
time

Running
Time

1 000 5 259 86 5 229 872 5 944 3 929 9 970 11 346

1 000 5 296 35 5 289 970 6 084 4 206 10 265 11 427

1 000 5 100 28 5 078 917 5 709 4 134 10 097 10 838

1 000 5 010 94 4 990 807 5 692 3 819 9 648 10 635

Table 3. Simulation results with 1 000 packages

Using Heuristic Search for Solving Single Machine Batch Processing Problems 415

Comparison between FES and PFES

25300

25400

25500

25600

25700

25800

25900

26000

26100

26200

co
m

p
le

ti
o

n
 t

im
e

o
f

sc
h

ed
u

le

FES PFES

FES 25626 26129 25910 25768

PFES 25623 26056 25862 25754

1 2 3 4

Fig. 1. Comparison of plan completion time between FES and PFES with 5 000 packages

Time running (logarithmic scale)

1

10

100

1000

10000

100000

(m
ill

is
ec

o
n

d
s)

FES PFES

FES 237 228 304 256

PFES 21897 21969 23191 24704

1 2 3 4

Fig. 2. Comparison of the running time between FES and PFES with 5 000 packages

416 T.T. Dang, B. Frankovič, I. Budinská, B. Flood, C. Sheahan, B. L. Dang

FES PFES SA BDP

n Plan
compl.
time

Running
Time

Plan
compl.
time

Running
Time

Plan
compl.
time

Running
Time

Plan
compl.
time

Running
Time

2 000 9 954 96 9 803 4 654 19 290 9 720 11 240 68 529

2 000 10 412 77 10 361 4 994 19 480 10 144 11 563 56 806

2 000 10 355 57 10 299 4 985 19 642 8 723 11 446 54 158

2 000 10 329 83 19 397 5 913 19 663 11 076 11 633 62 643

Table 4. Simulation results with 2 000 packages

FES PFES SA BDP

n Plan

compl.
time

Running

Time

Plan

compl.
time

Running

Time

Plan

compl.
time

Running

Time

Plan

compl.
time

Running

Time

5 000 25 626 236 25 613 7 299 29 168 12 584 47 900 399 820

5 000 26 129 228 28 956 7 323 29 639 12 272 49 227 399 636

5 000 25 910 304 25 862 7 730 29 641 11 606 48 374 432 436

5 000 25 768 256 25 754 8 235 29 898 11 492 48 509 417 261

Table 5. Simulation results with 5 000 packages

6 DISCUSSION AND FUTURE WORK

A very important area in industry where batch processing machines are used is in
ceramics manufacturing (http://www.ceramicx.com). Many different components
are processed by using the same machine, for example the kiln machine, as mentioned
in Section 1. Another typical example of using batch processing machine is for the
distribution of milk or fresh food. Small vehicles are usually used to distribute milk
or fresh food in order to save fuel consumption.

Discussions with practitioners of some of these companies have highlighted im-
portant facts that should be incorporated into the solution. Food distribution prob-
lems differ from the AGV case studied in this paper in some important ways. The
first difference is that the time to travel between places is not constant. The time
variable ti associated with each package Pi is a continuous variable with some, often
predictable, distribution. The distribution depends strongly on both the routes
taken between the producer and the customers and on the time of day the route
is traveled. The second major difference in food distribution is that the loading
and unloading time is variable, and, there is a set-up time between batches that is
needed for preparing packages and loading them into vehicles. These variables are to
be incorporated into our future research. Unlike the AGV case, in the case of food
distribution, orders are usually repeated periodically. As a result, many scheduling
problems are almost perfectly repeated. The periods of the orders generally de-
pend on some important factors like time, unit price of products, and some external
events, for example, changes of delivery conditions, fuel cost, etc. Identification of

Using Heuristic Search for Solving Single Machine Batch Processing Problems 417

these periods allows manufacturers to predict the short-term future demands, and
helps manufacturers to create robust production plans. Using successful schedules
for similar previous cases, and including only minor modifications, can save consi-
derable time when generating a schedule. Case-based reasoning (CBR, [1]), is suited
to these types of problems.

Some useful comments about the kiln machine in the ceramics company were
provided, due to particular characteristics of that machine. Setting-up in the kiln
machine takes a considerable time, as a result of that the kiln machine has to be
warmed up to specific temperature. Cooling down the temperature of the kiln
machine also takes a certain time. Additional factors related to job’s execution
like input temperature and pressure must be considered in the scheduling solution.
Batches consisting of jobs that will be processed at the same temperature and pres-
sure should be processed together to save time setting up and unloading the kiln
machine.

In some circumstances, in order to accelerate distribution services vehicles with
small capacity can be used. However, fuel consumption increases considerably be-
cause vehicles may have to travel longer routes. Choosing appropriate vehicle ca-
pacity to save the total fuel costs. This problem will be incorporated into our future
research.

7 SUMMARIZATION

This paper deals with the scheduling problem for single batch-processing machine,
where the machine capacity restrictions are considered. Two algorithms have been
presented for solving instances in which jobs (packages for transporting) are non-
preemptive and not identical in size or weight. Both the proposed algorithms are
polynomial and applicable for solving large-scale problems. Experimental results
show the significant improvements of the proposed algorithms over some other pub-
lished ones. Some simplifications are assumed. For example, all jobs are available
at the time zero and their deadline is still omitted. Considering these constraints in
the scheduling problem is part of the objective of our future research. The next step
of our research is to schedule the batches with minimal completion time, assuming
that each job is associated with specific deadline.

Acknowledgement

This work has been partially funded by Slovak national agencies Vega, under project
No. 2/4148/25 and APVV under contract No. 51-024604 and 51-011602. It has also
been partially supported by the Irish Research Council for Science, Engineering and
Technology (IRCSET).

418 T.T. Dang, B. Frankovič, I. Budinská, B. Flood, C. Sheahan, B. L. Dang

REFERENCES

[1] Aamodt, A.—Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodo-
logical Variations, and System Approaches. Artificial Intelligence Communications,
IOS Press, Vol. 7, 1994, No. 1, pp. 39–59.

[2] Albers, S.— Brucker, P.: The Complexity of One-Machine Batching Problems.
Discrete Applied Mathematics Vol. 47, 1993, pp. 87–107.

[3] Augustine, J. E.—Seiden, S. S.: Linear Time Approximation Schemes for Vehicle
Scheduling. Theoretical Computer Science, Vol. 324, 2004, Vol. 2–3, pp. 147–160.

[4] Baptiste, P.—LePape, C.— Nuijten, W.: Constraint-Based Scheduling. Kluwer
Academic Publishers, Boston Hardbound, ISBN 0-7923-7408-8, 2001.

[5] Coffman, Jr.E. G.—Yannakakis, M.— Magazine, M. J.—Santos, C.: Batch
Sizing and Sequencing on a Single Machine. Annals of operation research, Vol. 26,
1990, pp. 135–147.

[6] Cheraghi, S.H.—Vishwaram, V.—Krishnan, K.K.: Scheduling a Single Batch-
Processing Machine with Disagreeable Ready Times and Due Dates. International
Journal of Industrial Engineering, Vol. 10, 2003, No. 2.

[7] Karuno, Y.—Nagamochi, H.: 2-Approximation Algorithms for the Multi-Vehicle
Scheduling Problem on a Path with Release and Handling Times. Discrete Applied
Mathematics, Vol. 129, 2003, No. 2–3, pp. 433–447.

[8] Kasin, O.—Mason, S. J.: Scheduling Batch Processing Machines in Complex Job
Shops. Proceedings of the 2001 Winter Simulation Conference, WSC ’01.

[9] Melouk, S.—Damodaran, P.—Chang, P.Y.: Minimizing Makespan for Single
Machine Batch Processing with Non-Identical Job Sizes Using Simulated Annealing.
Int. Journal of Production Economics, Vol. 87, 2004, pp. 141–147.

[10] Soner, H.M.—Touzi, N.: Stochastic Target Problems, Dynamic Programming,
and Viscosity Solutions. SIAM Journal on Control and Optimization, Vol. 41, 2002,
No. 2, pp. 404–424. Industrial Engineering Applications and Practice: User’s Ency-
clopedia. In CD, ISBN: 0-9654599-0-X.

[11] Papadaki, K.—Powel, W.B.: Exploiting Structure in Adaptive Dynamic Pro-
gramming Algorithms for a Stochastic Batch Service Problem. European Journal of
Operation Research, Vol. 142, 2002, No. 1, pp. 108–127.

[12] Simchi-Levi, D.: New Worst Case Results for the Bin Packing Problem. Naval Res.
Logistics 41, 1994, pp. 579–585.

[13] Sung, C. S.—Choung, Y. I.: Minimizing Makespan on a Single Burn-In Oven in
Semiconductor Manufacturing. European Journal of Production Research, Vol. 120,
2000, pp. 559–574.

[14] Sutton, R.—Barto, A.: Reinforcement Learning. The MIT Press, Cambridge,
Massachusetts, 1998.

[15] Wagelmans, A. P.M.—Gerodimos, A.E. (2000): Improved Dynamic Programs
for Some Batching Problems Involving the Maximum Lateness Criterion. Operations
Research Letters 27, pp. 109–118.

Using Heuristic Search for Solving Single Machine Batch Processing Problems 419

[16] Wang, J.—Luh, P.B.—Zhao, X.—Wang, J.: An Optimization-Based Algorithm

for Job-Shop Scheduling. A Journal of Indian Academy of Sciences, A Special Issue
on Competitive Manufacturing Systems, Vol. 22, 1997, No. 2, pp. 241–256.

Thanh-Tung Dang Ing. (M. Sc.) 1997; Ph.D. 2003 in In-
stitute of Informatics, SAS. His research interests include MAS,

planning and scheduling, reasoning and knowledge management.
His current project is using MAS for intelligent manufacturing
and enterprise modeling. He is currently employed in a postdoc-
toral position in the Enterprise Research Centre, based in the
University of Limerick.

Baltazár Frankovi�
 is a member of IFAC-IFIP TC Neumann
Society Budapest. He is a member of the Central European
Academy of Sciences and Arts. He acts as a member of the Edi-
torial Board of several journals, e.g. Computing and Informatics.
His current research interests include modeling and simulation
of FMS, adaptive and learning control in DEDS, MAS.

Ivana Budinsk�a graduated from Slovak Technical University,
Faculty of Electrical Engineering in 1987, and received the Ph.D.

degree from Institute of Informatics, SAS, in 2003. Her research
interests are in DEDS, control theory and MAS.

Ben Flood B. Sc. 2002 in applied mathematics and computing
from the University of Limerick. Ph.D. in statistics 2006. His
research interests are in statistical decision theory in moderately
complex systems. He is currently employed in a postdoctoral
position in the Centre for Telecommunications Value-Chain Re-
search (CTVR) based in Trinity College Dublin, funded by Sci-
ence Foundation Ireland (SFI).

420 T.T. Dang, B. Frankovič, I. Budinská, B. Flood, C. Sheahan, B. L. Dang

Con Sheahan received his Ph.D. degree in 1996. His research

interests are in the domain of manufacturing resource optimiza-
tion, including operations research, discrete mathematics and
complexity theory.

Bao-Lam Dang received a M. Sc. degree on automation in 1998

at Slovak University of Technology, Bratislava, Slovakia and a
M. Sc. degree on mechanics of machines in 2004 at Hanoi Uni-
versity of Technology, Viet Nam. His research interests are in
kinematics, dynamics, control and simulation of robotic systems.

