
Computing and Informatics, Vol. 25, 2006, 571–595

LACOLLA: A MIDDLEWARE TO SUPPORT
SELF-SUFFICIENT COLLABORATIVE GROUPS

Joan Manuel Marquès

Universitat Oberta de Catalunya, Department of Computer Sciences

Av. Tibidabo, 39-43, 08035

Barcelona, Catalonia, Spain

e-mail: jmarquesp@uoc.edu

Leandro Navarro

Universitat Politècnica de Catalunya, Department of Computer Architecture

Jordi Girona, 1-3, D6-105, Campus Nord

Barcelona, Catalonia, Spain

e-mail: leandro@ac.upc.edu

Revised manuscript received 19 June 2006

Abstract. In a decentralised and distributed environment, collaboration requir-
ing the sharing and building of applications is a complex task. For this reason,
we propose LaCOLLA, a fully decentralised peer-to-peer middleware that aims to
simplify the process of incorporating collaborative functionalities into any appli-
cation. It provides applications with certain essential collaborative functionalities:
dissemination of information, storage, presence and transparency of location, ma-
nagement of members and groups, and execution of tasks. A distinguishing feature
of LaCOLLA is that participants provide resources for the benefit of the group.
This enables collaboration activities to take place in a collective environment using
only the resources provided by participants in the collaboration (self-sufficiency).
In this paper we present and evaluate the architecture of LaCOLLA, its API, and

key aspects of its implementation.

Keywords: Collaborative middleware, peer-to-peer collaborative systems, peer-to-
peer middleware, LaCOLLA



572 J. Marquès, L. Navarro

1 INTRODUCTION

One of the most significant benefits of the Internet has been the improvement in
people’s interaction and communication. E-mail, Usenet News, Web and Instant
Messaging are four of the most well-known and successful examples of this. Inter-
net has allowed for the creation of asynchronous virtual communities where mem-
bers interact on a many-to-many basis despite organisational and technical barriers.
Many-to-many interaction, uncommon in the physical world, has transformed the
way people learn, work together, find other people with common interests and share
information, etc. In particular, collaboration has benefited from this many-to-many
communication in ways hard to imagine only fifteen or twenty years ago [1]. Ne-
vertheless, non-specific collaborative applications include only a few collaborative
functionalities due to the complexity derived from:

The nature of the interaction: participants are dispersed, many-to-many col-
laboration, people participate in the collaboration at different times, the same
person connects from different locations at different times of the day (home,
work).

Idiosyncrasy of groups: several issues are involved, such as flexibility, dynamism,
decentralisation, autonomy of participants, different kinds of groups (long-term,
task-oriented, weak commitment groups, etc.), ownership of resources, etc.

Technical and administrative issues: participants use different devices (desk-
top computer, notebook, PDA, mobile phone, etc.). Guarantees for the avail-
ability of information of the group, interoperability among applications, security
aspects (authorisation, access rights, firewalls), participants belonging to differ-
ent organisations or departments with different authorities that impose rules
and limits to aid administration, internal work and individual use, etc.

Development of applications that take into account these requirements is com-
plex and costly; therefore applications that incorporate collaborative functionalities
focus only on a few key aspects while neglecting others.

The most widely used model is the client/server centralised solution with re-
sources used during the collaboration provided by a third-party agent (e.g. a service
provider) or by one of the members of the group (i.e. a participant offers their
computer as a server). Client/server solutions, or more generally speaking, all solu-
tions that require some sort of centralisation, are simple to implement but impose
technical, administrative and economic restrictions on use that interfere with the
interactive nature and idiosyncrasy of the groups.

In contrast, Peer-to-Peer (P2P) systems are distributed systems formed only by
the networked PCs of the participants, where all the machines share their resources
(computation, storage and communication), all act both as servers and clients and
there is no special node in charge of coordinating the network: coordination is the
result of the collective behaviour. P2P systems are self-sufficient and self-organising,
applying protocols in a decentralised way to search and locate, and sharing the



LaCOLLA: A Middleware to Support Self-sufficient Collaborative Groups 573

burden of object transfers. As resource provision and coordination is not assigned to
a central authority, all participants have similar functionalities and there is no strict
dependency on any single participant [2]. Though most popular P2P applications
look only to satisfy the needs of the sum of individual interests and are focused on
sharing, their decentralised behaviour has helped many people realise the potential
of this model in groups of communities that want to operate without depending on
third-party agents.

In this paper we present LaCOLLA, a fully decentralised P2P middleware for
building collaborative applications that provides general-purpose collaborative func-
tionality using only the resources provided by participants.

LaCOLLA pays special attention to the autonomy of its members and to the
self-organisation of its components. Another key aspect is that resources and ser-
vices are provided by its members (avoiding dependency on third-party agents).
This provision of resources and services for the benefit of the group enables col-
laborative activities to take place in a collective environment only using resources
provided by participants in the collaboration. The management of resources in this
collective environment has three main characteristics: a) resources are provided by
participants, b) each participant can decide to disconnect a resource from the group
at any moment, and c) while a resource is connected to a group, the group is in
charge of managing the resource and group policies are in control of the resource.
This cession of resources for the benefit of the group makes sense in environments
where participants share some collective motivations, as in student projects and
practicals, non-profit organisations (NGO, society, club, etc.), research groups with
researchers from different organisations, or groups within a company. Conversely,
they are not conceived to support groups that do not share a spirit of mutual col-
laboration. Therefore, some additional mechanisms should be implemented to avoid
free-riding and provide security guarantees.

LaCOLLA is available on the Web at http://lacolla.uoc.edu/lacolla/. It
has an open-source licence and is written in Java.

The rest of the paper is organised as follows: Section 2 presents the requirements
that a middleware for applications that support asynchronous and synchronous-like
collaborative activities should satisfy. Section 3 describes the functionality and
architectural aspects of LaCOLLA, along with its API. Section 4 describes the im-
plementation of the main internal mechanisms. Section 5 presents the experimental
results. Section 6 relates LaCOLLA to other works, and the paper concludes with
Section 7.

2 REQUIREMENTS FOR A MIDDLEWARE TO SUPPORT
ASYNCHRONOUS COLLABORATIVE ACTIVITIES

Collaborative systems have often been based on a temporal aspect of sharing: appli-
cations in which users share some “thing” at the same time are called synchronous.
Applications in which the users share that thing at different times are called asyn-



574 J. Marquès, L. Navarro

chronous. Most applications fall in between. LaCOLLA is mainly designed to sup-
port asynchronous applications. However, because of how it is implemented, it can
support low- or medium-interactivity synchronous applications. In this section we
present the basic requirements that a middleware system should satisfy to facilitate
the development of asynchronous and synchronous-like applications [3]:

Decentralisation: no component is responsible for coordinating other components.
No information is associated to a single component. Centralisation leads to
simple solutions, but critical components restrict participants’ autonomy.

Self-organisation of the system: the system should be able to function auto-
matically without requiring external intervention. This requires the ability to
reorganise its components spontaneously when faced with failures or dynamism
(connection, disconnection or mobility).

Oriented to groups: the group is the unit of organisation.

Group availability: ability of a group to continue operating with some com-
ponents malfunctioning or unavailable. Replication (of objects, resources or
services) can be used to improve availability and quality of service.

Individual autonomy: members of a group freely decide what actions to carry
out, what resources and services to provide, and when to connect or dis-
connect. Our characterisation of individual autonomy does not mean that
a member has a local copy of information for use in disconnected mode.

Group’s self-sufficiency: a group must be able to operate with resources
provided by its members. In future versions, we plan to extend the self-
sufficiency concept to allow groups to share resources among groups or to
connect to commercial cluster providers when needed.

Allow sharing: several applications should be able to use information belong-
ing to a group (e.g. events, objects, presence information, etc.).

Security of the group: guarantee the identity and the selective and limited
access to shared information (protection of information, authentication).

Availability of resources: provide mechanisms to use resources (storage,
computation, etc.) belonging to other groups (public, rented, interchange
between groups to improve availability, etc.)

Internet-scale system: formed by several components (distributed). Members
and components can be at any location (dispersion).

Scalability: in number of groups, guaranteed because each group uses its own
resources.

Universal and transparent access: participants can connect from any computer
or digital device, regardless of the connection location or device (e.g. a web
browser).



LaCOLLA: A Middleware to Support Self-sufficient Collaborative Groups 575

Transparency of location of objects and members: applications do not
have to worry about where the objects or members of the group are. Applica-
tions use a location-independent identifier and can access different instances
as people move, peers join and leave, or any other condition changes.

Support disconnected operational mode: be able to work without being
connected to the group. Very useful for portable devices.

3 LACOLLA

Four main abstractions have inspired the design process for LaCOLLA: orientation
to groups; members knowing what is happening in the group; storage using resources
provided by participants, and tasks that can be executed using the computational
resources provided to the group by its members. These abstractions take shape in
the functionality described in 3.1.

3.1 Functionality

LaCOLLA provides the following functionality to applications [3]:

Communication and coordination by “immediate” and consistent dis-
semination of events: information about what is occurring in the group is
spread among members of the group as events. All connected applications (and,
thus, members) receive them immediately as they occur or, in the worst case,
within a time limit seen to be sufficiently immediate. Disconnected members
receive this information during the re-connection process. This immediate and
consistent dissemination of events helps applications to keep members up-to-
date. It also helps applications coordinate and communicate in a decentralised
and distributed manner.

Virtual strong consistency in the storage of objects: components connected
to a group have access to any object. Objects are replicated in a weakly-
consistent optimistic manner. Therefore, when an object is modified, different
replicas of the object will be inconsistent for a while. However, LaCOLLA has
an internal mechanism to resolve the location of objects. The latest version of
the object will almost always be provided (see the validation section).

Execution of tasks: members of a group (or the applications they use) can submit
tasks to be executed using the computational resources provided to the group.
This functionality is in an initial stage. In the current version tasks are Java
programs. It allows members to benefit from unused partners’ computational
resources. We are currently extending it to support the deployment of nomadic
group services. Examples of this kind of service include a service to coordinate
dynamic and volatile aspects of a synchronous collaborative activity, a group-
level session awareness service, a publish/subscribe service, or any other service
that can add value to groups.



576 J. Marquès, L. Navarro

Presence: know what components and members are connected to the group.

Location transparency: applications do not have to know the location (IP ad-
dress) of objects or members. LaCOLLA resolves them internally.

Instant messaging: send a message to a subgroup of group members.

Management of groups and members: The system can administrate groups
and members by adding, deleting or modifying information about them.

Disconnected mode: allow applications to operate offline. During re-connection,
the middleware automatically propagates the changes and synchronises them.
This functionality is not implemented in the current version.

3.2 Architecture

The architecture of LaCOLLA [3] is organised into five kinds of components (Figure
1). Each member decides to instantiate any number of the following components in
the peer used:

User Agent (UA): interacts with applications (see Section 3.4 for a more de-
tailed explanation). Users (members of the group) are represented in LaCOLLA
through this interaction.

Repository Agent (RA): stores objects and events generated in the group per-
sistently.

Group Administration and Presence Agent (GAPA): in charge of the ad-
ministration and management of information about groups and their members.
It is also in charge of the authentication of members.

Task Dispatcher Agent (TDA): distributes tasks to executors. If all executors
are busy, the TDAs queue tasks. It also ensures that tasks are executed even if
the UA and member disconnect.

Executor Agent (EA): executes tasks.

Fig. 1. LaCOLLA peer



LaCOLLA: A Middleware to Support Self-sufficient Collaborative Groups 577

Components interact with each other autonomously, i.e. each component behaves
according to the local information and no component coordinates other components.
The coordination among the components connected to a group is achieved through
internal mechanisms. Internal mechanisms [3] are grouped into: events, objects,
tasks, presence and location, groups, members and instant messaging. Table 1
describes which components are involved in each type of mechanism. In Section 4
we provide a more detailed explanation of how LaCOLLA works.

Types of Mechanism UA RA GAPA TDA EA

Events X X – – –

Objects X X – – X

Tasks X – – X X

Presence and Location X X X X X

Instant Messaging X – X – –

Groups X X X X X

Members X – X – –

Table 1. Types of mechanism implemented by each kind of component

3.3 An Example of a LaCOLLA Group

Figure 2 is a snapshot of a collaborative group using applications connected to La-
COLLA. Each member provides the group with whatever resources she/he chooses.
This decision depends on the capacity and connectivity of the computer the mem-
ber is using and members’ degree of involvement in the group. In this example, two
members (C and D) provide all possible components (RA, GAPA, EA and TDA).
Another two members (B and F) provide all components except execution compo-
nents (RA and GAPA). Three of the members (A, E and G) provide no resources
to the group.

Member D (represented by dotted lines) is not connected to the group at this
moment in time. However, her/his peer is connected to the group, providing it with
all its resources. This means that all the events and some of the objects generated
could be stored on her/his LaCOLLA peer (RA), tasks could be executed or planned
using its resources (EA, TDA), users could be authenticated by their peer (GAPA),
and member and group information could be also stored on it.

Applications connected to the group share presence, members and group infor-
mation. Thus, users need not register for each application. Presence information is
provided even if they are using different applications. LaCOLLA middleware also
aids the sharing of information among applications (if compatible formats are used)
due to the fact that information, events and objects are stored in LaCOLLA storing
resources (RA).

A collaborative learning group in a virtual university such as the Open University
of Catalonia (UOC) could take the form shown in the figure. The learning project



578 J. Marquès, L. Navarro

Fig. 2. Snapshot of a collaborative group that collaborates using three applications: file
sharing, asynchronous forum and instant messaging

could be software development or a case study. In such a case, a member of the group
initiates the group (by providing at least one RA and one GAPA) and invites other
members (who contribute more resources and components to the group). From that
point on, the group operates using the resources provided by its members. When
any member (including the initiator) disconnects its resources or is removed from
the group, the group remains operational. The group exists as long as members
provide resources, and ceases to exist when they stop doing so.

LaCOLLA is independent of the applications that use its functionality. Many
applications involved in collaborative tasks (not just the kind presented in the figure)
could benefit from the collaborative functionality that LaCOLLA provides.

3.4 LaCOLLAs API

As can be seen in Figure 3, the LaCOLLA API is divided into two parts. One part
is used by applications to invoke LaCOLLA functions on the UA where they are
connected (invoking functions in UASideApi). The other part is used by LaCOLLA
to make notifications to applications (invoking functions in ApplicationSideApi).
Table 2 and Table 3 contain the list of functions. In the current version, Java RMI



LaCOLLA: A Middleware to Support Self-sufficient Collaborative Groups 579

is used to publish and invoke each part of the API. However, to use the API from an
application not developed in Java simply requires building a module that translates
parameters and results to and from Java. For instance, if the application is written
in C/C++, JNI (Java Native Interface) can be used.

Fig. 3. The LaCOLLA API has two parts. Applications use the UA’s API to ask La-
COLLA to carry out actions. The other part of the API is provided by the applica-
tions to the UA and is used to notify applications of events or information. The UAs
invoke functions in the ApplicationSideApi class. This class is provided with the
middleware and must be extended to any application that wants to use LaCOLLA.

4 LACOLLA INTERNAL IMPLEMENTATION

This section outlines the basics for the implementation of LaCOLLA’s internal me-
chanisms. They offer the collaborative functionality described in Section 3.1 in
a decentralised and self-sufficient way. Internal mechanisms are implemented using
optimistic replication techniques. Optimistic techniques allow users to access any

replica at any time, based on the optimistic presumption that conflicting updates are

rare, and that the contents are consistent enough with those on other replicas [4].
These techniques are especially interesting in our case because they provide avail-
ability, flexibility, autonomy of components and quick feedback in dynamic and
decentralised environments. In the current implementation, components commu-
nicate by passing messages. Messages are serialised Java objects sent using TCP
sockets.



580 J. Marquès, L. Navarro

Category Function Description

Presence
login Connects user to group.
logout Disconnects user from group.

whoIsConnected What members are connected to the group?

Events
disseminateEvent Sends an event to all applications belonging

to group.
eventsRelatedTo What events have occurred to a specific ob-

ject?

Objects
putObject Stores an object into LaCOLLA.
getObject Obtains an object stored into LaCOLLA.
removeObject Removes an object stored in LaCOLLA.

Tasks
submitTask Submits a task to be executed by computa-

tional resources belonging to group.
stopTask Stops a task.
getTaskState What is a task’s state?

Instant
Messaging

sendInstantMessage Sends a message to specified members of the
group.

Groups

addGroup Creates a new group.
removeGroup Removes a group.
modifyGroup Modifies the properties of a group.
getGroupInfo Gets information about the properties of

a group. (Asynchronous function. See
groupInfo function in Table 3).

getGroupInfoSync Gets information about the properties of

a group in synchronously. This function does
not return until the operation is completed
and a result is available.

Members

addMember Creates a new member.
removeMember Removes a member.

modifyMember Modifies the properties of a member.
getMemberInfo Gets information about the properties of

a member.

Table 2. API functions that User Agents offer to applications

4.1 Main Techniques and Protocols Used in LaCOLLA

To provide self-sufficiency and availability in a dynamic and decentralised manner
we decided to use a multi-master optimistic approach [4]. Multi-master systems
enable updates to be issued to multiple replicas independently and exchanged in
the background. These kinds of systems offer more availability than single-master
systems, where all updates originate in one replica and are then propagated to other
replicas, but are significantly more complex. In multi-master systems, updates can
be propagated in two ways: state-transfer (sites exchange object contents), and
operation-transfer (sites exchange operations). We used both ways of propagation.



LaCOLLA: A Middleware to Support Self-sufficient Collaborative Groups 581

Category Function Description

Presence
newConnectedMember Notifies the connection of a member.
memberDisconnected Notifies the disconnection of a member.

Events newEvent Reception of an event occurring in the
group.

Tasks
taskStopped Notifies that the task has been stopped cor-

rectly.
taskEnded Notifies the ending of a task.

Instant
Messaging

newInstantMessage Reception of an instant message.

Groups groupInfo Reception of the group information. (See
getGroupInfo in Table 2).

Other
exception Notifies that an internal exception or

anomalous situation has occurred.
appIsAlive UA queries the state of the application.

Used to know if an application is still alive
and connected to group.

Table 3. API functions that applications should offer to User Agents

Components (masters) coordinate in an optimistic manner combining multicast and
epidemic propagation of information [7].

The Time-Stamped Anti-Entropy (TSAE) protocol [5] was originally designed
as a group communication service, although it is also used as an optimistic replica-
tion service. We used the TSAE protocol together with multicast of events. Mul-
ticast of events brings new events to connected components: “Quick propagation

is the best way to avoid conflicts” [4]. It provides immediate awareness to con-
nected members and reduces divergence among replicas. TSAE consistency sessions
complement multicast, providing the guarantee that all components will eventu-
ally receive all events. It works by propagating data in the background in an
epidemic fashion, allowing disconnected components or components that did not
receive the event when it was multicasted to receive it (e.g. due to a failure du-
ring the sending or because the sender did not know that the component was con-
nected).

In the TSAE protocol, each site periodically contacts another site and the two
sites exchange messages from their logs until both logs contain the same set of mes-
sages. To guide the exchanges, each site maintains a data structure that summarises
the messages each site has received. The sender timestamps each message using a lo-
cal timestamp. The summary is built by selecting the last consecutive timestamp
received from each site. When the anti-entropy session starts, each site sends the
summary of received messages to the partner site. Each site determines if it has
messages the other has not received, by seeing if some of its summary timestamps
are later than the corresponding ones of its partner. These messages are retrieved
from the log and sent to the other site.



582 J. Marquès, L. Navarro

We used TSAE in the events mechanism to guarantee the consistency of events.
We adapted unsynchronised-clocks TSAE protocol [6] because it allows sites to be
far out of synchronisation without compromising the progress of the system. In
our variant, a site accepts (stores in the log) and propagates an event although
the site misses previous events issued by the same originator. This allows for faster
propagation of information. The log summary has two data structures. The first one,
all consecutive, is the common timestamp matrix, as used in Golding’s TSAE, where
the consecutive events received from each of the sites of the group are summarised.
The second one, non-consecutive, is used to store the timestamps of out-of-order
events received (i.e. events stored in the log without having all previous events from
the same source). A component can receive a non-consecutive event if it missed
a previous one due to the fact that the sender did not know the component was
connected, or because a failure occurred while sending it. When a site receives
a consecutive event, it summarises (in all consecutive) the events contained in the
non-consecutive summary.

In the anti-entropy sessions, the two sites exchange both summaries: summary
matrix (consecutive events) and the non-consecutive summary.

Several of the mechanisms implemented in LaCOLLA use anti-entropy sessions
to achieve consistency of information: events, presence and location, groups, mem-
bers and execution.

4.2 Internal Mechanisms

There are seven kinds of internal mechanisms: events, objects, presence and location,
execution, instant messaging, groups, and members. Each kind of mechanism is
divided into several sub-mechanisms. It is beyond the scope of this paper to present
a fully detailed description of the implementation of all of them. This description
can be found on [3, 8]. Alternatively we are going to explain the general behaviour
of internal mechanisms that characterise LaCOLLA middleware and outline the key
aspects to understand its functioning.

Typically collaborative activities involve a small number of participants. There-
fore, groups in LaCOLLA are considered to have a small number of members and
components (as stated in the validation section, LaCOLLA can deal with big groups
of 100 or more components but, to be realistic, collaborative groups should typically
have 5, 10 or 20 members, not more).

4.2.1 Presence and Location Mechanism

The presence and location mechanism is one of the two keystones to the LaCOLLA
middleware. Apart from informing applications about which members are connected
to the group, the presence and location mechanism is used by other mechanisms to
know what components are connected to the group. Due to the decentralised, au-
tonomous and self-organising nature of LaCOLLA, it is not easy to know what
components are connected to the group. In fact, no component can ever claim to



LaCOLLA: A Middleware to Support Self-sufficient Collaborative Groups 583

know all the components connected, even though the optimistic techniques used
guarantee that all components have a good enough perception of what components
are connected, and these perceptions eventually converge (see the validation sec-
tion).

The presence and location mechanism is implemented in a decentralised multi-
master state-transfer optimistic approach. When a component wants to connect to
a group, it sends its authentication information to a GAPA. If the component is
authenticated, the GAPA facilitates the connecting component those components
the GAPA knows are connected to the group (transfers the presence and location
local state). Then, the connecting component multicasts a message informing of its
connection to the group to all other components that it knows are connected to the
group (those that the GAPA informed it as being connected to group). This message,
like any other message sent by any LaCOLLA component, includes information
about the components the sender knows are connected to the group (sender’s state).
Comparing the sender’s state with its local state, receivers can learn about unknown
connected components.

To reinforce this epidemic propagation of information about connected compo-
nents, from time to time, a component randomly selects N components1 and per-
forms an anti-entropy consistency session with any of them. During a consistency
session between two sites, say A and B, A tells B its state (what components A knows
are connected to the group) and B informs A of its own knowledge. Both learn from
each other’s state. This epidemic transfer of senders’ states regarding presence and
location information allows LaCOLLA to achieve a consistent view of the connected
components.

Prior to an ordered disconnection, the disconnecting component informs other
components about its intention and each component updates its local state.

Finally, there is a sub-mechanism to detect components that are no longer con-
nected to the group. Component A suspects that another component B is discon-
nected either when a) A has not received a message from B after a long period of
time2, or b) when components from whom A receives messages have not received
a message from B for a long period of time. In that case, A sends a message to B.
If B does not answer, A decides that B is disconnected and removes B from its
connected components list.

Components decide that a component has not sent a message for a long period
of time as follows: components have a counter for every component that they know
to be connected to group. This counter is created and initialised by any compo-
nent when it receives the newConnectedComponent (message that every component
multicasts when connecting) and destroyed when the component sends the message
informing of its disconnection. It is initialised to a given value3.

1 N = Max(2, log2(numberConnectedComponents) + 1). This number was adjusted
by simulation.

2 Configuration parameter.
3 Configuration parameter. Current value adjusted by simulation.



584 J. Marquès, L. Navarro

This counter has an associated timer that reduces it every time the timer expires.
When a component receives a message from another component (the message con-
tains sender’s information about the known components and its originator’s value
for the counter), it compares presence information from the sender with local infor-
mation. For every component, it selects the maximum between the local and remote
counter. The receiver also initialises the counter for the sender of message (mean-
ing that the sender is alive). This provides an optimistic approach to connected
members. When the counter reaches zero it means the component is thought to be
disconnected.

The presence information also includes the location of known components. Every
time a component changes its location, it multicasts a message informing of its new
location. Components that do not receive the message will eventually learn of it
from information included in received messages (epidemic propagation) or through
an anti-entropy presence consistency session. The receiver will know that the compo-
nent has changed location because the received timestamp associated to the location
information for the component will be newer than the local timestamp for the same
component. Each component generates its location timestamp when connecting
or each time it changes location dynamically. The timestamp is initialised when
connecting and increases monotonically with every dynamic change of location.

The presence and location mechanism implements the presence and location
functionality from Section 3.1.

4.2.2 Events Mechanism

The events mechanism is the other keystone in the LaCOLLA middleware. Almost
all other mechanisms (except the presence and location mechanism) rely on the
events mechanism to deliver information in an immediate and consistent way. The
objects mechanism, in particular, depends on the events mechanism to achieve its
consistency. The events mechanism is implemented with a multi-master operation-
transfer optimistic approach. When an action occurs, an event is created to inform
of this action. Events can be provided by applications or automatically generated
by LaCOLLA as a consequence of an internal action related to the functionality
provided by the middleware (e.g. new document, new member, document read,
etc.). In LaCOLLA, events are used by each component to autonomously determine
the state of the system.

When a component has a new event, it multicasts it to all the UAs and RAs
that it knows to be connected. All the RAs store all received events persistently.

Events are sent by applications to the UA the application is connected to or are
internal events. In the first case, the UA is responsible for multicasting the event
to all connected components. Internal events are sent by the component where the
action originates. Multicasting events as soon as they occur by the component where
the event has originated provides members with the perception and knowledge of
what is occurring in the group while it is occurring, i.e. all connected members
receive information about what is going on in the group in a time that they perceive



LaCOLLA: A Middleware to Support Self-sufficient Collaborative Groups 585

as immediate. Therefore, to provide immediacy, the performance of this mechanism
is closely related to the presence mechanism.

Components not connected to the group or components that the sender of the
event does not know to be connected to the group will not receive the event. There-
fore, we implemented an epidemic sub-mechanism that complements the multicast.
It uses the variant of Golding’s TSAE protocol explained in Section 4.1. Consistency
sessions are performed between two RAs and synchronisation sessions between a UA
and an RA. Consistency sessions work as follows: from time to time, an RA (e.g. A)
randomly selects another RA among the RAs that A knows to be connected to the
group and they perform an anti-entropy session.

Similarly, the synchronisation sessions between UAs and RAs work like consis-
tency sessions but asymmetrically; i.e. UAs learn events from RAs, but not the other
way around.

This implementation of the events mechanism allows members to receive infor-
mation about what is going on in the group in a time that they perceive as immediate
(see the validation section). Multicast provides this immediacy. In addition, TSAE
consistency sessions guarantee that all components will eventually receive the infor-
mation whether or not they were connected to a group when the information was
multicasted, or whether or not there has been any failure during the multicast of
information.

On the other hand, no guarantees in terms of ordering are provided. In the case
where some ordering guarantees are required, applications should provide them. For
example, in the case where an application needs to process events from the same
originator in the same order as they were issued, the application should not process
the non-consecutive events until it has received all previous ones. As future work
we are considering the implementation of some event-ordering policies that could be
added on top of LaCOLLA and provided to the applications.

The events log contains all events sent in the group. Some events are related
to the state of the system (e.g. new object, remove object, etc.). To prevent logs
from growing indiscriminately, we have implemented a selective purge mechanism
that allows components to autonomously purge events, without modifying the state
of the system. This mechanism implements communication and coordination by
immediate and consistent dissemination of events, as seen in Section 3.1.

4.2.3 Objects Storage Mechanism and Virtual Synchronism

In the events mechanism section, we saw that LaCOLLA guarantees applications
that all events will be received almost immediately by connected applications (and
members). Likewise, that disconnected members will receive the events during the
re-connection process. This provides users and applications with an up-to-date view
of the collaboration that is taking place in a group. It also has an important side
effect that we have exploited in our middleware: since all components know the
location of all replicas of any object (because they have received an event informing
them of such), components can access them directly (without a resolver informing



586 J. Marquès, L. Navarro

about the location of objects). This allows LaCOLLA to have an autonomous and
decentralised policy for handling objects and their replicas at the same time as it
guarantees immediate access to the ‘most likely’ latest version of stored information.
We say the ‘most likely’ latest version because an application may miss the mul-
ticasted event informing about a new version of the object and ask for the object
before the anti-entropy mechanism has propagated the existence of the new version.
As can be seen in the validation section, this divergence lasts only a few seconds.
We assumed that the probability of a user wishing to access the object during this
period of divergence is very low. We refer to the sum of immediate and consistent
dissemination of events (knowing what is happening in the group) and the ability to
access the likely last version of any object as virtual synchronism. (See the validation
section for more details.)

As mentioned above, the object storage mechanism depends on the events me-
chanism. UA and RA components use the events that inform about stored objects
(e.g. new object, removed object, new replica, etc.) to build the state of stored
objects autonomously. Each UA and RA knows all stored objects and their locations
(as objects are replicated, they will have multiple locations). When a component
needs a specific object it queries its local information about stored objects and
randomly selects a location from among the connected RA that have the object. In
more detail: when an object is provided to a UA to be stored in LaCOLLA, the UA
randomly selects an RA connected to the group and sends the object to it. Then,
the RA disseminates an event to all components (UAs and RAs) to inform them
of the new object and its location. This event is used by all components to know
where the object is located. Therefore, when an UA wants to retrieve an object,
it can be obtained from any of its locations. Finally, to guarantee the availability
of objects, they are automatically replicated in an autonomous and decentralised
manner: from time to time, an RA copies to other RAs the objects it has that
have less replicas than the replication factor for the group. The destination RAs
are selected randomly among the RAs connected that do not have a replica of the
object. Every time a new replica is created, an event is disseminated to inform of
the availability of the object in its new location.

We used random decision techniques to locate objects and their replicas because
this technique has proved a good trade-off between efficiency and simplicity [9]. The
location algorithm can be improved in future work by means of a more in-depth study
into the components’ behaviour in real scenarios.

LaCOLLA does not have a modify operation. To modify objects, applications
must create a new object. The event informing about the new object must contain
information indicating that it is a new version of another object. Applications have
to detect and resolve conflicts if one object is modified simultaneously by more than
one user. In the current version, LaCOLLA only provides for the storage of objects.
We are currently working on the development of a file system module. This module
will be deployed on top of LaCOLLA and will help applications to deal with conflicts
and their resolution.

This mechanism implements the storage mechanism as seen in Section 3.1.



LaCOLLA: A Middleware to Support Self-sufficient Collaborative Groups 587

4.2.4 Summary

To sum up, although push is frequently used in all the mechanisms, neither com-
ponents nor the network are saturated because groups are small. The combination
of autonomy of components and direct communication among them (peer-to-peer),
along with the collective ownership of resources, provide a flexibility that suits the
idiosyncrasy of collaborative groups.

Finally, Table 4 summarises the main techniques used to implement all internal
mechanisms.

5 VALIDATION

LaCOLLA was validated in two steps. In the first step we implemented the basic
mechanisms that characterise LaCOLLA (presence and location, events and storage
of objects) in a simulated environment. The second step was to implement La-
COLLA as real middleware. We implemented some collaborative applications and
used them.

The first step helped us prove that LaCOLLA provides virtual synchronism to
participants, that it is able to self-organise and that it behaves in an autonomous,
decentralised and self-sufficient manner. This section will be entirely dedicated
to this step. The implementation and adaptation of collaborative applications (an
instant messaging tool, an asynchronous forum, and a document sharing tool) carried
out in the second step reinforced our belief about the usefulness of LaCOLLA. In
addition, it helped us improve its architecture and implementation. After these
two successful steps, we are working on the extension and improvement of current
functionality with the aim of being able to use LaCOLLA and the implemented
collaborative applications in regular university courses at the UOC (Open University
of Catalonia).

To validate LaCOLLA we used J-Sim [10] as the network simulator. We im-
plemented the UA, RA and GAPA components and presence, events and storage
internal mechanisms.

Several experiments were done with synthetic workloads with different degrees
of dynamism (failures, connections, disconnections or mobility), with different sizes
of groups (from 5 to 100 members) and with different degrees of replication (number
of RAs and GAPAs). All components were affected by dynamism. Full information
about experiments can be found on [3].

The simulations involved two phases. The first phase simulated a realistic si-
tuation. In this phase all internal mechanisms were operative. During this phase
members’ activity was simulated. Components connected, disconnected, moved or
failed. The second phase was named the repair phase and only internal mechanisms
were active. This second phase was used to evaluate how long it would take to
achieve:



588 J. Marquès, L. Navarro

Mechanism Techniques used to implement the mechanism

Events Multi-master operation-transfer.
Multicast: the component where the event originates sends the
event to all UAs and RAs that it knows to be connected.
TSAE: anti-entropy consistency sessions among components to ob-

tain events not received when they were multicasted (due to dis-
connection, mobility or failure). Works in epidemically. Sessions
carried out in background. Complements multicast.

Storage of
objects

Random decision technique: to select location of an object when it
is stored in LaCOLLA. UA randomly selects an RA from among

the RAs connected. Also used by an RA to select the RA to store
a new replica of an object.
Push update: the RA with the object originates the replication of
the object and sends it to the target RA.

Presence and Multi-master state-transfer.
location Multicast: an event is sent every time a component connects to or

disconnects from LaCOLLA.
Epidemic: every message includes information about known con-
nected components and their location (optimistic. Receiver can
learn of unknown components).
Anti-entropy: consistency sessions among components to learn
about unknown connected components.

Execution Multi-master state-transfer.
Multicast: the UA sends information about the task to be executed
to all TDAs.
TSAE: between TDAs to make the information about planned tasks
consistent.

Instant
messaging

Multicast: to destination components.

Groups Multi-master state-transfer.
Multicast: to disseminate a modification.
TSAE: consistency sessions among GAPAs to guarantee that all
GAPAs have the same information about groups.

Members Multi-master state-transfer.
Multicast: to all GAPAs when a new member is added. Also for
modifications.
TSAE: consistency sessions among GAPAs to guarantee all GAPAs
have the same information about members.

Table 4. Summary of the main techniques used to implement each kind of internal mecha-
nism



LaCOLLA: A Middleware to Support Self-sufficient Collaborative Groups 589

a) self-organisation: all connected components having consistent information about
all internal mechanisms;

b) virtual synchronism: all connected components having all events and consistent
information about available objects (in our analysis we have evaluated separately
the performance of the events mechanism and objects mechanism); and

c) presence and location: all connected components having consistent information
about presence and location.

Experiments showed that, despite the dynamism and the autonomous and de-
centralised behaviour of components, LaCOLLA required a short amount of time
to obtain up-to-date information on all components. Experiments also showed that
members knew what was happening in the group and that they had access to objects
in a time they perceived as immediate [3].

Component Failure Disconnection Mobility

UA 0.0005 [15,120] 0.0025 [60,540] 0.00035

RA and GAPA 0.000125 [12,60] 0.0005 [15,120] 0.0001

Table 5. Degree of dynamism. For each kind of component, we show the probability (per
iteration) that each type of dynamism occurs. For failures and disconnections, an
interval is provided. The application remains in failure or disconnection for a random
time within the interval (in iterations). Iteration: 10 seconds.

Considering iterations every 10 seconds, Figure 4 shows the cumulative proba-
bility that in N seconds (N/10 iterations) LaCOLLA:

a) has consistent information about events in all components;

b) has consistent information of objects in all components;

c) is self-organised; and

d) information about presence and location is consistent in all components.

The data for the figures comes from experiments with 10 RAs and 10 GAPAs that
connect, disconnect, fail and move in a moderate degree (Table 5 contains informa-
tion about dynamism. Information about parameters related to synthetic members’
activity can be found on [3]). Note that, for groups of a typical size (10 members),
LaCOLLA offers good performance: in 95% of experiments, all components had
consistent information about events, objects and presence and location at the end
of the first phase; and in less than 10 seconds all this information is consistent in
all components. This is the case of components that the sender did not know were
connected at the moment the information was multicasted or that did not receive
the information due to some failure. Having all information consistent in all compo-
nents, “self-organisation” requires more time (up to 80 seconds). This is due to the
decentralised implementation of internal mechanisms and to the fact that non-key
mechanisms have long-term consistency policies. Special attention should be given



590 J. Marquès, L. Navarro

to the fact that, even though all components do not have completely consistent in-
formation about internal mechanisms (self-organisation), connected members know
all that is happening in the group (events) and have access to objects in a time
that they perceive as immediate. In Section 4, we named this up-to-date view vir-
tual synchronism. Provision of virtual synchronism is what allows us to say that
LaCOLLA is useful for collaborative environments.

Fig. 4. Cumulative probability that in N seconds a) information about events is consis-

tent in all components (events), b) information about objects in all components is
consistent and objects are replicated at least replication factor times (objects), c)
all components of LaCOLLA have a consistent view (self-organisation), and d) in-
formation about presence and location is consistent in all components (presence and
consistency).

In Figure 4, the effect of scaling the size of groups can also be seen. In groups of
up to 100 members, virtual synchronism (the worst case between events and objects
mechanisms) is provided in a time that participants perceive as immediate. With
100 members, the worst case is 180 seconds. In contrast, in 90% of experiments, the
components require 90 seconds to have consistent events and objects mechanisms,
which still provides a feeling of immediacy to members. On the other hand, the pre-
sence and location mechanism and the self-organisation of LaCOLLA perform poorly
when group size increases. Nevertheless, as stated above, what is most important
for collaborative applications is the provision of virtual synchronism.

When the size of the group decreases, all mechanisms converge faster to a con-
sistent situation. The only consideration is that dynamism has more influence. If
there is not at least one RA and one GAPA connected to group, the group cannot
operate.



LaCOLLA: A Middleware to Support Self-sufficient Collaborative Groups 591

In conclusion, LaCOLLA provides immediacy that is good enough for small-size
collaborative asynchronous applications and for small-size synchronous-like colla-
borative applications that can bear some users not being momentarily up-to-date.
LaCOLLA also provides good support for medium-scale asynchronous collaborative
applications.

6 RELATED WORK

A number of research and commercial systems have used optimistic replication tech-
niques. Each of the features of LaCOLLA’s internal mechanisms related to propa-
gation and synchronisation of information have almost certainly appeared in pre-
vious systems in some form. Interesting differences lie in the implementation details
used in LaCOLLA that allow LaCOLLA to have self-organised and self-sufficient
behaviour using the connected resources provided for the benefit of the group. Fur-
thermore, we present some systems that have influenced the design of LaCOLLA.

BSCW system [11] is a web-based application for collaborative information shar-
ing based on the metaphor of shared folders as a repository for group information.
BSCW provides awareness information about all the objects within the system
(events). It has two limitations:

1. it does not take into account events results of local actions,

2. it can be used from any web browser, but it is a centralised system.

BSCW is an example of an application that could benefit from the functionality
provided by LaCOLLA.

Coda [12] and Ficus [13] are general-purpose replicated distributed file systems
intended to facilitate distributed collaboration in a highly reliable and scalable fa-
shion. Both file systems allow updates so long as at least one replica of a data
object is available. While Coda has clients and file servers, in Ficus each machine,
including workstations, portable computers and servers, should be empowered with
full functions where replication, file service and reconciliation are concerned. In this
sense, all machines are peers. In contrast, LaCOLLA provides decentralised storage
in resources provided for the benefit of the group.

Lotus Notes [14] and Bayou [15] are replicated database systems based on epi-
demic update propagation. DOORS [16] is a replicated object store. All three offer
a disconnected operational mode. The main difference with LaCOLLA is that in
LaCOLLA objects are stored using the resources provided by members.

Groove is a platform that partially covers some of the ideas behind the LaCOLLA
approach. Groove is defined [17] as a system that enables users to create shared
workspaces on their local PCs, collaborating freely across corporate boundaries and
firewalls, without the permission, assistance, or knowledge of any central authority
or support group. Groove allows transparent synchronisation among workspaces,
but depends on relay servers to provide offline queuing, awareness, fan-out and
transparency (to overcome firewall and NAT problems). These relay servers are



592 J. Marquès, L. Navarro

provided by third parties. The main differences between Groove and LaCOLLA are
that

1. Groove emphasises transparent synchronisation of collaborating PCs, along with
direct communication among them, and

2. the fact that Groove provides third-party relay servers.

In contrast, LaCOLLA allows members to provide resources for the benefit of the
group and articulates all the collaboration using these resources only; i.e. partici-
pants are not obliged to provide resources to groups, but groups only work with
resources provided by their members. All resources connected to a group are syn-
chronised transparently. Unfortunately, due to the fact that Groove is a closed source
commercial product, we were not able to find more details as to how it works.

Finally, JXTA [18] is a P2P platform to support the development of P2P appli-
cations. The main differences with LaCOLLA are that JXTA is lower level middle-
ware than LaCOLLA. JXTA also uses generic mechanisms to discover and connect
components. In contrast, LaCOLLA is designed to support collaborative environ-
ments. Its mechanisms are specifically designed for decentralised and self-sufficient
collaborative environments.

7 CONCLUSIONS AND FUTURE WORK

LaCOLLA is a middleware that aims to simplify the process of incorporating col-
laborative functionalities in any application. Our proposal allows the building of
applications that enable groups of people to join together and self-organise in an
autonomous, decentralised and self-sufficient manner as they are used to doing in
non-virtual environments. Self-sufficiency (i.e. operating using only resources pro-
vided by participants), presents a promising opportunity to build collective envi-
ronments where participants provide resources for the benefit of the group. This
cession of resources for the benefit of the group makes sense in environments that
share collective motivations.

In this paper we described the architecture, API and internal implementation of
LaCOLLA, a fully decentralised peer-to-peer middleware. In the validation section
we proved that LaCOLLA provides participants with the virtual synchronism pro-
perty: participants know what is happening in the group and have access to objects
stored in the group.

From both building collaborative applications that use LaCOLLA, and from
using the developed applications, we have obtained valuable ideas and improve-
ments to introduce into future releases of the software. These new versions will
pay special attention to security issues (which were not prioritised in the first ver-
sion); to the deployment of services at group level using the computational resources
provided to the group by participants; to introducing new components and mecha-
nisms that will allow mobile devices (PDAs, mobile phones, sensors, etc.) to become
LaCOLLA peers, emphasising the capabilities related to the disconnected mode of



LaCOLLA: A Middleware to Support Self-sufficient Collaborative Groups 593

operation, and to introducing new components and mechanisms to allow groups to
share resources.

We also plan to use LaCOLLA in real collaborative settings. Thus, we intend
to use collaborative applications that employ LaCOLLA middleware in some colla-
borative learning practicals at the UOC (Open University of Catalonia). The UOC
is a virtual university that mediates all relations between students and lecturers
over the Internet. We believe that these kinds of collaborative environments where
participants never physically meet each other will benefit from approaches like the
one provided by LaCOLLA, especially in terms of the degree of autonomy and self-
sufficiency that can be achieved. These real experiences will be of great value for us
to further refine the architecture and adjust the implementation of the middleware.

Acknowledgements

This work was partially supported by TSI2005-08225-C07-05 and TIC2002-04258-
C03 projects.

REFERENCES

[1] Daradoumis, T.—Mart́ınez, A.—Xhafa, F.: An Integrated Approach for
Analysing and Assessing the Performance of Virtual Learning Groups. Lecture Notes
in Computer Science (LNCS 3198). Groupware: Design, Implementation, and Use.
G.-J. de Vreede et al. (Eds.). Heidelberg-Berlin: Springer-Verlag, pp. 289–304, ISBN:
3-540-23016-5.

[2] Navarro, L.—Marquès, J.M.—Freitag, F.: On Distributed Systems and
CSCL. The First International Workshop on Collaborative Learning Applications
of Grid Technology. Held in conjunction with the IEEE International Symposium
CCGrid 2004. April 19–22, 2004, Chicago, USA.

[3] Marquès, J.M.: LaCOLLA: An Autonomous and Self-Organised Infrastructure to
Aid Collaboration. 2003. Ph.D. thesis. Available on: http://people.ac.upc.es/

marques/LaCOLLA-tesiJM.pdf (in Catalan).

[4] Saito,Y.—Shapiro, M.: Optimistic Replication. ACM Computing Surveys
(CSUR). Vol. 37, 2005, No. 1, p. 42–81.

[5] Golding, R.A.: Weak-Consistency Group Communication and Membership. Doc-
toral Thesis, University of California, Santa Cruz, 1992.

[6] Agrawal, D.—Malpani, A.: Efficient Dissemination of Information in Computer
Networks. Computer Journal, Vol. 34, 1991, No. 6, pp. 534-541.

[7] Demers, A. J.—Greene, D.H.—Hauser, C.—Irish, W.—Larson, J.: Epi-
demic Algorithms for Replicated Database Maintenance. In 6th Symp. On Princ. Of
Distr. Comp. (Vancouver, Canada, Aug. 1987), pp. 1–12.

[8] LaCOLLA. Avaliable on: http://lacolla.uoc.edu/lacolla.



594 J. Marquès, L. Navarro

[9] Carter, R. L.: Dynamic Server Selection in the Internet. In Proceedings of the

Third IEEE Workshop on the Architecture and Implementation of High Performance
Communication Subsystems, 1995.

[10] J-Sim. Avaliable on: http://www.j-sim.org.

[11] Bentley, R.—Horstmann, T.—Sikkel, K.—Trevor, J.: Supporting Collabo-
rative Information Sharing with the World Wide Web: The BSCW Shared Workspace
System, in The WorldWide Web Journal. Proceedings of the 4th International WWW

Conference. Issue 1, Dec. 1995, pp. 63–74. O’Reilly.

[12] Kistler, J. J.—Satyanarayanan, M.: Disconnected Operation in the Coda File
System. In ACM Transactions on Computer Systems, Vol. 10, 1992, No. 1, pp. 3–25.

[13] Page, T.W.—Guy, R.G.—Heidemann, J. S.—Ratner, D.H.—Reiher,

P. L.—Goel, A.—Kuenning, G.H.—Popek, G. J.: Perspectives on Optimisti-
cally Replicated Peer-to-Peer Filing. Software – Practice and Experience, Vol. 27,
1997, No. 12.

[14] Kawell, L.—Beckhardt, S.—Halvorsen, T.—Raymond, O.R.—Greif, L.:
Replicated Document Management in a Group Communication System. In Proceed-
ings of the 2nd International Conference on CSCW, pp. 205–216, Sep. 1988. Also:

IBM lotus notes. Available on: http://www.lotus.com/notes.

[15] Edwards, K.—Mynatt, E.—Petersen, K.—Spreitzer, M.—Terry, D.—

Theimer, M.: Designing and Implementing Asynchronous Collaborative Applica-

tions with Bayou. ACM Symposium on UIST ’97, pp. 119–128, 1997.

[16] Preguia, N.—Martins, L.—Domingos, H.—Duarte, S.: Data Management
Support for Asynchronous Groupware. CSCW 2000, pp. 69–78. 2000.

[17] Hurwicz, M.: Groove Networks: Think Globally, Store Locally. Network Magazine.
May 2001. LaCOLLA.

[18] JXTA web site. Available on: http://www.jxta.org/.

Joan Manuel Marqu�es is lecturer on computer science stud-
ies at the Open University of Catalonia since 1997. He is also
part-time lecturer at the Computer Architecture Department of

UPC since 1995. He received his Ph.D. from UPC under pro-
fessor Leandro Navarro in 2003. He also received his degree in
computer sciences from UPC. His research interests include the
design of scalable and cooperative Internet services and appli-
cations. He is member of the ACM (Association for Computing
Machinery).



LaCOLLA: A Middleware to Support Self-sufficient Collaborative Groups 595

Leandro Navarro joined the Computer Architecture Depart-

ment of UPC as an associate professor in 1988, after receiv-
ing his graduate degree on telecommunication engineering from
UPC. He received his Ph.D. from UPC under Professor Manuel
Medina in 1992. Since 1985, he is working at the Computer
Architecture Department. His research interests include the de-
sign of scalable and cooperative Internet services and applica-
tions. He is member of the ACM (Association for Computing
Machinery), APC (Association for Progressive Communications)
(Council), IFIP TC6 WG6.4 (International Federation of Infor-

mation Processing), CCD (Centre de Cooperaci per al Desenvolupament-UPC) (council),
CPSR (Computer Professionals for Social Responsibility), and IEEE (Institute for Elec-
trical and Electronic Engineers).


