
Computing and Informatics, Vol. 26, 2007, 63–76

COMPUTED ANSWER FROM UNCERTAIN
KNOWLEDGE: A MODEL FOR HANDLING
UNCERTAIN INFORMATION

Ágnes Achs

Department of Computer Science
Faculty of Engineering, University of Pécs
Boszorkány u. 2
7622 Pécs, Hungary
e-mail: achs@witch.pmmf.hu

Manuscript received 13 April 2006; revised 24 October 2006
Communicated by Irina Ezhkova

Abstract. In this work we present a model for handling uncertain information. The
concept of fuzzy knowledge-base is defined as a quadruple of background knowledge.
Specifically, the latter is defined by the proximity of predicates and terms; a deduc-
tion mechanism: a fuzzy Datalog program; a connecting algorithm, which connects
the background knowledge with the program, and a decoding set of the program
which helps us determine the uncertainty level of the results. We also suggest
a possible evaluation strategy.

Keywords: Uncertainty modelling, knowledge-based systems, fuzzy sets

1 INTRODUCTION

The dominant portion of human knowledge can not be modeled by pure inference
systems, because this knowledge is often ambiguous, incomplete and vague. The
study of inference systems is tackled by several – and often very different – ap-
proaches. When knowledge is represented as a set of facts and rules, this uncertainty
can be handled by means of fuzzy logic. The concept of deductive databases and
fuzzy logic is discussed in classical works such as [8, 9, 11, 12, 17].

A few years ago in [5, 1] a possible combination of Datalog-like languages and
fuzzy logic was presented. In these works we introduced the concept of fuzzy Datalog

64 Á. Achs

by completing the Datalog-rules and facts by an uncertainty level and an implica-
tion operator. In [6] we provided an extension of fuzzy Datalog to fuzzy relational
databases.

In parallel with these works, research was conducted on the possible combina-
tion of the Prolog language and fuzzy logic. Several solutions were suggested for
this problem: these solutions propose different methods for handling uncertainty.
Most of them use the concept of similarity, but in various ways. They consider the
similarity as a reflexive, symmetric and transitive relation. Some of them take an
arbitrary classification according to similarities and then use equivalence classes to
make unification and fuzzy resolution, for example [4, 15]. [18, 19] discuss linguistic
variables and their linguistic values, and provide the definition of the fuzzy unifi-
cation algorithm by means of these values. In [16] the authors discuss a special
kind of fuzzy unification. They deal with the problem of missing parameters and
mismatching predicates and parameters. They define the edit distance of terms,
which is compound according to the number of mismatching, and give a unification
algorithm according to these distances.

Based upon our previous work, here we present another possible model for han-
dling uncertain information, based on the extension of fuzzy Datalog. We build the
model of fuzzy knowledge-base as a quadruple of background knowledge, a deduction
mechanism, a connecting algorithm, and a decoding set.

2 THE FUZZY DATALOG

A Datalog program consists of facts and rules. In fuzzy Datalog, we can complete
the facts by an uncertainty level, the rules by an uncertainty level and an implication
operator. This means that evaluating the fuzzy implication connecting to the rule,
its truth-value according to the implication operator is at least the given uncertainty
level.

For example, if the implication operator is the Gödel-operator:

I(α, β) =

{

1 if α ≤ β,

β otherwise,

then the level of the rule-head can be calculated as the minimum of the level of the
rule-body and the level of the rule.

In [5, 6] we give an extension of Datalog-like languages to fuzzy relational
databases. In these papers lower bounds of degrees of uncertainty in facts and
rules are used. This language is called fuzzy Datalog (fDATALOG). In this lan-
guage the rules are completed by an implication operator and a level. We can infer
the level of a rule-head from the level of the body, and the level of the rule by the
implication operator of the rule.

Here we are going to summarize the concept of fDATALOG based on [5, 6].
Similarly to Datalog programs, a fDATALOG program consists of rules and facts.
The notion of fuzzy rule is given in definition below.

Computed Answer from Uncertain Knowledge 65

Definition 1. A fDATALOG rule is a triplet r;β;I, where r is a formula of the form

A← A1, . . . ,An (n ≥ 0).

A is an atom (the head of the rule), A1, . . . ,An are literals (the body of the
rule); I is an implication operator and β ∈ (0, 1] (the level of the rule).

For getting finite result, all the rules in the program must be safe. A fDATALOG
rule is safe if

• all variables occurring in the head also occur in the body;

• all variables occurring in a negative literal also occur in a positive literal.

An fDATALOG program is a finite set of safe fDATALOG rules.
There is a special type of rule, called fact. A fact has the form A ←; β; I. From

now on, we refer to facts as (A, β), because according to implication I, the level of
A easily can be computed.

The semantics of fDATALOG is defined as the fixed points of consequence trans-
formations. Depending on these transformations, we can define two semantics for
fDATALOG. The deterministic semantics is the least fixed point of the deterministic
transformation DTP , the nondeterministic semantics is the least fixed point of the
nondeterministic transformation NTP . According to the deterministic transforma-
tion, the rules of a program are evaluated in parallel, while in the nondeterministic
case the rules are considered independently and sequentially.

These transformations are as follows:

Definition 2. Let BP the Herbrand base of the program P , and let F(BP) denote
the set of all fuzzy sets over BP . The consequence transformations

DTP : F(BP)→ F(BP) and NTP : F(BP)→ F(BP)

are defined as

DTP (X) = {∪{(A, αA)}|(A← A1, . . . ,An; I; β) ∈ ground(P), (|Ai|, αAi

) ∈ X

for each1 ≤ i ≤ n, αA = max(0,min{γ|I(αbody, γ) ≥ β})} ∪ X,

and
NTP (X) = {(A, αA)} ∪ X,

Here
(A← A1, . . . ,An; I ; β) ∈ ground(P), (|Ai|, αAi

) ∈ X, 1 ≤ i ≤ n,

αA = max(0,min{γ|I(αbody, γ) ≥ β}).

|Ai| denotes the kernel of the literal Ai, (i.e., it is the ground atom Ai, if Ai is
a positive literal, and ¬Ai, if Ai is negative).

66 Á. Achs

In [6] it is proved that starting from the set of facts, both DTP and NTP have
fixed points which are the least fixed points in the case of positive P . These fixed
points are denoted by lfp(DTP) and lfp(NTP). It was also proved that lfp(DTP)
and lfp(NTP) are models of P , so we could define lfp(DTP) as the deterministic
semantics, and lfp(NTP) as the nondeterministic semantics of fDATALOG programs.

For a function- and negation-free fDATALOG, the two semantics are the same,
but they are different if the program has any negation. In this case the set lfp(DTP)
is not always a minimal model, but the nondeterministic semantics – lfp(NTP) –
is minimal under certain conditions. This condition is referred to as stratification:
stratification gives an evaluating sequence in which the negative literals are evaluated
first. (For details, see [6].)

Example 1. Consider the fDATALOG program

1. (r(a), 0.8).

2. p(x)← r(x),¬q(x); 0.6; I .

3. q(x)← r(x); 0.5; I .

4. p(x)← q(x); 0.8; I .

Then the stratification is: P1 = {r, q}, P2 = {p}, so the evaluation order is: 1., 3.,
2., 4. (More precisely: first 1. and 3. in arbitrary order, then 2. and 4. in arbitrary
order.) Then in the case of Gödelian implication operator, the nondeterministic
semantics of the program is lfp(NTP) = {(r(a), 0.8); (p(a), 0.5); (q(a), 0.5)}.

From now on, we shall deal only with the case of nondeterministic semantics.

3 BACKGROUND KNOWLEDGE

The facts and rules of a fDATALOG program can be regarded as any kind of know-
ledge, but sometimes – as in the case of our model – we need also other information,
in order to get an answer for a query. In this section, we give a model of background
knowledge. We define proximity between predicates and between constants: these
structures of proximity will serve for the background knowledge.

Definition 3. A proximity on a domain D is a fuzzy subset SD : D × D → [0, 1]
such that the following properties hold:

SD(x, x) = 1 for any x ∈ D (reflexivity)

SD(x, y) = SD(y, x) for any x, y ∈ D (symmetry).

If a proximity is transitive, that is

SD(x, z) ≥ min(SD(x, y), SD(y, z)) for any x, y, z ∈ D,

then it is called similarity.

Computed Answer from Uncertain Knowledge 67

Let us note that in most of practical cases the elements of a domain are in proxi-
mity relation. If they are in similarity, then we can define equivalence classifications
over D, which allows us to develop simpler or more effective algorithms.

There is a simple method for deciding transitivity, using a matrix for describing
proximity. A proximity matrix is a matrix containing the proximity values of each
pair of elements in D.

Let S be a proximity matrix. The proximity is transitive (therefore it is a simi-
larity) if and only if

S ≥ S · S,

where in the matrix-multiplication the minimum of elements are constituted instead
of multiplying and the maximums are formed instead of sums.

Example 2. Let us consider the proximity matrix

a b c d e
a 1 0.7 0.8 0.7 0.8
b 0.7 1 0.7 0.9 0.7
c 0.8 0.7 1 0.7 0.8
d 0.7 0.9 0.7 1 0.7
e 0.8 0.7 0.8 0.7 1

It can be easily checked that the relation defined by this matrix is transitive, so this
proximity is similarity.

In our model the background knowledge is a set of proximity sets.

Definition 4. Let d ∈ D any element of domain D. The proximity set of d is a fuzzy
subset over D:

Sd = {(d1, λ1), (d2, λ2), . . . , (dn, λn)},

where di ∈ D and SD(d, di) = λi for i = 1, . . . , n.

Based on proximities we can construct the background knowledge which is in-
formation about the proximity of terms and predicate symbols.

Definition 5. Let C be any set of ground terms and R any set of predicate symbols.
Let SC and SR be any proximity over C and R, respectively. The background
knowledge is:

Bk = {SCt|t ∈ T} ∪ {SRp|p ∈ P}.

4 FUZZY KNOWLEDGE-BASE

So far, we have made two steps on the way leading to the concept of fuzzy knowledge-
base: we defined the concept of a fuzzy Datalog program and the concept of back-
ground knowledge. Now the question is: how can we connect this program with the

68 Á. Achs

background knowledge? In [2, 3] we presented a possible connecting algorithm, now
we show a different possibility.

To address this problem, we shall define the concept of modified fDATALOG
program, which is the extension of the original one according to proximity; and the
concept of decoding functions, which compute the final value of the uncertainty.

Evaluating a fDATALOG program, the facts and the result atoms are completed
by uncertainty levels. The final uncertainty levels can be computed from these
levels and from the proximity values of actual predicates and its arguments. It is
expectable that in the case of identity the level must be unchanged, but in other
cases it is to be less than or equal to the original level or to the proximity values.
Furthermore we require the decoding function to be monotonically increasing.

Definition 6. A decoding function is an (n+ 2)-ary function:

ϕ(α, λ, λ1, . . . , λn) : (0, 1]× (0, 1]× (0, 1]× · · · × (0, 1]→ [0, 1]

such that

ϕ(α, λ, λ1, . . . , λn) ≤ min(α, λ, λ1, . . . , λn),

ϕ(α, 1, 1, . . . , 1) = α

and

ϕ(α, λ, λ1, . . . , λn)

is monotonically increasing in all arguments.

Example 3.

ϕ1(α, λ, λ1, . . . , λn) = min(α, λ, λ1, . . . , λn),

ϕ2(α, λ, λ1, . . . , λn) = min(α, λ, (λ1 · · ·λn)),

ϕ3(α, λ, λ1, . . . , λn) = α · λ · λ1 · λn

are decoding functions.

It is worth mentioning that any triangular norm is suitable for decoding function,
for example the above min and product operators are t-norms.

We have to order decoding functions to all predicates of the program. The
set of decoding functions will be the decoding set of the program. To define this
set, we need the concept of the functor, which is characterized by the predicate
symbol and the argumentum’s number of an atom, that is for example in the case
of p(t1, t2, . . . , tn), the functor is p/n.

Definition 7. Let P be a fuzzy Datalog program, and FP be the set of the pro-
gram’s functors. The decoding set of P is:

ΦP = {ϕq(α, λ, λ1, . . . , λn)|∀q/n ∈ FP}

Computed Answer from Uncertain Knowledge 69

Let P be a fuzzy Datalog program, Bk be any background knowledge and ΦP

be the decoding set of P . Now we want to connect the program with background
knowledge. For this purpose we decide the modified fDATALOG program mP. This
is the original program with modified consecution transformation. The original con-
sequence transformation is defined over the set of all fuzzy sets of P ’s Herbrand
base, that is over F(BP). To define the modified transformation’s domain, let us ex-
tend P ’s Herbrand universe with all possible ground terms occurring in background
knowledge: this way, we obtain the modified Herbrand universe mHP . Let the mo-
dified Herbrand base mBP be the set of all possible ground atoms whose predicate
symbols occur in P∪Bk and whose arguments are elements of mHP . This leads to

Definition 8. The modified consequence transformation

mNTP : F(mBP)→ F(mBP)

is defined as

mNTP (X) = {(q(s1, . . . , sn), φp(α, λq, λs1 , . . . , λsn)|(q, λq) ∈ SRp;

(si, λsi) ∈ SCti, 1 ≤ i ≤ n} ∪ X,

where
(p(t1, . . . , tn)← A1, . . . ,Ak; I ; β) ∈ ground(P),

(|Ai|, αAi
) ∈ X, 1 ≤ i ≤ k, α = max(0,min{γ|I(αbody, γ) ≥ β}),

and |Ai| denotes the kernel of the literal Ai.

Then starting from the facts of the program and creating the powers of the
transformation mNTP , we finally reach the fixed point.

Proposition 1. The modified consequence transformationmNTP has a fixed point,
i.e. there exists X ∈ F(mBP) for which mNTP (X) = X. If P is positive, then this is
the least fixed point, denoted by X = lfp(mNTP), for any Z = mNTP (Z) : X ≤ Z.

Proof. It was shown in [8, 10] that if T is an inflationary transformation over
a complete lattice L, then T has a fixed point. (T is inflationary if X ≤ T(X) for
every X ∈ L.) If T is monotone (T(X) ≤ T(Y) if X ≤ Y) then T has a least fixed
point (see in [11]). Since mNTP is inflationary and F(mBP) is a complete lattice,
thus it has an inflationary fixed point. If P is positive, then this transformation is
monotone, and thus the proposition is true. 2

It can be shown that this fixed point is a model of P , but lfp(NTP) ⊆ lfp(mNTP),
so it is not a minimal model.

As the modifying algorithm has no effect on the order of rules, therefore it does
not change the stratification. Therefore we can state

Proposition 2. In the case of stratified program P , mNTP has least fixed point.

70 Á. Achs

Now we have all components together to define the concept of a fuzzy knowledge-
base.

Definition 9. A fuzzy knowledge-base (fKB) is a quadruple (Bk, P,ΦP ,mA), where
Bk is a background knowledge, P is a fuzzy Datalog program, ΦP is a decoding set
of P and mA is any modifying (or connecting) algorithm.

Definition 10. Let (Bk, P,ΦP ,mA) be a fuzzy knowledge-base. Then lfp(mNTP)
is the consequence of the knowledge-base, denoted by C(Bk, P,ΦP ,mA).

Example 4. Let the fDATALOG program, the background knowledge and the de-
coding set be as follows (according to the modifying algorithm, it is sufficient to
consider only the decoding functions of head-predicates). The implication operator
of the program let be the Gödelian.

lo(x, y)← gc(y),mu(x); 0.7; I.
(fv(V), 0.9).
(mf(M), 0.8).

I(α, β) =

{

1 if α ≤ β,

β otherwise.

B V M
B 1 0.9
V 0.9 1
M 1

lo li gc fv mu mf
lo 1 0.8
li 0.8 1
gc 1 0.75
fv 0.75 1
mu 1 0.6
mf 0.6 1

φlo := φ = φ(α,x,y,z) := min(α,x,y,z)
φfv := θ = θ(α,x,y) := α·x·y
φmf := ω = ω(α,x,y) := min(α, x·y)

Applying the modification algorithm, and making use of the facts, we obtain

{(fv(V),0.9), (mf(M),0.8)}

⇓ (according to proximity)

{(fv(V),0.9), (gc(V),θ(0.9,0.75,1) = 0.9·0.75·1 = 0.675), (fv(B), θ(0.9,1,0.9) =
0.81), (gc(B), θ(0.9,0.75,0.9) = 0.6075), (mf(M),0.8), (mu(M), ω(0.8,0.6,1)=

min(0.8,0.6·1) = 0.6)}

⇓ (applying the rules)

lo(M,V) :- gc(V), mu(M) 0.7; I. ⇒ (lo(M,V), min(0.675, 0.6, 0.7) = 0.6)
lo(M,B) :- gc(B), mu(M); 0.7; I. ⇒ (lo(M,B), min(0.6075, 0.6, 0.7) = 0.6)

Computed Answer from Uncertain Knowledge 71

⇓ (according to proximity)

li(M,V),φ(0.6,0.8,1,1) = min(0.6,0.8,1,1) = 0.6, li(M,B),φ((0.6,0.8,0.9,1) =
min(0.6,1,0.9,1) = 0.6.

So the consequence of knowledge-base is:

C(Bk, P , ΦP , mA) = {(fv(V),0.9); (gc(V),0.675);

(fv(B),0.81); (gc(B),0.6075); (mf(M),0.8); (mu(M),0.6);

(lo(M,V),0.6); (lo(M,B),0.6); (li(M,V),0.6); li(M,B),0.6)}.

5 EVALUATION STRATEGIES

According to Example 3 (especially in the case of enlarging the program with other
facts and rules), it can be seen that the fixed point-query – that is the bottom-up
evaluation – may involve many superfluous calculations, because sometimes we want
to give an answer to a concrete question, and we are not interested in the whole
sequence. If a goal (query) is specified together with the fuzzy knowledge-base, then
it is sufficient to consider only the rules and facts necessary to reach the goal. In this
section we deal with the top-down evaluation of knowledge-base: this starts from
the goal, and applies the suitable rules and similarities to find the required starting
facts and rules to get the answer to this query.

A goal is a pair (q(t1, t2, . . . , tn), α), where q(t1, t2, . . . , tn) is an atom, α is the
level of the atom. It is possible that among the arguments of q there are given or
wanted variables, and α can also be either a given or a wanted variable.

In some cases, during the top down evaluation the goal is evaluated through sub-
queries. This means that all possible rules are selected, whose head can be unified
with the given goal, and the atoms of the body are considered as new sub-goals.
This procedure continues until the facts are obtained.

The paper [1] deals with the evaluation strategies of a fuzzy Datalog. The
top-down evaluation of a fuzzy Datalog does not terminate by obtaining the facts,
because we need to determine the uncertainty level of the goal. The algorithm given
in [1] calculates this level in a bottom-up manner: starting from the leaves of the
evaluating graph, going backward to the root, and applying the uncertainty-level
functions along the suitable path of this graph, finally we get the uncertainty level
of the root.

In the more recent model, we rely on the bottom-up evaluation, but the selection
of required starting facts takes place in a top-down fashion. Since only the required
starting facts are sought, in the top-down part of the evaluation there is no need for
the uncertainty levels. Hence, we search only among the ordinary facts and rules.
To do this, we need the concept of substitution and unification which are given
for example in [1, 8, 14, 17], etc. But now sometime we also need other kinds of
substitutions: to substitute some predicate p or term t for their proximity sets Sp
and St, and to substitute some proximity sets for their members.

72 Á. Achs

Next, for the sake of simpler terminology, by goal, rules and facts we mean these
concepts without uncertainty levels. An AND/OR tree arises during the evaluation;
this is the searching tree. Its root is the goal; its leaves are either YES or NO.
The parent nodes of YES are the required starting facts. This tree is built up by
alternating proximity-based and rule-based unification.

The proximity-based unification unifies the predicate symbols of sub-goals by
the members of its proximity set, except the first and last unification. The first
proximity-based unification unifies the ground terms of the goal with their proximity
sets, and the last one unifies the proximity sets among the parameters of resulting
facts with their members.

The rule-based unification unifies the sub-goals with the head of suitable rules,
and continues the evaluating by the bodies of these rules. During this unification
the proximity sets of terms are considered as ordinary constants, and a constant can
be unify with its proximity set. The searching graph according to its depth is build
up in the following way:

If the goal is on depth 0, then every successor of any node on depth 3k + 2
(k = 0, 1, . . .) is in AND connection, the others are in OR connection. In detail:

The successors of goal g(t1, t2, . . . , tn) will be all possible g
′(t′1, t

′

2, . . . , t
′

n), where
g′ ∈ Sg; t

′

i = ti if ti is some variable and t′i = Sti if ti is a ground term.
If the atom p(t1, t2, . . . , tn) is in depth 3k (k = 1, 2, . . .), then the successor

nodes are all possible p′(t1, t2, . . . , tn), where p′ ∈ Sp.
If the atom L is in depth 3k + 1 (k = 1, 2, . . .), then the successor nodes will

be the bodies of suitable unified rules, or the unified facts, if L is unifiable with
any fact of the program, or NO, if there is not any unifiable rule or fact. That
is, if the head of rule M ← M1, . . . ,Mn (n > 0) is unifiable with L, then the
successor of L be M1θ, . . . ,Mnθ, where θ is the most general unification of L and M.
If n = 0, that is, in the program there is any fact with the predicate symbol of L,
then the successors are the unified facts. If L = p(t1, t2, . . . , tn) and in the program
there is any fact with predicate symbol p, then the successor nodes are all possible
p(t′1, t

′

2, . . . , t
′

n), where t′i ∈ Sti if ti = Sti or t′i = tiθ, if ti is a variable, and θ is
a suitable unification.

According to the previous paragraph, there are three kinds of nodes in depth
3k + 2 (k = 1, 2, . . .): a unified body of a rule; a unified fact with ordinary ground
term arguments; or the symbol NO. In the first case the successors are the members
of the body. They are in AND connection, which is not important in our context,
but maybe important for possible future development. If the body has only one
literal, then the length of evaluating path would be reduced to one, but it would
“damage” the view of homogeneous treatment. In the second case the successors
are the symbol YES or NO, depending on whether the unified fact is among the
ground atoms of the program. The NO-node has no successor.

From the construction of searching graph, we conclude

Proposition 3. Let X0 be the set of ground facts being in parent-nodes of symbols
YES. Starting from X0, the fixed point of mNTP contains the answer to the query.

Computed Answer from Uncertain Knowledge 73

From the viewpoint of the query, this fixed point may contain more superfluous
ground atom, but generally it is smaller than the consequence of knowledge-base.
More reduction of the number of superfluous resulting facts is the work of a possible
further development.

Example 5. Let us consider the knowledge-base of Example 3. (Now it is sufficient
to consider only the program and the background knowledge.)

Let the goal be:

1. li(M,B).

2. li(M,x), where x is a variable.

Then the searching graphs are:

According to the above construction, the algorithm of searching the starting
facts is the following alternation of proximity-based and rule-based unification.

Algorithm

procedure evaluation(g(t)) /* g(t) is the goal */
Heads := {the heads of the program’s rules}
Facts := {the facts of the program}
Resulting Facts := ∅ /* the set of resulting starting facts */
for all t ∈ t do

if is variable(t) then s := t
else s := St /* St is the proximity set of t */

end if
end for
Nodes := {g(s)}

/*Nodes is the set of evaluable nodes,
s is the vector of elements s in the original order */

New nodes := ∅ /* the successor nodes of Nodes */
while not empty(Nodes) do

p(t) := element(Nodes)
Spnodes := ∅ /* the successor nodes of p(t) */
proximity evaluation(p(t),Spnodes)

74 Á. Achs

New nodes := New nodes ∪ Spnodes
Nodes := Nodes – {p(t)}

end while
Nodes := New nodes
New nodes := ∅
while not empty(Nodes) do

p(t) := element(Nodes)
Spnodes := ∅ /* the successor nodes of p(t) */
rule evaluation(p(t),Spnodes)
New nodes := New nodes ∪ Spnodes
Nodes := Nodes – {p(t)}

end while
return Resulting Facts

end procedure
procedure proximity evaluation(p(t),Spnodes)

for all q ∈ Sp do /* Sp is the proximity set of p */
Spnodes := Spnodes ∪ {q(t)}

end for
end procedure
procedure rule evaluation(p(t),Spnodes)

for all p(v) ∈ Heads do
if is unifiable(p(t),p(v)) then
Spnodes := Spnodes ∪ {unified predicates of the body belonging to p(vθ)}

/* θ is the suitable unifier */
end if

end for
for all p(v) ∈ Facts do

if is unifiable(p(t),p(v)) then
for all St ∈ vθ do /* θ is the suitable unifier */

if is variable(St) then
t := Stτ /* τ is the suitable unifier */
else if is proximity set(St) then
t := element(St)
end if

end for
end if
for all possible t do

/* t is the vector of elements t in the right order */
if p(t) ∈ Facts then

Resulting Facts := Resulting Facts ∪ {p(t)}
end if

end for
end for

end procedure

Computed Answer from Uncertain Knowledge 75

This algorithm can be applied for stratified fDATALOG too, by determining the
successor of a rule-body without negation.

6 CONCLUSIONS

In this paper we have presented a model of handling uncertain information by de-
fining the fuzzy knowledge-base as a quadruple of background knowledge, a deduc-
tion mechanism, a decoding set and some modifying algorithm which connects the
background knowledge to the deduction mechanism. We also have presented a pos-
sible evaluation strategy. To improve this strategy and/or the modifying algorithm
will be the subject of further investigations. An efficient fuzzy knowledge base could
be the basis of decisions based on uncertain information, or would be a possible
method for handling argumentation or negotiation of agents.

To illustrate our discussion with some realistic content, in Examples 3 and 4 a
the knowledge base could have the following interpretation. Let us suppose that
music listeners are “generally” (level 0.7) fond of the greatest composers. Assume
furthermore that Mary is a “rather devoted” (level 0.8) fan of classical music (mf),
and Vivaldi is “generally accepted” (level 0.9) as a “great composer”. It is also widely
accepted that the music of Vivaldi and Bach are fairly “similar”, being related in
overall structure and style. On the basis of the above information, how strongly can
be stated that Mary likes Bach? To continue with this idea, next we can assume
that an internet agent wants to suggest a good CD for Mary, based on her interests
revealed through her actions at an internet site. A fuzzy knowledge base could
help the agent get a good answer. As some of the readers may well know, similar
mechanisms – but possibly based on entirely different modelling paradigms – are in
place in prominent websites such as Amazon and others.

REFERENCES

[1] Achs, Á: Evaluation Strategies of Fuzzy Datalog. Acta Cybernetica, Szeged, Vol. 13,
1997, pp. 85–102.

[2] Achs, Á: Fuzzy Datalog with Background Knowledge. Teaching Mathematics and
Computere Science, Debrecen, 2005, pp. 1–25.

[3] Achs, Á: Fuzzy Knowledge-Base with Fuzzy Datalog – A Model for Handling Un-
certain Information. ISDA 2004 – IEEE 4th International Conference on Intelligent
System Design and Application, August 26–28, 2004, Budapest, pp. 55–60.

[4] Arcelli, F.—Formato, F.—Gerla, G.: Fuzzy Unification as Foundations of
Fuzzy Logic Programming. In Logic Programming and Soft Computing, RSP-Wiley,
England, 1998.

[5] Achs, Á—Kiss, A.: Fixed Point Query in Fuzzy Datalog. Annales Univ. Sci. Bu-
dapest, Sect. Comp., Vol. 15, 1995, pp. 223–231.

[6] Achs, Á—Kiss, A.: Fuzzy Extension of Datalog. Acta Cybernetica, Szeged , Vol. 12,
1995, pp. 153–166.

76 Á. Achs

[7] Baldwin, J. F.—Martin, T. P.: Learning Uncertain Logic Programs from Exam-

ples. Logic Programming and Soft Computing, LPSC98, Manchester, 1998.

[8] Ceri, S.—Gottlob, G.—Tanca, L.: Logic Programming and Databases.
Springer-Verlag Berlin, 1990.

[9] Dubois, D.—Prade, H.: Fuzzy Sets in Approximate Reasoning. Part 1: Inference
with Possibility Distributions. Fuzzy Sets and Systems, Vol. 40, 1991, pp. 143–202.

[10] Gurevich, Y.—Shelah, S.: Fixed-Point Extensions of First-Order Logic. IEEEE
Symp. on FOCS, 1985, pp. 346–353.

[11] Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.

[12] Novák, V.: Fuzzy Sets and Their Applications. Adam Hilger, Bristol and Philadel-
phia, 1989.

[13] Ovchinnikov, S.: Similarity Relations, Fuzzy Partitions, and Fuzzy Ordering. Fuzzy
Sets and Systems, Vol. 40, 1991, pp. 107–126.

[14] Pásztorné Varga, K.: A Matematikai Logika és Alkalmazásai. Tankönyvkiadó,
Bp, 1986.

[15] Sessa, M. I.: Approximate Reasoning by Similarity-Based SLD Resolution. Theo-
retical Computer Science, Vol. 275, 2002, pp. 389–426,

[16] Schroeder, M.—Schweimeier, R.: Arguments and Misunderstandings: Fuzzy
Unification for Negotiating Agents. Electronic Notes in Theoretical Computer Sci-
ence, Vol. 70, 2002, No. 5, Elsevier Proceedings of the ICLP workshop CLIMA02,
Copenhagen, Aug. 2002.

[17] Ullman, J.D.: Principles of Database and Knowledge-Base Systems. Computer
Science Press, Rockville, 1988.

[18] Virtanen, H.E.: Fuzzy unification. 5th International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems, 1994,
July 4–8, Paris.

[19] Virtanen, H. E.: Vague Domains, S-Unification and Logic Programming. Elec-
tronic Notes in Theoretical Computer Science, Vol. 66, 2002, No. 5, URL:
http://www.elsevier.nl/locate/entcs/volume66.html.

Ágnes Ahs received the M. Sc. in mathematics (1976) from
the Kossuth Lajos University of Debrecen, M. Sc. in computing
(1993) form the Eötvös Lóránt University of Budapest, Univ. D.
in mathematics (1995) and Ph.D. in computing (2006) from
University of Debrecen. Her research interests include fuzzy
databases and soft computing.

