
Computing and Informatics, Vol. 26, 2007, 77–87

ON HIGH-RATE CRYPTOGRAPHIC
COMPRESSION FUNCTIONS

Richard Ostertág, Martin Stanek

Department of Computer Science

Faculty of Mathematics, Physics and Informatics

Comenius University

Mlynská dolina

842 48 Bratislava, Slovak Republic

e-mail: {ostertag, stanek}@dcs.fmph.uniba.sk

Manuscript received 24 June 2005; revised 19 June 2006
Communicated by Otokar Grošek

Abstract. The security of iterated hash functions relies on the properties of under-
lying compression functions. We study highly efficient compression functions based

on block ciphers. We propose a model for high-rate compression functions, and
give an upper bound for the rate of any collision resistant compression function in
our model. In addition, we show that natural generalizations of constructions by
Preneel, Govaerts, and Vandewalle to the case of rate-2 compression functions are
not collision resistant.

Keywords: Hash functions, compression functions, block ciphers, provable security

1 INTRODUCTION

Cryptographic hash functions are basic building blocks in many security construc-
tions – digital signatures, message authentication codes, etc. Almost all modern
hash functions are built by iterating a compression function according to the Merkle-
Damg̊ard paradigm [3, 5]. Moreover, these compression functions are often based
on some underlying block cipher. Interestingly, one can extract a block cipher even
from a dedicated hash like SHA-1[4].

The first systematic study of 64 block cipher based hash functions was done by
Preneel, Govaerts, and Vandewalle [6]. Subsequently, Black, Rogaway, and Shrimp-

78 R. Ostertág, M. Stanek

ton [2] analyzed these constructions in a black box model and proved that 20 of
them are collision resistant up to the birthday-attack bound.

An important property of a hash function is its performance. Therefore, one
would like to maximize the rate of hash function – the number of message blocks
processed with one block cipher transformation. Another way to design fast hash
functions is to use keys from a small fixed set of keys in all block cipher trans-
formations, thus enabling a pre-scheduling of keys. Classical constructions [6] are
rate-1 and require a rekeying for every message block. Recently, Black, Cochran,
and Shrimpton [1] shown, that it is impossible to construct a provably secure rate-1
iterated hash function that use a small fixed set of keys.

1.1 Our Contribution

We analyze the existence of high-rate compression functions. Our contribution is
twofold:

1. We propose a general model of (block cipher based) high-rate compression func-
tions, and show an upper bound for rate of provably secure compression func-
tions.

2. We show that generalizations of rate-1 constructions by Preneel, Govaerts, and
Vandewalle [6] to the case of rate-2 compression functions are not collision re-
sistant.

We focus solely on the collision resistance as the “most problematic” property
of cryptographic hash functions. Moreover, the results of our analysis are mostly
negative, so there is no need to study other properties.

The paper is structured as follows. Section 2 contains notions and definitions
used in the paper. In addition, we present our model of high-rate compression
functions. In Section 3 we give an upper bound for the rate of collision resistant
compression functions in the model. The analysis of rate-2 compression functions is
presented in Section 4.

2 BACKGROUND AND DEFINITIONS

The notation used in the paper follows closely the notation introduced in [1, 2]. Let
Vm be a set of all m-ary binary vectors, i.e. Vm = {0, 1}m. Let k and n be positive
integers. A block cipher is a function E : Vk × Vn → Vn, where for each key K ∈ Vk,
the function EK(·) = E(K, ·) is a permutation on Vn. Let Bloc(k, n) be the set of all
block ciphers E : Vk × Vn → Vn. The inverse of a block cipher E is denoted by E−1.

A (block cipher based) compression function is a function f : Bloc(k, n)× (Va×
Vb) → Vc, where a, b, and c are positive integers such that a + b ≥ c. An iterated
hash of a compression function f : Bloc(k, n)× (Va × Vb)→ Va is the hash function
H : Bloc(k, n)× V ∗

b → Va defined by HE(m1 . . .ml) = hl, where hi = fE(hi−1, mi)
and h0 is a fixed element from Va. We set HE(ε) = h0 for empty string ε. We

On High-Rate Cryptographic Compression Functions 79

often omit superscripts E to f and H. If the computation of fE(h,m) uses e
queries of E then f (and its iterated hash H) is rate-r, where r = (b/n)/e. Often
n | b, and the rate represents the average number of message blocks processed by
a single E transformation. For example, for b/n = 3 and e = 2 we get compression
function of rate-(3/2). We have e = 1 in our model of high-rate compression function
(see Section 2.2), i.e. computation of fE(h,m) requires exactly one block cipher
transformation.

The experiment of choosing a random element x from the finite set S will be

denoted by x
$
←− S.

2.1 Black-Box Model

An adversary A is given access to oracles E and E−1 where E is a block cipher. We
write these oracles as superscripts, i.e. AE,E−1

. We omit the superscripts when the
oracles are clear from context. The adversary’s task is attacking the collision resis-
tance of a hash function H. We measure the adversary’s effort of finding a collision
as a function of the number of E or E−1 queries it makes. Notice that we assume
information-theoretic adversary, i.e. the computational power of the adversary is not
limited in any way.

Attacks in this model treat the block cipher as a black box. The only structural
property of the block cipher captured by the model is the invertibility. The model
cannot guarantee the security of block cipher based hash functions instantiated with
block ciphers having significant structural properties (e.g. weak keys). On the other
hand, the black-box model is stronger than treating the block cipher as a random
function, because of the adversary’s ability to compute E−1.

We define the advantage of an adversary in finding collisions in a compression
function f : Bloc(k, n) × (Va × Vb) → Vc. Naturally (h,m) and (h′, m′) collide
under f if they are distinct and fE(h,m) = fE(h′, m′). We also take into account
a collision with empty string, i.e. producing (h,m) such that fE(h,m) = h0. We
look at the number of queries that the adversary makes, and we compare this with
the probability of finding a collision.

Definition 1 (Collision resistance of a compression function [2]). Let f be a block
cipher based compression function, f : Bloc(k, n)× (Va × Vb)→ Vc. Fix a constant
h0 ∈ Vc and an adversary A. Then the advantage of finding collisions in f is the
probability

Adv
comp
f (A) = Pr

[

E
$
←− Bloc(k, n); ((h,m), (h′, m′))

$
←− AE,E−1

:

(h,m) 6= (h′, m′) ∧ fE(h,m) = fE(h′, m′) ∨ fE(h,m) = h0

]

.

For q ≥ 0 we write Adv
comp
f (q) = maxA{Adv

comp
f (A)} where the maximum is taken

over all adversaries that ask at most q oracle (E or E−1) queries.

80 R. Ostertág, M. Stanek

Definition 2 (Collision resistance of a hash function [2]). Let H be a block cipher
based hash function, and let A be an adversary. Then the advantage of finding
collisions in H is the probability

Advcoll
H (A) = Pr

[

E
$
←− Bloc(k, n); (M,M ′)

$
←− AE,E−1

:

M 6= M ′ ∧HE(M) = HE(M ′)
]

.

For q ≥ 0 we write Advcoll
H (q) = maxA{Advcoll

H (A)} where the maximum is taken
over all adversaries that ask at most q oracle (E or E−1) queries.

The following theorem forms a basis for construction of iterated hash functions
(Merkle-Damg̊ard paradigm). It shows that the collision resistance of a compression
function is sufficient for the collision resistance of its iterated hash function.

Theorem 1 (Merkle-Damg̊ard [3, 5]). Let f : Bloc(k, n)×Vn×Vn → Vn be a com-
pression function and let H be an iterated hash of f . ThenAdvcoll

H (q) ≤ Adv
comp
f (q)

for any q ≥ 1.

Birthday attack is a generic collision-finding attack on a compression/hash func-
tion. The advantage of the birthday attack is Θ(q2/2n), where q is the number of
evaluations of the function and n is the length of the output. Usually, a compres-
sion function f (hash function H) is called collision resistant up to the birthday-
attack bound, or simply collision resistant if Adv

comp
f (q) = Θ(q2/2n) (Advcoll

H (q)) =

Θ(q2/2n)).

2.2 Model of High-Rate Compression Function

We define a model of high-rate compression function f : Bloc(k, n)×(Va×Vrn)→ Va,
i.e. the length of m is an integer multiple of the E’s block length n, for r ≥ 1.
Moreover, the model assumes that the evaluation of a compression function f uses
a single block cipher transformation E. Thus, the rate of such compression function
is r.

Let f1 : Va×Vrn → Vn, f2 : Va×Vrn → Vk, and f3 : Va×Vrn×Vn → Va be arbitrary
functions. The computation of the compression function f : Bloc(k, n)×(Va×Vnr)→
Va is defined as follows:

function fE(h,m) :

X ← f1(h,m)

K ← f2(h,m)

Y ← E(K,X)

return f3(h,m, Y).

When convenient we expressm as a concatenation of n-bit blocks. These r blocks
are denoted by m(1), . . . , m(r).

On High-Rate Cryptographic Compression Functions 81

The iterated hash H of our high-rate compression function f is computed as
usual. Let M be a message we want to hash. The message is divided, possibly after
some padding, into blocks of length rn bits: M = m1, . . . , ml, where |mi| = rn.

Each block can be viewed as a concatenation of r n-bit blocks: mi = m
(1)
i , . . . , m

(r)
i .

Then H(M) = hl where (see also Figure 1):

h0 − initialization vector,

hi = fE(hi−1, mi) = fE(hi−1, (m
(1)
i , . . . , m

(r)
i)) for i = 1, . . . , l.

hi−1

m
(1)
i

, . . . ,m
(r)
i

key

E hif1

f2

f3

Fig. 1. Model of high-rate compression function

Since our analysis is aimed solely at compression function (and not at its iterated
hash), the inputs of f will be denoted by h, and m (orm(1), . . . , m(r) where required)
through the rest of the paper.

The model is quite general – it covers all compression functions that take r
blocks of a message and process them using exactly one encryption transformationE.
Notice that all rate-1 schemes from [6] (we call them PGV) are special instances of
the model.

3 UPPER BOUND FOR THE RATE OF COMPRESSION FUNCTION

In the following theorem, we present an attack on collision resistance of a com-
pression function. This attack works on any compression function belonging to the
model. As a by-product we obtain an upper bound for the rate of any collision
resistant compression function.

Theorem 2 (Upper bound for the rate of a compression function).
Let E ∈ Bloc(k, n). Let f1 : Va × Vrn → Vn, f2 : Va × Vrn → Vk, and f3 :
Va × Vrn × Vn → Va be arbitrary functions. Let f : Va × Vrn → Va be a compression
function defined as f(h,m) = f3(h,m,Ef2(h,m)(f1(h,m))). Let r > 1 + k/n. Then
Adv

comp
f (1) = 1.

Proof. We describe an adversary A which asks for exactly one oracle query. For
any X ∈ Vn, and K ∈ Vk we denote by DX,K the set of all pairs (h,m) such that
f1(h,m) = X, and f2(h,m) = K, i.e. DX,K = f−1

1 (X) ∩ f−1
2 (K). Adversary A pro-

ceeds as follows:

82 R. Ostertág, M. Stanek

1. A finds X ∈ Vn, and K ∈ Vk such that |DX,K | is maximal.

2. A computes Y = EK(X).

3. A finds a collision in the set DX,K , i.e. (h,m), (h′, m′) ∈ DX,K : (h,m) 6=
(h′, m′) ∧ f3(h,m, Y) = f3(h

′, m′, Y).

One can easily check that (h,m) and (h′, m′) form a collision for compression func-
tion f :

f(h,m) = f3(h,m,Ef2(h,m)(f1(h,m))) = f3(h,m,EK(X)) =

= f3(h
′, m′, EK(X)) = f3(h

′, m′, Ef2(h′,m′)(f1(h
′, m′))) = f(h′, m′).

Now, we argue that A succeeds in the third step of the attack. First, we show that
|DX,K | ≥ 2a+n(r−1)−k. Let us assume that the opposite holds: |DX,K | < 2a+n(r−1)−k

for all X ∈ Vn, K ∈ Vk. Then
∑

X∈Vn ,K∈Vk

|DX,K | < 2n+k · 2a+n(r−1)−k = 2a+nr.

On the other hand,

∑

X∈Vn,K∈Vk

|DX,K | =
∑

X∈Vn

∑

K∈Vk

|f−1
1 (X) ∩ f−1

2 (K)| =
∑

X∈Vn

|f−1
1 (X)| = 2a+nr,

a contradiction. Thus, the adversary selects X, K with |DX,K | ≥ 2a+n(r−1)−k in
the first step of the attack. Since the range of the compression function f has
2a elements (the range is the same as the range of f3), the adversary succeeds in
finding collision if |DX,K | > 2a. The inequality is satisfied if 2a+n(r−1)−k > 2a, or
equivalently r > 1 + k/n.

Adversary A produces a collision in the compression function f with the pro-
bability 1 (assuming r > 1 + k/n). Moreover, the adversary asks for exactly one
oracle (E) query during the attack. Thus, Adv

comp
f (1) = 1. �

Recall that the adversary from Theorem 2 was not computationally limited and
the attack has exponential time complexity (more precisely, steps 1 and 3).

The theorem gives an upper bound 1 + k/n for the rate of a collision resistant
compression function. Compression functions with higher rate cannot be collision
resistant (at least compression functions in our model). However, the theorem says
nothing about the collision resistance of compression functions with the rate r ≤
1 + k/n. A natural question is whether this upper bound for collision resistant
compression functions can be achieved. A negative answer for a class of compression
functions is given in the following section.

4 PGV-LIKE RATE-2 COMPRESSION FUNCTIONS

The constructions of compression functions from a block cipher often assume equal
key and block lengths [6], i.e. k = n. Then the upper bound from Theorem 2

On High-Rate Cryptographic Compression Functions 83

simplifies to r ≤ 2. Similarly, the output of a compression function has usually the
same length as the block, i.e. a = n. Thus, we consider rate-2 compression functions
of the form f : Vn × V2n → Vn.

Preneel, Govaerts, and Vandewalle [6] studied rate-1 compression functions.
They considered all 64 compression functions f of the form f(h,m) = Ea(b) ⊕ c
where a, b, c ∈ {h,m, h⊕m, v} (v is a fixed constant). As showed in [2], 12 compres-
sion functions are collision resistant, and additional 8, though not collision resistant,
form collision resistant hash functions.

A natural extension of the above constructions to the case of rate-2 compression
functions is the following scheme:

f(h, (m(1), m(2))) = Ea(b)⊕ c, (1)

where a, b, c ∈ {h,m(1), m(2), h⊕m(1), h⊕m(2), m(1)⊕m(2), h⊕m(1)⊕m(2), v}. This
way we obtain 512 compression functions.

Notice that the compression functions instantiated in the scheme fall in our
model – f1(h,m) = b, f2(h,m) = a, and f3(h,m, Y) = Y ⊕ c.

We show that no compression function of the form (1) is collision resistant (for
any function there exists an adversary that finds a collision and asks at most two
queries). We partition these functions into distinct classes according to the attacks
that find (at least one) collision. Summary of the classes is given in Table 1. For
each class the table shows the number of compression functions in the class, and the
number of oracle queries needed in the collision finding attack.

class functions queries

1 – Superfluous Variables 169 0
2 – Balanced Combinations 133 0
3 – Compensations 150 2
4 – “Hard” Core 60 2, 0

Table 1. Collision classes of rate-2 compression functions

There are compression functions that are vulnerable to multiple attacks using
e.g. superfluous variables or balanced combinations. In such situation we assign
a particular function to the class with the lowest number.

4.1 Class 1 – Superfluous Variables

First class contains all those compression functions that do not depend on all input
vectors, i.e. at least one of h, m(1), m(2) is not required for computing the function.
Examples of such compression functions are Eh(h⊕m(1))⊕h, Em(2)(v)⊕m(1)⊕m(2),
or Ev(h⊕m(2)) ⊕ h ⊕m(2). Trivially, one can find many collisions in compression
functions from this class. It suffices to vary the superfluous variable. Moreover, no
oracle queries are needed to produce collisions.

84 R. Ostertág, M. Stanek

4.2 Class 2 – Balanced Combinations

Our second class consists of those compression functions that are not in class 1, and
have a balanced combination of two input vectors. Let x1, x2 ∈ {h,m

(1), m(2)} be
two distinct input vectors, i.e. x1 6= x2. We call a combination x1 ⊕ x2 balanced in
compression function f , if every occurrence of x1 in f ’s parameters a, b or c implies
x2 occurrence in the same parameters (and vice versa). Examples of compression
functions in this class are:

Eh⊕m(1)⊕m(2)(m(1) ⊕m(2))⊕ v,

Em(2)(h⊕m(1))⊕ h⊕m(1),

Eh⊕m(2)(h⊕m(1) ⊕m(2))⊕ h⊕m(1) ⊕m(2).

It can be easily seen that collisions can be found without any oracle queries. Balan-
ced combination x1 ⊕ x2 allows choosing 2n values pairs (x1, x2) without changing
parameters a, b, and c. Hence, the value of f does not change either.

4.3 Class 3 – Compensations

Third class of compression functions contains those functions (not in classes 1 and 2)
that have some input vector solely in either parameter b or parameter c. Let x ∈
{h,m(1), m(2)} be such input vector. Let x appear only in f ’s parameter b, i.e. in
the input of the block cipher transformation. An adversary can find a collision in
the following way. It sets the output of f to some fixed value z. Similarly it sets
the values of all input vectors except x randomly. Using a query to E−1 oracle the
adversary can compute “suitable” x value. Repeating this procedure for a different
random choice of input vectors values and the same fixed z, the adversary obtains
a collision for f . The situation for x appearing solely in the parameter c is treated
analogously.

Examples of compression functions in this class are:

Em(2)(m(1))⊕ h⊕m(2),

Em(1)(m(2))⊕ h⊕m(1) ⊕m(2),

Eh⊕m(1)(m(1) ⊕m(2))⊕ v.

4.4 Class 4 – “Hard” Core

There are 60 compression functions left after sorting the functions into classes 1, 2,
and 3. Let us denote this set C. We call two functions f1, f2 permutation-equivalent,
if f1 can be obtained from f2 by some permutation of its inputs. It can be easily ob-
served that Adv

comp
f1

(q) = Adv
comp
f2

(q) for any permutation-equivalent compression
functions f1, f2, and any q ≥ 0. Therefore the set C can be partitioned to equi-
valence classes. Since every equivalence class has 6 members, it suffices to analyze

On High-Rate Cryptographic Compression Functions 85

the collision resistance of any 10 permutation-nonequivalent compression functions
(each one drawn from different equivalence class). One selection of these 10 functions
is shown in Table 2.

i a b c

1 m(1) ⊕m(2) h h⊕m(2)

2 m(1) ⊕m(2) h⊕m(2) h

3 m(1) ⊕m(2) h⊕m(2) h⊕m(2)

4 m(1) ⊕m(2) h⊕m(2) h⊕m(1)

5 m(1) ⊕m(2) h⊕m(2) h⊕m(1) ⊕m(2)

6 m(1) ⊕m(2) h⊕m(1) ⊕m(2) h⊕m(2)

7 h⊕m(1) ⊕m(2) m(2) m(1)

8 h⊕m(1) ⊕m(2) m(2) m(1) ⊕m(2)

9 h⊕m(1) ⊕m(2) m(1) ⊕m(2) m(2)

10 h⊕m(1) ⊕m(2) m(1) ⊕m(2) h⊕m(2)

Table 2. Permutation-nonequivalent compression functions of “hard” core class

Now we show collisions in all 10 permutation-nonequivalent compression func-
tions. Hence, all 60 functions from the set C are not collision resistant. We refer to
compression functions from Table 2 as f1, . . . , f10. For brevity, let 0 (1) be all-zero
(all-one) vector in Vn, respectively. Let A be the following collision finding adversary:

1. A sets (h,m(1), m(2)) = (0, 0, 0), i.e. fi(h,m
(1), m(2)) = E0(0).

2. A asks two oracle queries and computes x = E0(0)⊕ E1(0).

3. A solves the following equations (a′, b′, c′ denote corresponding linear combina-
tions of h′, m′(1), m′(2) for compression function fi):

a′ = 1

b′ = 0

c′ = x

For any solution (h′, m′(1), m′(2)) we have fi(h
′, m′(1), m′(2)) = Ea′(b

′) ⊕ c′ =
E1(0)⊕E0(0)⊕E1(0) = E0(0). Hence any solution different from (0, 0, 0) yields
a collision.

Let us illustrate adversary’s computation on f1. AdversaryA solves the following
equations in step 3:

m′(1) ⊕m′(2) = 1

h′ = 0

h′ ⊕m′(2) = x

The solution is (h′, m′(1), m′(2)) = (0, 1⊕ x, x) 6= (0, 0, 0), and A obtains a collision.

86 R. Ostertág, M. Stanek

Adversary A can successfully find collisions for all functions f1, . . . , f10, see
Table 3, except for f3 and f4 due to the linear dependence of a′, b′, and c′. We
produce collisions for these functions separately (moreover, no oracle queries are
needed). It can be easily verified that f3(0, 0, 0) = f3(1, 1, 1), and f4(0, 0, 0) =
f4(1, 1, 1).

i h′ m′(1) m′(2)

1 0 1⊕ x x

2 x 1⊕ x x

3 − − −

4 − − −
5 1⊕ x x 1⊕ x

6 1 x 1⊕ x

7 1⊕ x x 0
8 1⊕ x x 0
9 1 x x

10 1 1⊕ x 1⊕ x

Table 3. Collisions for (0, 0, 0) produced by adversary A

Summarizing the attacks from this section we obtain the following theorem:

Theorem 3. Let E ∈ Bloc(n, k). Let f : Vn × V2n → Vn be a compression function
defined as f(h, (m(1), m(2))) = Ea(b)⊕ c, where a, b, c ∈ {h,m(1), m(2), h⊕m(1), h⊕
m(2), m(1) ⊕m(2), h⊕m(1) ⊕m(2), v}. Then Adv

comp
f (2) = 1.

The attacks presented in this section do not use the full strength of black-
box model – a computationally unbounded adversary. These attacks require just
polynomially bounded adversary asking constant number oracle queries.

5 CONCLUSION

Many interesting questions arise from the results presented in the paper. We state
the most prominent one as an open problem:

Are there any collision resistant compression or hash functions
with rate > 1?

Acknowledgments

We would like to thank anonymous reviewers for many helpful comments and sug-
gestions. Both authors were supported by VEGA grant No. 1/3106/06.

On High-Rate Cryptographic Compression Functions 87

REFERENCES

[1] Black, J.—Cochran, M.—Shrimpton, T.: On the Impossibility of Highly-
Efficient Blockcipher-Based Hash Functions. In Advances in Cryptology – Euro-
crypt ’05, LNCS 3494, pp. 526–541, Springer-Verlag, 2005.

[2] Black, J.—Rogaway, P.—Shrimpton, T.: Black-Box Analysis of the Block-
Cipher-Based Hash-Function Constructions from PGV. In Advances in Cryptology –
CRYPTO’02, LNCS 2442, pp. 320–335, Springer-Verlag, 2002.

[3] Damg̊ard, I.: A Design Principle for Hash Functions. In Advances in Cryptology –
CRYPTO’89, LNCS 435, pp. 416–427, Springer-Verlag, 1990.

[4] Handschuh, H.—Knudsen, L.—Robshaw, M.: Analysis of SHA-1 in Encryption
Mode. In Advances in Cryptology – CT-RSA ’01, LNCS 2020, pp. 70–83, Springer-
Verlag, 2001.

[5] Merkle, R.: One Way Hash Functions and DES. In Advances in Cryptology –
CRYPTO’89, LNCS 435, pp. 428–446, Springer-Verlag, 1990.

[6] Preneel, B.—Govaerts, R.—Vandewalle, J.: Hash Functions Based on
Block Ciphers: A Synthetic Approach. In Advances in Cryptology – CRYPTO’93,
LNCS 773, pp. 386–378, Springer-Verlag, 1994.

Richard Ostert�ag graduated in computer science from Come-
nius University. At present he is a teaching assistant of the
Department of Computer Science, Comenius University. His re-
search interests include cryptography, steganography and infor-
mation security.

Martin Stanek received his Ph.D. in computer science from
Comenius University. At present he is a teaching assistant of
the Department of Computer Science, Comenius University. His
research interests include cryptography and information security.

