Computing and Informatics, Vol. 26, 2007, 225-238

UPDATES OF LOGIC PROGRAMS

Jan SEFRANEK

Department of Applied Informatics

Faculty of Mathematics, Physics and Informatics
Comenius University, Bratislava, Slovakia
e-mail: sefranek@fmph.uniba.sk

Revised manuscript received 8 December 2006

Abstract. Dynamic aspects of knowledge representation has been tackled recently
by a variety of approaches in the logic programming style. We consider the ap-
proaches characterized by the causal rejection principle (if there is a conflict between
rules, then more preferred rules override those less preferred). A classification and
a comparison of the approaches is presented in the paper. We compare them also
to our own approach based on Kripke structures.

Keywords: Multidimensional logic programming, causal rejection principle, Kripke
structure

1 INTRODUCTION

Dynamic aspects of knowledge and reasoning did not attract a sufficient attention
in logic-based artificial intelligence research for a long time. On the other side, an
evolution of incomplete knowledge and reasoning with such knowledge represents
a challenging chunk of foundational problems important also for practical applica-
tions.

A family of approaches to theoretical investigation of dynamic aspects of know-
ledge representation is presented in this paper. Our attention is focused on evolving
knowledge bases. Recently the problem of evolving knowledge bases has been tackled
by a variety of approaches in the logic programming style; see [8, 4] and others.
A detailed and comprehensive information is available in [6]. The presented model
consists of a set of logic programs (each of them represents a module of the knowledge
base) and of a preference relation on modules. The conflicts between the modules

226 J. Sefrdnek

are resolved according to the preference relation: if there is a conflict between rules,
then more preferred rules override those less preferred.

We discuss some examples with the only goal in the mind: to help the reader
understand our exposition. For a more ambitious application of dynamic logic pro-
gramming we refer to the project of [17]. The computational complexity of that
approach equals the computational complexity of answer set programming.

The goals of this paper are

e an introduction of a point of view useful for a classification of the approaches
based on the causal rejection principle,

e a comparison of those approaches to our approach [11, 12].

The paper is structured as follows: Technical prerequisites are presented in Section 2.
Two basic types of rules rejection (those of [2] and [4]) are described in Section 3.
Then, in Section 4 two strategies of accepting the default assumptions (when up-
dating) are described. We combined them with the strategies of rule rejection and
obtained four types of semantics of logic program updates. The relations between
these four types are summarized. Finally, our approach, based on a Kripkean se-
mantics, is compared to the approaches based on the causal rejection principle.

2 PRELIMINARIES

Consider a set of propositional symbols (atoms) A. A literal is an atom (a positive
literal) or an atom preceded by the default negation (a negative literal), not A. The
set {notA : A € A} will be denoted by D (defaults, assumptions). For each atom A4,
A and not A are called conflicting literals. A set of literals is called consistent, if
it does not contain a pair of conflicting literals. A convention as follows is used: if
literal L is of the form not A, where A € A, then not L = A.

A rule is a formula r of the form L < Ly, ..., Ly, where k > 0, and L, L; are lite-
rals (for each i). We will denote L also by head(r) and the set of literals {L, ..., L}
by body(r). If body(r) = @, then r is called a fact. The subset of all positive
(negative) literals of body(r) is denoted by body™ (r) (body~(r)). For each rule r we
denote the rule head(r) < body™ (r) by r*. We say that two rules, r and 7/, are
conflicting rules if head(r) = not head(r'), notation: r X r’.

The set of all rules (over A) forms the language £. A finite subset of £ is called
a generalized logic program (program hereafter).t

A partial interpretation of the language L is a consistent set of literals. The
set of all partial interpretations of the language L is denoted by Int;. A total
interpretation is a partial interpretation I such that for each A € A either A € [
or not A € I. Sometimes it will be convenient to speak about interpretations and
sets of facts interchangeably. For this reason, we introduce the notation as follows:
Let M be an interpretation, then rule(M) = {L <—: L € M}.

1 In this paper only the language of generalized logic programs is used. We incorporate
some ideas of [4] into this framework.

Updates of Logic Programs 227

We accept a convention as follows: All programs use only propositional symbols
from A. Interpretations of all programs are subsets of Int,.

A literal L is satisfied in a partial interpretation I if L € I. A set of literals S is
satisfied in a partial interpretation I if each literal L € S is satisfied in 1. A rule r is
satisfied in a partial interpretation I if head(r) is satisfied in I whenever body(r) is
satisfied in I. Notation: I =L, I =S, I = .

A total interpretation I is a model of a program P if each rule r € P is satisfied
in [.

Notice that (propositional generalized logic) programs may be treated as Horn
theories: each literal not A may be considered as a new propositional symbol. The
least model of a Horn theory H is denoted by least(H).

Definition 1 (Stable model, [2]). Let P be a program and S be a total interpreta-
tion. Let S~ ={not A€ S:Ae A}
Then S is a stable model of P iff S = least(P U rule(S™)).

A program P is consistent iff there is a stable model of P, otherwise it is incon-
sistent.

Multidimensional dynamic logic program is defined as a set of generalized logic
programs together with a preference relation on the programs [8]. A specification of
the relation can be based on the edges of a graph.

Definition 2 ([8]). A multidimensional dynamic logic program (also multiprogram
hereafter) is a pair (P,), where G = (V, E) is an acyclic digraph, |V| > 2, and
P ={P, :v € V}isaset of generalized logic programs.
We denote by v; < v; that there is a directed path from v; to v; and v; < v;
means that v; < v; or i = j. If v; < v, we say that P, is more preferred than P,,.
We denote the set of programs {P,, : v; < s} by Ps.

If G is a directed path, the multidimensionality is collapsed and we speak simply
about dynamic logic programs. The elementary case is represented by V = {u, v}
and £ = {(u,v)}.

3 STRATEGIES OF THE RULES REJECTION

We account for two strategies how to formalize the idea of causal rejection. They
lead to the sets reject(P, s, M) and rjct(P, s, M), see below. The former has been
defined for example in [2, 8], the latter for example in [4].

Definition 3. Let (P,G) be a multidimensional dynamic logic program, where
G=(V,E)and P ={P,:v € V}. Let M be an interpretation, s € V.

reject(P,s, M) = {reP:3jeVIeP(i<j=<sArXy
A M = {body(r), body(r'))}},
rict” (s, M) = 0

228 J. Sefrdnek

rjet” (i, M) = {re P :3jeV I’ € P\ rjct"(j,M)
(1 <j=2sArXr'" AME {body(r), body(r')}}
rjct(P,s,M) = | rjet” (i, M)
1=s

A multiprogram is denoted by P in what follows. A graph G = (V| E) is
implicitly assumed.

Theorem 4 ([7, 5]). Let P be a multiprogram, s € V, M be an interpretation. It
holds that rjct(P, s, M) C reject(P, s, M).

The inclusion reject(P, s, M) C rjct(P, s, M) does not hold for some P, s, M:

Example 5 ([10]). Let P = Pi, P, Py be a dynamic logic program, 1 < 2 < 3.

P o= f{aebbe)
P, = {notb+ a}
P = {b — CL}
Let w be {a,b}. Then
reject(P,3,w) = {b<,notb<+ a}
rjct(P,3,w) = {notb< a}

The rejection done by rjct is a minimal one, in a reasonable sense. If P is
a multiprogram, M an interpretation, s € V and for each ¢, where i =< s holds

that P; is consistent, then there is no pair of conflicting literals (L;.Ls) such that
{L1, Ly} C rjet(P, s, M).

Remark 6. Recently, a new strategy of rules rejection has been presented in [1]:
reject*(P, s, M) =

{reP:3jeVIeP (i=<j=<sArXr'AN MIE{body(r),body(r')}}.

Thus, also conflicts between rules of the same program are solved. The operator rjct
can be modified in the same style. This modification satisfies the refined extension
principle introduced in [1] and it solves problems with cyclic updates for dynamic
logic programs.

However, there are serious problems with its extension to multidimensional dy-
namic logic programs, see [16]. A solution of the cyclic updates problems for multi-
dimensional dynamic logic programs has been presented recently in [3]. The solution
is based on a notion of level mapping and on the well supported semantics.

Anyway, an update should not provide a solution of conflicts within one program
(see also [9]); therefore, we do not devote attention to corresponding strategy of rules
rejection.

Updates of Logic Programs 229

4 STRATEGIES OF ASSUMPTIONS ACCEPTING

The meaning of a program depends both on rules and on default assumptions (see
Definition 1). Therefore, the approach to default assumptions accepting is an essen-
tial one for updates of logic programs. Again, two strategies are discussed. Observe
that two strategies of rules rejection may be combined with two strategies of the
acceptance of default assumptions.

The first strategy is as follows: Consider a multi-program P. The updated
program consists of all rules of P except those rejected (according to the selected
strategy). If S is a stable model of an updated program, then S~ is the corresponding
set of default assumptions. The concepts of justified updates [6] and backward-
justified updates use this strategy.

Definition 7. Let P be a multiprogram, s € V.

An interpretation M is a justified update of P at state s € V iff M is a stable
model of the program P; \ reject(P, s, M). An interpretation M is a backward-
Justified update of P at state s € V iff M is a stable model of the program P \
rjct(P, s, M).

Theorem 8 ([6]). Let P be a program and s € V. If S is a justified update of P
at state s, then S is its backward-justified update at s.

Theorem 8 does not hold in the converse direction:

Example 9. Consider the multiprogram P from the Example 5. The interpretation
{a, b} is a backward-justified update of P at state 3, but it is not its justified update
at 3.

(Backward-)justified updates suffer from some unpleasant properties:

Example 10 ([6]). Let P = (P, P,), where 1 < 2,

P1 = {CL %}
P, = {nota+ nota}

Both M; = {a} and My = {not a} are justified (and backward-justified) updates of
P at state 2.

There is no reason to accept the interpretation M, (more precisely, to accept the
default assumption not a in Ms) and, consequently, to reject the fact a <—. Troubles
are caused also by (more general) cyclic updates.

The (implicit) policy of accepting default assumptions which is behind the (back-
ward) justified updates is not an adequate one. Certainly, a more subtle policy is
required. Such a policy is proposed within the next strategy:

230 J. Sefrdnek

Definition 11 (Dynamic stable model at state s, [8]). Let P = (Pp, D) be a mul-
tidimensional dynamic logic program, where D = (V, E) and Pp = {P, : v € V}}.
Let M be an interpretation, A be an atom, s € V. Then

default(P,s, M) = {not A:—=3r € Ps: (head(r)=A N M = body(r))}
An interpretation M is a dynamic stable model of P at state s € V, iff
M = least((Ps \ reject(P, s, M)) U default(P, s, M))
and M is a backward-dynamic stable model of P at state s € V, iff
M = least((Ps \ rjct(P, s, M)) U default(P, s, M)).

Remark 12. If the condition M = {body(r), body(r')} (from the definition of reject
or rjct) is simplified to M = body(r'") we get an equivalent notion of dynamic stable
model: rule r whose body is not satisfied in M does not affect the least model (its
head does not belong to the least model).

Theorem 13 ([4, 6]). If S is a dynamic stable model of P at state s, then it is its
justified update at s.

The converse implication doesn’t hold:

Example 14 ([6]). Consider the program from Example 10: My = {not a} is not
a dynamic stable model of P: default(P,2, Ms)) = (), but My = M.

Theorem 15 ([7, 5]). If S is a backward-dynamic stable model of P at state s,
then it is its backward-justified update.

Also Theorem 15 does not hold in the converse direction, see Example 10. (No-
tice that for the sequences of two programs reject coincide with rjct, therefore
their backward-justified updates coincide with justified updates, and their backward-
dynamic stable models coincide with dynamic stable models.)

Theorem 16 ([7, 5]). Let P be a multiprogram, s € V. If S is a dynamic stable
model of P at state s then it is its backward-dynamic stable model at s.

Theorem 16 does not hold in the converse direction, see again the examples
5 and 9: w = {a,b} is not a dynamic stable model of P at state 3, but it is its
backward-dynamic stable model.

Summary: For each given multi-program P holds: dynamic stable models of P
(at each state s) create a proper subset of justified updates of P and of backward-
dynamic stable models of P. And both last mentioned interpretations create a pro-
per subset of backward-justified updates.

Remark 17. A detailed comparison of semantics based on causal rejection of rules
is presented in [5]. The semantics studied in [5] coincide on a restricted class of
programs (sufficiently acyclic programs and acyclic programs).

Updates of Logic Programs 231
5 KRIPKEAN SEMANTICS

The problems with tautological and cyclic updates are not removed completely by
the introduction of dynamic stable model semantics:

Example 18 ([6]). Let P be (Pi, P,), where 1 < 2 and

P, ={not a + P, ={a+ a}
a <}

S = {a} is the (backward-)dynamic stable model of P at state 2.
Similarly, if P’ is (P1, Py), where Py = {a < b;b < a}, then S = {a,b} is the
only dynamic stable model of P’ at state 2.

A recent semantics, called refined dynamic stable model semantics [1], solves
the problem of tautological (cyclic) updates which can resolve inconsistencies in
a program by a simple straightforward method — conflicting rules in the program
are rejected mutually. However, the solution holds only for sequences of programs.
The problem is not resolved for the multidimensional case, see [16].

Moreover, the semantics of (refined) dynamic stable models suffers from other
fundamental problems. It enables irrelevant updates?, see Example 19. On the other
hand, a semantics based on the causal rejection principle is not able to recognize
such conflicts between programs that are not manifested by conflicts between rules,
see Example 20.

Example 19 ([4]). Let P be (P, P,), with 1 < 2, where

P={a+b Py = {not b + not a}
b}

Dynamic stable models of P at state 2 are S; = {a,b} and Sy = {not a, not b}. If
the information from P; and P, is given, there is no sufficient reason to believe in Sy
and to reject the fact b <.

Moreover and most importantly, there are some conflicts between the programs
that are principally not solvable on the level of the conflicts between rules:

Example 20. Let P, be a more preferred program than P;.
P ={a+ b} Py ={b+ nota
¢+ b}.

There is no conflict between the rules of both programs. No rule can be rejected
and the meaning of P U P, cannot be updated according to the dynamic logic

2 For a discussion of irrelevant updates see [14].
3 See also [15].

232 J. Sefrdnek

programming [2] paradigm and according to a semantics based on rejection of rules.
However, there is a sort of conflict between the programs (between their meanings):
union of two consistent programs is inconsistent. It is not natural to solve only
conflicts (inconsistencies) caused by conflicts of rules and ignore the other sources
of inconsistency.

In our example, the literal a in the less preferred program P; depends on a set of
assumptions (on the set of literals w = {b, ¢}). On the other hand, every literal in w
is dependent on a default assumption (on the literal not a) in the more preferred
program P,. Notice that there is a circular dependency of a on not a in P, U Ps.
The problem of circular dependency can be resolved by rejecting the less preferred
dependency of a on w.

Hence, our goal is to define rejection of dependencies. We need a more rich
semantic structure, in order to be able to do it.

Our approach provides a semantic treatment of dependencies between sets of
literals (belief sets). The dependencies are encoded in (rather nonstandard) Kripke
structures.’ The intuition is as follows: if the world (or our knowledge of the world)
is represented by an interpretation w then (the meaning of) a program P may be
viewed as a set of transitions to other worlds, compatible, in a sense, with w. The
transitions are specified as follows: if body(r) is satisfied in w for some r € P then
the world w U {head(r)} is compatible with w, if it is consistent. It is a natural
choice to require that the compatibility relation is transitive and irreflexive.

We present a simplified (but a sufficient one for our current needs) version of the
definition of a Kripke structure associated with a program. For the more complicated
version see [12].

Definition 21 (Kripke structure associated with a program). Let P be a program.
A Kripke structure K associated with P is a a pair (W, p), where:

o W = Int,U{w, }, W is called the set of possible worlds, w, is the representative
of the set of all inconsistent sets of literals,

e p is a binary relation on W x W, it is called the accessibility relation and it
contains the set of all pairs (w,w’), where w # w', satisfying exactly one of the
conditions:

1. w' = wU {head(r)} for some r € P such that w = body(r),
2. w' =w, iff 3Ir € P (w = body(r) A not head(r) € w).

Definition 22. If e = (u,v) € p, it is said that e is a p-edge and u (v) is called the
source (the target) of e. A p-path is a sequence o of p-edges (e1, es,...,e,), where
n > 0 and the source of ;11 is the target of ¢;, in a Kripke structure K.

4 If the original knowledge base is consistent and its update is also consistent, then
the updated knowledge base should be also consistent according to the third postulate for
updates, as it has been expressed by Katsuno and Mendelzon [9]. For a discussion of that
postulate in the frame of dynamic logic programming see [15].

> A dependency framework has been introduced recently in [15].

Updates of Logic Programs 233

We say that this o is rooted in wq (also wg-rooted). If there is no p-edge (wy,, w)
in IC, we say that o is terminated in w,, w, is called a terminal of o.

Paths of the form ((wo,w:), (w1, ws) ..., (wmn — 1), wy,)) are usually denoted by
a shorthand of the form (wg,wy, ..., wy,).

Remark 23. We consider also empty paths rooted in a node.

We are now ready to state (in terms of nodes and paths in ') the conditions
of being a stable model of a program P.

Definition 24 (Distinguished paths, good worlds). Let P be a program, ¢ be
a p-path {(wp, ..., w,), where n > 0, in K. We say that o is correctly rooted, if
Wo - D.

A correctly rooted p-path o terminated in a total interpretation w is called
a distinguished path and w is called a good world.

Theorem 25 ([11]). Let P be a program, K be the Kripke structure associated
with P.
Then w,, is a good world in P iff it is a stable model of P.

Remark 26. If D is a terminal in K7, it is the (only) stable model of P. The
trivial sequence (D) is correctly rooted and terminated in D. Suppose that a total
interpretation w # D is a stable model of P, we get (D,w,) € p.

6 UPDATES OF KRIPKE STRUCTURES

While the semantics presented in Sections 3 and 4 are based on rules rejection, our
semantics of updates is based on a rejection of some edges in Kripke structures. In
other words, the updates change the compatibility relation between possible worlds.

A removal of some edges may be interpreted as overriding the corresponding
dependencies between belief sets. On the other hand, connecting the edges from one
Kripke structure to the edges from another may be interpreted as an enrichment of
the dependencies between belief sets.

Suppose two programs,5 P and U, and the Kripke structures, K¥ = (W, p?) and
KY = (W, pY), associated with P and U, respectively. Moreover, U (the updating
program) is more preferred than P (the original program).

Our approach enables to recognize conflicts between programs even if there are
no conflicts between rules. In such cases some edges are rejected, but there is no
reason to reject a rule. We regard this as an essential observation:

Example 27. Consider Example 20. We “translate” its idea into Kripke structures.
The world {a,b,c} (and, consequently, the literal a) is dependent on the world

6 In this paper only the elementary case of two programs is considered (because of the
limited size). The more general theory is presented in [12].

234 J. Sefrdnek

w = {b,c} in the less preferred Kripke structure K. Similarly, the world w, is
dependent on the world w' = {not a,b,c} in the less preferred structure and w’ is
dependent on the world {not a} in the more preferred Kripke structure KV. We do
not want to accept the circular dependency of a on not a, therefore we propose to
reject the (less preferred) edge ({not a,b,c},w,) € p” (leading to inconsistency).

We intend to define an operation @& on Kripke structures. The resulting Kripke
structure KV®Y = KV @ KF = (W, pY®P) should be based on KV while a reasonable
part of K is preserved. Notice that the set of nodes, W, remains unchanged, but
some p-edges should be rejected.

Definition 28 (Attacked edges). Let W = Int;. Let 7,72 € W x W be binary
relations. Let L be a literal.
We say that e = (u,u U {L}) € 7 is attacked by ¢’ = (u,uU {not L}) € 7o.

Of course, there is a symmetry: if e is attacked by ¢’ then ¢’ is attacked by e, too.
Nevertheless, we want to prefer “one side”. We intend to reject an edge from p” if
it is attacked by an edge in pV.

Sometimes it is needed to reject a p’-edge of the form (w,w,), see the Exam-
ple 20. In this case the analysis is a little bit more complicated.”

The basic rule is as follow: if (w,w,) € p” and w occurs on a py-path, then
(w,w,) should be rejected, if the rejection is not blocked. The idea of blocking is
illustrated in the next Example.

Example 29 (Blocking of rejections). Let P be (P,U).

P={a+ U= {nota+ notbd
b+ not b < not c
c+} not ¢ < not a}

Let be wy = {not a, not b, not c}. There are three p-paths to w;. One of them is
o = ({not a},{not a,not c},w;). Notice that e; = ({wy,w,) € p’.

Observe that the pU-paths mentioned above are rooted in default assumptions
(in{not a} or in {not b} or in {not c}). There is no support for these assumptions.
We decided to prefer the facts from P to default assumptions from U. Hence, the
facts from P should override default assumptions from U. Therefore, the rejection
of e; by o should be considered to be blocked.

The facts from P are conflicting with respect to each root of a pV-path to wy, w;
is not supported in U. On the contrary, ({not a},w,), ({not b},w,), ({not c},w,) €
p? and there is no reason to reject them.

The idea of rejections blocking is the fundamental one.

" More motivations and examples are presented in [12].

Updates of Logic Programs 235

Definition 30 (Blocking). Let programs P and U be given. The corresponding
Kripke structures are denoted by Kp and Ky. Let (wy,w,) € p¥. Let Ly and Ly be
conflicting literals.

A pY-edge (wg,wy) is blocked iff Ly € w; and there is a p"-path from) to w
such that Ly € w.

Remark 31. The basic attitude behind the notion of blocking is as follows: de-
fault assumptions in a more preferred program may be falsified by facts from a less
preferred program.

Notice that Definition 30 is sufficiently general: if a literal L, from wy is con-
flicting with a literal Ly supported (by a path form §) in Kp (as in Example 29),
then also Ly € wy.

Definition 32 (Overriding). A pY-edge e = (wp, w1) overrides a p’-edge (wy,w,)
if e is not blocked.

Definition 33 (Rejected edges). Consider K = (W, pP) and KV = (W, pV). We
say that e € p” is rejected, if

e ¢ is attacked by some ¢’ € pU,
e or there is a pY-edge ¢/ = (wp, wy), overriding e = (wy,wy) € p.
The set of rejected edges is denoted by R@j@ct@de(pP).

Definition 34 (Update on Kripke structures).

KUe kP = KUeP = (W, pv®"h)
P =)7 U (0P \ (Rejected (o)

The causal rule rejection principle is satisfied in updated Kripke structures:

Proposition 35 ([10]). Let P = (P, P») be a multiprogram, where 1 < 2. Let
w € Inte, r € P and w = body(r).

If e = (w,wU {head(r)}) € Rejected r,(p™) then r € reject(P,2,w) and r €
rjct(P, 2, w).

Remark 36 ([10]). The converse of Proposition 35 does not hold. If a rule is re-
jected, some edges “generated” by this rule may be not rejected. Let Py be {a <},
P, be {not a < b} and w be {a,b}. Then (0,{a}) & Rejected ,»,(p™) but the rule
a < is both in reject(P, 2, w) and in rjct(P, 2, w).

Therefore, the rejection defined within the frame of Kripkean semantics is more
sensitive (able to make a more fine distinguishing) than a rejection of rules.

Remark 37. There is no analogy of the Proposition 35 for the edges with the
target w,. It may happen that (w,w.) € Rejected,v(p”), but there is no rule
r € PNreject(P,2,w) or in PN rjct(P,2,w): According to Definition 32 there is
a rule r € P such that w = body(r) and not head(r) € w. However, not head(r)

236 J. Sefrdnek

may be not introduced by a rule from U, it may be in the root of each path to w,
see Example 20.

Of course (similarly as in the Remark 36), if a rule is rejected, it is possible that
(w,wy) & Rejected v (p”), where the transition from w to w, is generated by the
rejected rule.

Problems with tautological and cyclic updates are removed in the Kripkean
semantics. Tautologies do not influence Kripke structures.

Proposition 38. Let P be program. Let P’ = P U {r}, where head(r) € body(r).
Then £V = K.

The following theorem shows that cycles from P, do not cause an update of
Kp,: paths generated by cycles are terminated in X1®2 by w, if there is a conflict
between a rule in P, and a rule in the cycle of P:

Theorem 39. Let for all r € P, there is a 7' € P, such that head(r) € body(r').
Let w = {head(r) : v € Py}.

If there is a p-path (0, ...,u) such that not head(r) € u for some r € P, then
for each w’ such that w C w’ holds that (w',w,) € KN,

Notice now that good worlds of KXF2®1 play the crucial role in the update semantics.

Finally, Kripkean semantics do not suffer from irrelevant updates of the type
illustrated by Example 19 and it is able to recognize the conflicts not distinguishable
by semantics based on the causal rejection principle.

Theorem 40. Let P U U be consistent. Then the good worlds in XYY coincide
with good worlds in KV®P,

7 CONCLUSIONS

The results of the paper:

e a classification of the semantics based on the rule rejection principle is given,
e a Kripkean semantics of logic program updates is presented,

e the Kripkean semantics enables to solve the problem of tautological, cyclic and
irrelevant updates and it is able to recognize conflicts indistinguishable according
to the causal rejection principle.

A dependency framework is introduced recently in [15, 13, 14]. The framework
provides a simplification of Kripke structures presented in this paper and also its
computational properties are more appropriate.

The author thanks one of the anonymous referees for helpful observations and
comments.

The work on this paper has been partially supported by a grant of the Slovak
Agency VEGA, No. 1/3112/06 and a grant of the Agency for Promotion of Research
and Development under the contract Sefranek, J. APVV-20-P04805.

Updates of Logic Programs 237

REFERENCES

1]

2]

8]

[4]
[5]

[6]
[7]

8]

[9]

ALFERES, J.J.—BANTI, F.—BROGI, A.—LEITE, J. A.: Semantics for Dynamic
Logic Programming: A Principled Based Approach. In Proceedings of LPNMR 2004,
Springer.

ALFERES, J.J.—LEITE, J. A.—PEREIRA, L. M.—PRZYMUSINSKA, H.—PRZYMU-
sINsKI, T. C.: Dynamic Updates of Non-Monotonic Knowledge Bases. The Journal
of Logic Programming, Vol. 1-3, 2000, No. 45, pp. 43-70.

BanTI, F.—ALFERES, J.J.—BROGI, A.—HITZLER, P.: The Well Supported Se-
mantics for Multidimensional Dynamic Logic Programs. LPNMR 2005, LNCS 3662,
Springer, pp. 356-368.

EITER, T.—FINK, M.—SABBATINI, G.—TowMmPITS, H.: On Properties of Update
Sequences Based on Causal Rejection. 2001.

Homora, M.: Dynamic Logic Programming: Various Semantics Are Equal on
Acyclic Programs. Proceedings of CLIMA V, 2004.

LEITE, J.: Evolving Knowledge Bases. IOT Press, 2003.

LeITE, J.: On Some Differences Between Semantics of Logic Program Updates.
IBERAMIA 2004, pp. 375-385.

LeITE, J.A.—ALFERES, J.J.—PEREIRA, L.M.: Multi-Dimensional Dynamic
Knowledge Representation. In: Eiter, T., Faber, W., Truszczynski (Eds.): LPNMR
2001, Springer, pp. 365-378.

Karsuno, H.—MENDELZON, A. O.: On the Difference Between Updating a Know-
ledge Base and Revising It. Proc. of KR ’91.

MARINICOVA, E.: Semantic Characterization of Dynamic Logic Programming.
Diploma Thesis, Comenius University, Bratislava, 2001.

SEFRANEK, J.: A Kripkean Semantics for Dynamic Logic Programing. Logic for
Programming and Automated Reasoning, Springer, 2000.

SEFRANEK, J.: Semantic Considerations on Rejection. Proceedings of NMR 2004,
Whistler, BC, Canada.

SEFRANEK, J.: Nonmonotonic Integrity Constraints. Proceedings of 20" Workshop
on Logic Programming (WLP 2006). Vienna 2006.

SEFRANEK, J.: Irrelevant Updates and Nonmonotonic Assumptions. Proceedings of
JELIA 2006.

SEFRANEK, J.: Rethinking Semantics of Dynamic Logic Progreamming. Proceedings
of NMR 2006.

S18KA, J.: Refined Extension Principle for Multidimensional Dynamic Logic Pro-
grams. Proceedings of Znalosti 2005.

S18kA, J.: Dynamic Logic Programming and World State Evaluation in Computer
Games. Proceedings of 20" Workshop on Logic Programming (WLP 2006). Vienna
2006.

238

J. Sefrdnek

Jan SEFRANEK works at Comenius University, Faculty of
Mathematics, Physics and Informatics, Department of Appled
Informatics. His main research interests are knowledge repre-
sentation, nonmonotonic reasoning and cognitive semantics.

