Computing and Informatics, Vol. 27, 2008, 213-222

MPI SUPPORT ON THE GRID

Kiril DIcHEV, Sven STORK, Rainer KELLER

High Performance Computing Center
University of Stuttgart

Nobelstrasse 19

70569 Stuttgart, Germany

e-mail: {dichev, keller}@hlrs.de

Enol FERNANDEZ

Universidad Autonoma de Barcelona
Barcelona, Spain
e-mail: enol@aomail .uab.es

Keywords: MPI, grid, metacomputing, workload management system

Abstract. Grids as infrastructures offer access to computing, storage and other
resources in a transparent way. The user does not have to be aware where and how
the job is being executed. Grid clusters in particular are an interesting target for
running computation-intensive calculations. Running MPI-parallel applications on
such clusters is a logical approach that is of interest to both computer scientists
and to engineers. This paper gives an overview of the issues connected to running
MPI applications on a heterogenous Grid consisting of different clusters located at
different sites within the Int.EU.Grid project. The role of a workload management
system (WMS) for such a scenario, as well as important modifications that need
to be made to a WMS oriented towards sequential batch jobs for better support
of MPI applications and tools are discussed. In order to facilitate the adoption of
MPI-parallel applications on heterogeneous Grids, the application developer should
be made aware of performance problems, as well as MPI-standard issues within its
code. Therefore tools for these issues are also supported within Int.EU.Grid. Also,
the special case of running MPT applications on different clusters simultaneously as
a more Grid-oriented computational approach is described.



214 K. Dichev, S. Stork, R. Keller, E. Fernandez

1 INTRODUCTION

Computational Grid infrastructures offer vast amounts of compute power for appli-
cations. In order to make best usage of the clusters within a given Grid, a performant
MPI implementation and MPI tools have to be provided on the clusters, which may
be equipped each with different network infrastructure, high-performance networks
or may be completely heterogeneous in architecture.

This paper will begin with a short and general description of sending sequential
jobs into the EGEE infrastructure. The approach for MPI jobs will then be described
and compared to the sequential job approach. Some of the problems connected with
parallel jobs will be listed. In the next two sections, the approach for sending MPI
jobs in EGEE and 12G will be presented and compared to each other. Interesting
improvements and features of 12G like the support for MPI tools or inter-cluster
MPI will be presented as well. In the conclusion we summarize the results and give
a short outlook for possible development of the MPI support.

2 SEQUENTTAL JOBS IN GRID INFRASTRUCTURES

In most Grid infrastructures, single processor jobs are still dominating the computer
usage, although with the advance of multi-core architectures, increase in computing
performance will depend on the parallelization of existing applications.

We give a very simplified description of the submission of sequential jobs in
a grid. In order for a user to send a sequential program for execution on a Grid
infrastructure, first of all, the user has to be a member of a Virtual Organisation
(VO) in a grid. This means the user needs a valid certificate for this VO, or needs
the VO authority to accept certificates issued by other authorities. Another require-
ment for the user is to have access to a so-called User Interface node of the grid.
Job management is done from this node. A user then sends a job by describing
in Job Description Language (JDL) a file to the Resource Broker (RB). The RB
then matches the user’s requirements against the available sites and sends them on
a matched site. On this site, the Computing Element (CE) on his side sends the
binary to a Worker Node (WN), where the execution of the sequential program takes
place. The following example JDL file describes the job to execute the application
hostname for EGEE:

Type = "Job";

JobType = "Normal";

Executable = "/bin/hostname";

StdOutput = "hostname.out";

StdError = "hostname.err";

OutputSandbox = {"hostname.err","hostname.out"};
Arguments = "-f",

RetryCount =7;



MPI Support on the Grid 215

3 PARALLEL JOBS IN GRID INFRASTRUCTURES

Larger Grids consist of several clusters of SMPs; each consisting of dozens to hun-
dreds of compute nodes, each with several sockets, each of which features up to
four computing cores. Apart from other novel parallel programming paradigms, the
Message Passing Interface (MPI) [10, 11] is the standard parallelization strategy for
distributed memory machines, such as clusters of SMPs.

Our purpose now is to run an MPI application on the Grid. As MPI does
not in itself impose any architecture requirements, an MPI job in principal can be
executed on any architecture. In the JDL file, the user would specify the number
of MPI processes to be launched for the application. Normally, the user would not
oversubscribe the computer node, so that each MPI process would have its own
single-core processor or its own core in a multi-core processor.

To make best usage of the given resources, a mechanism is required to reserve the
resources and to convey the information described in the JDL file, as well as the input
files required by the application. Within a single cluster, this resource allocation
and fair distribution is handled by the job scheduler. Of course, Grid infrastructures
must be aware of already existing scheduling mechanism on the back-end clusters,
as described below.

3.1 Job Scheduler

Larger clusters with hundreds to thousands of compute nodes need some kind of
scheduling to allocate compute nodes to users in a fair way. Users describe the
applications requirements to the batch system in a description of the job similar to
JDL. Allocation of those applications among the available computational resources
is done by the so-called scheduler. Along comes the requirement to manage the
execution once the application is started and once it has finalized or in case of
an error. The batch system then handles the preparation of computational nodes,
e.g. setting up networks, or mounting home directories prior to startup. Popular
batch systems and job schedulers are Torque, an open source implementation of the
Portable Batch System (PBS), the Sun Grid Engine (SGE) and the Load-Sharing
Facility (LSF), etc. The MAUI scheduler is also often used in combination with the
latter ones.

3.2 File Distribution

A specific problem to parallel applications is how to distribute the binaries as well as
the input files to different worker nodes. Collecting the output files is also a similar
problem. In general, there are multiple approaches.

The most popular approach within clusters is to use a networking file system,
which offers access to files from multiple nodes. A common, yet not very scalable
solution is to use the Network File System (NFS) protocol. However, from within



216 K. Dichev, S. Stork, R. Keller, E. Fernandez

multiple clusters within a Grid, NFS is not viable. Therefore Grid-specific solutions
are discussed.

In the second approach the resource broker distributes the files specified in the
input sandbox of the JDL to the first worker node of the nodes the job is allocated
to. In the case that the different worker nodes are not using a shared filesystem, the
other WNs will have to receive the files from the first WN, and in case the different
WNss write separate output files, these files also have to be copied back to the first
node.

Another approach is to use Storage Elements (SE) for input/output files. The
transfer between SEs and WNs then has to be performed additionally.

3.3 Running the MPI Application

After the scheduler has allocated the job to some resources according to the user
requirements, the execution of the MPI-parallel application takes place. The MPI
Forum gives some recommendations on the mechanism of running MPI applica-
tions in the MPI-2 specification [11]. It recommends that mpirun is a portable
and standardized script, while mpiezec is implementation-specific. The MPI forum
recommends the availability of vendor-specific options only in mpiezec.

However, the different MPI vendors already were using mpirun in a non-portable
and non-standardized way. Some of them started using mpiexec specifically for their
MPI-2 implementation. In other implementations the two commands are identical.
Even if a user assumes that he knows which command is needed, one still could
not rely on specific options to mpirun/mpiexec — e.g. some MPI implementations
support a specific scheduler or a mechanism for copying files to slave nodes, while
others don’t.

3.4 Making Things Work Together

The basic idea for a user to solve the problems that we mentioned above would be
for the user to specify all information in its own script. By editing the script right
before execution, the user is flexible about the execution of her job. In a next step,
the script would be as generic as possible, so that the user would need no knowledge
of the file system or scheduler installed on a site, letting the script extract this
information. A further step is to install all scripts directly on the sites where the
jobs are run. As we will see in the next sections, that is the path that EGEE and
12G follow. The latter project also adds important support into the resource broker.

4 MPI-SUPPORT IN I2G AND EGEE

In order to alleviate the problems of heterogenous cluster installations with regard
to cluster network interconnection, the cluster’s batch-job requirements and finally
to the application’s MPI-implementation requirements, several software components
are integrated within the I12G-project to work within the Grid-environment.



MPI Support on the Grid 217

MPI-Start is used as startup mechanism to adapt to the cluster installation and
abstract the startup of applications with several MPI-implementations as backend,
as described in Section 4.2.1.

Furthermore, with the Open MPI-project [2], HLRS is contributing to a high-
performance MPI-implementation which still allows adaption to different infrastruc-
tures by supporting a variety of network interconnects and job schedulers for startup.
All of these are easily loadable upon startup as plugins.

PACX-MPT (Section 4.2.5) — a solution for running an MPI application across
different networks — was also implemented in HLRS. For Grids, it allows to utilize
the usage of a very large number of CPUs on different clusters. Locally, the clusters
use their performant MPI implementation, but they are connected through TCP
connections over the Internet.

Marmot [9, 7] is an MPI correctness checker which was implemented at HLRS.
It is based on the MPI Profiling Interface. Through its debug server, it is able to log
runtime errors and warnings — e.g. about wrong data type usage, possible deadlocks,
ete.

Different MPI applications from areas like high energy physics, nuclear fusion,
astrophysics, medical applications and environment have been used. [4] describes
one of the applications using MPI for environmental simulations. More information
on all the applications is given in [8].

4.1 MPI in EGEE

In a previous approach to support MPI in EGEE one could directly specify a binary
compiled with the MPICH version that was installed on several sites and specify
“MPICH” as JobType. The broker then would issue a hard-coded script for the
actual MPI job execution. This approach has multiple disadvantages: First, one
is bound to one MPI implementation. Second, there is no flexibility at all: every
minor change to the script from the broker is only applied after months of testing
and validation. Clearly, a more flexible approach was needed, and MPI-Start was
accepted as a solution.
Currently, in EGEE you can use a JDL like the following;:

JobType = "MPICH";

NodeNumber = 16;

Executable = "mpi-start-wrapper.sh";
Arguments = "mpi-test OPENMPI";
StdOutput = "mpi-test.out";
StdError = "mpi-test.err";

InputSandbox = {"mpi-start-wrapper.sh",'"mpi-hooks.sh","mpi-test.c"};
OutputSandbox = {"mpi-test.err","mpi-test.out"};

Requirements =

Member ("MPI-START", other.GlueHostApplicationSoftwareRunTimeEnvironment)
&& Member ("OPENMPI", other.GlueHostApplicationSoftwareRunTimeEnvironment) ;



218 K. Dichev, S. Stork, R. Keller, E. Fernandez

The mpi-start-wrapper.sh script sets some variables for MPI-Start (introduced
in section 4.2.1). Also, the MPT implementation required in this case is Open MPI.
The specified job type “MPICH” is misleading — it does not require the usage of
MPICH, but at the moment it has to be used for parallel jobs. In some problem
cases, the scheduler also has to be specified additionally. For more information refer
to [12].

The main problem here is that there is no resource broker support other than
the reservation of multiple nodes. The user manually sets all of the MPI-Start
environment variables.

For a better understanding, Figure 1 (left) shows how the parts of the parallel
job are specified and interpreted:

JDL: ) JDL: Resource Broker:
Using env. variables Read variables, — User may specify — Translates settings Read variables,
the following may set by spheduler in an easy format. — Any required MPL set by scheduler.
be specified: depending on option is set trans— depending on
- MPI Type system, etc. — optional settings w/ parently to the user. system, etc.
— Application and env. variables.
paramete_rg L | ol
- MPI specific options

Fig. 1. MPI-Start on EGEE (left) and 12G (right)

4.2 Int.EU.Grid

4.2.1 MPI-Start

In the previous sections we discussed the problems that can arise with MPI imple-
mentations, schedulers or file distribution. Other more application specific stuff like
precompilation or collection of post-run results is also relevant. To resolve all of these
problems, within the I2G project [5] a set of scripts were developed: MPI-Start. The
main goal of MPI-Start is to support running MPI applications on such a challeng-
ing infrastructure as the Grid. The scripts are written in a modular way: there is
a core and around it there are different plugins: MPI implementations, schedulers
and file distribution method each have a set of plugins, as may be seen in Figure 2.
Additionally, MPI-Start enables other features like user-defined scripts(hooks) to be
run before or after the execution of the binary. Also, a very detailed debugging in-
formation is integrated for easier error detection. According to the detected plugins,
the correct command is generated and executed to run the MPI program.

MPI-Start has two types of settings: some are the settings specified by the
I2G cross broker [3] or the user directly through environment variables (e.g. MPI
implementation to be used, hook methods to be called etc.), and others are through
some kind of detection mechanism (file system for file distribution, scheduler, etc).
The resulting command is executed.

In fact, it is difficult to categorize the tasks MPI-Start is limited to: everything
that enables and improves running MPI applications is acceptable. The latest ten-



MPI Support on the Grid 219

dency in the development of MPI-Start is to allow the user comfortable usage of
MPT tools for profiling or debugging. For some of those tools, it is necessary to have
direct control of the runtime command (e.g. tracing tools) or some preconfiguring
is necessary (like setting dynamic library paths). Support for one MPI correctness
checker (Marmot) and one MPI tracing tool (mpitrace) has been added to 12G and
successfully tested.

One challenge about the integration of tool support into MPI-Start is the loss
of flexibility in some cases. In this respect, tools that are not highly customizable or
are configured through environment variables are easily configured with MPI-Start
support. Other classical Unix command line tools giving much flexibilty to the user
should probably be used as part of the hooks mechanism and not directly integrated
into MPI-Start.

Core
Scheduler

File Distributiof
o
(3]

Fig. 2. MPI-Start architecture

4.2.2 MPI-Trace Support in I12G

The MPI tool usage on the 12G infrastructure can be exemplary seen on the example
of mpitrace. Mpitrace [1] is a library for generating trace files for MPI applications
for the Paraver analyzer. Although it would be possible to add this support on the
user part as a set of pre- and post-run hooks, this solution could be much improved.
Currently, MPI-Start offers support for trace file generation by two steps: first, you
should compile your binary with mpitrace support; then you have to specify it is to
be used by an extra flag to the JDL file. Also, you have to specify an output file
which has a standardized name depending on the executable name. MPI-Start then
automatically sets the necessary environment variables for mpitrace and after the
execution, the necessary collection of the files on every machine and the generation
of a global trace file are performed.

Of course, the resulting trace file has to be viewed and analyzed with Paraver.
A user can do this on a local machine with an installation of the analyzer.

In the context of the Grid, such tracing information could be particularly in-
teresting: an MPI application could depend not only on the algorithm but possibly
also on the cluster the job is run on. Thus, comparing information about different
clusters could help the user understand which performance problems are possibly
algorithm-specific and which are only specific to a site configuration.



220 K. Dichev, S. Stork, R. Keller, E. Fernandez

4.2.3 Marmot in I12G

Like we mentioned earlier, Marmot delivers relevant information for MPI application
runs that can hint for programming errors at the MPI communication level. The
motivation specifically for the Grid is to allow the expertise of Marmot to be used also
by the application users of the infrastructure (usually engineers) to detect problems
without being MPI experts. Marmot was used in a few runs of the Fusion application
to verify it works without errors. For other applications, Marmot is available as well.

4.2.4 RB support for parallel jobs

In I2G, an essential step for supporting parallelism is the extension of the broker. On
the user level, this can be first noticed by the syntax of the JDL file and the missing
wrapper script for MPI-Start — it is not needed. The job type here is “Parallel”
and the MPT implementation and executable (if the compilation is not delayed until
before execution) can be directly specified.

Executable = "mpi-test";

JobType = "Parallel";

SubJobType = "openmpi";

NodeNumber = 16;

StdOutput = "mpi-test.out";

StdError = "mpi-test.err";

InputSandbox = "mpi-test";

OutputSandbox = {"mpi-test.err","mpi-test.out"};

However, the added value is mainly in the new functionality for parallel jobs
that would not be available without the extension of the broker. The next section
will introduce an inter-cluster MPI approach which is only possible through the
cooperation of these components.

4.2.5 PACX-MPI

PACX-MPI [6] was developed at HLRS in order to allow one MPI application to
be run on different MPI implementations on different hardware architectures. The
software adds two additional MPI processes (daemons) for every MPP /cluster. The
communication between the clusters is done over TCP connections and format con-
versions are done internally by the library. Using PACX-MPI simply requires re-
compiling the MPI code with the corresponding wrappers. The application must
not even know it is being executed in a distributed heterogeneous environment over
several clusters of the Int.EU.Grid.

An important part of using PACX-MPI is the definition of the metacomputer
to run the MPI application on. In case we want to run the MPI application on
two clusters which have no knowledge of each other before the application is run,
a mediator has to be defined — the clusters contact it and get the connection infor-
mation. This scenario is also used for running inter-cluster MPI applications in the



MPI Support on the Grid 221

Int.EU.Grid. We will summarize how such an MPI application is enabled through
all of the infrastructure components.

After that, the user specifies “pacx-mpi” as the SubJobType. Currently, the
underlying MPI implementation is Open MPI on all sites. The user also specifies
how many MPI processes are needed. Note that these processes are the application
processes the user is interested in. After a modified matchmaking process takes
place, possibly two sites supporting PACX are chosen.

Here, the elegance of the approach shown in Figure 1 (right) becomes obvious:
the resource broker is able to specify environment variables for MPI-Start. These
variables contain the information — where the startup server (the mediator mentioned
above) is run, where the additional MPI processes for the inter-cluster communica-
tion should be run on the specific site, and also how the site is identified among all
sites running MPI jobs. MPI-Start then acts correspondingly — it adds the extra
daemons on the specified node, and it also specifies the mediator in its metacomputer
configuration file. The whole process remains transparent to the user.

5 CONCLUSION

This paper presented how the MPI support for parallel applications has been im-
proved on the Grid and in 12G in particular. The better support was in part delivered
by the MPI-Start suite, but also by the resource broker and the way it communicates
to MPI-Start. An example of how this support improves the grid was shown for the
case of inter-cluster MPI — PACX-MPI. Recent extensions of MPI-Start also allow
the use of MPI tools for debugging or profiling. This opens up the possibility for
not simply running MPI applications, but also for a better understanding of per-
formance and correctness issues when running those applications on the Grid. This
includes a deeper understanding of how different sites with different characteristics
behave for parallel applications.

REFERENCES

[1] Bapia, R.M.—EscaLk, F.—GABRIEL, E.—GIMENEZ, J.—KELLER, R.—
LABARTA, J.—MUELLER, M. S.: Performance Prediction in a Grid Environment.
Lecture Notes in Computer Science (LNCS), Vol. 2970, pp. 257-264, February 2003.

[2] GABRIEL, E. et al.: Open MPI: Goals, Concept, and Design of a Next Generation
MPI Implementation. In D. Kranzlmueller, P. Kacsuk, and J.J. Dongarra, editors,
Proceedings of the 11*" European PVM/MPI Users’ Group Meeting, Vol. 3241 of Lec-
ture Notes in Computer Science (LNCS), pp. 97-104, Budapest, Hungary, September
2004, Springer.

[3] HEYMANN, E.—SENAR, M.A.—FERNANDEZ, E.—FERNANDEZ, A.—SALT, J.:
Managing MPI Applications in Grid Environments. In 2"¢ European Across Grids
Conference (AxGrids), Vol. 3165 of Lecture Notes in Computer Science, pp. 42-50,
Springer, 2004.



222

[4]

[5]
[6]

[7]

8]

K. Dichev, S. Stork, R. Keller, E. Fernandez

Hrucny, L.—HABALA, O.—TRAN, V.—GATIAL, E.—MALISKA, M.—SIMO,
B.—SvLizik, P.: Collaborative Environment for Grid-based Flood Prediction. In
Computing and Informatics, Vol. 24, 2005, No. 1, pp. 87-108.

Int.EU.Grid Homepage. http://www.interactive-grid.eu/.

KELLER, R.—LIEBING, M.: Using PACX-MPI in MetaComputing Applications.
In Proceedings of the 18™ Symposium Simulationstechnique, Erlangen, Germany,
September 2005.

KRAMMER, B.—REScH, M. M.: Correctness Checking of MPI One-Sided Commu-
nication Using Marmot. In B. Mohr, J. Larsson Trff, J. Worringen, and J.J. Don-
garra, editors, Proceedings of the 13" European PVM/MPI Users’ Group Meeting,
Vol. 4192 of Lecture Notes in Computer Science (LNCS), pp. 105-114, Springer,
September 2006.

MARCO, J.: The Interactive European Grid: Project Objectives and Achievements.
See this volume.

Marmot Homepage. http://www.hlrs.de/organization/amt/projects/marmot/.
MESSAGE PASSING INTERFACE FORUM. MPI: A Message Passing Interface Standard,
June 1995, http://www.mpi-forum.org.

MESSAGE PASSING INTERFACE FOrRUM. MPI-2: Extensions to the Message-Passing
Interface, July 1997, http://wuw.mpi-forum.org.

MPI on EGEE. http://egee-docs.web.cern.ch/egee-docs/uig/development/
uc-mpi-jobs_2.html.

Rainer KELLER is working at HLRS in several projects, such as
Open MPI and PACX-MPI. These software packages are being
developped in several european and national projects, such as
int.eu.grid. He is heading the working group application, models
and tools.



