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746 01 Opava, Czech Republic
&
Department of Computer Science
Catholic University Ružomberok
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Abstract. We study P colonies introduced in [8] as a class of abstract computing

devices composed of independent membrane agents, acting and evolving in a shared
environment. In the present paper especially P colonies are considered, which are
homogeneous with respect to the type of rules in each program of agents.

The number of agents, as well as the number of programs in each agent are
bounded, which are sufficient to guarantee computational completeness of homoge-
neous P colonies. We present results for P colonies with one and with two objects
inside each agent.
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1 INTRODUCTION

P colonies were introduced in [8] as formal models of a computing device inspired by
membrane systems ([10]) and by colonies, a special grammar systems with simple be-
havior of components ([6]). This model intends to catch a structure and functioning
of a community of living organisms in a shared environment.

The independent organisms living in a P colony are called agents. Each agent
is represented by a collection of objects embedded in a membrane. The number
of objects inside each agent is constant and determines the capacity of the P colony.
The environment contains several copies of a basic environmental object denoted
by e. The number of copies of e is unlimited.

A set of programs is associated with each agent. The program determines the ac-
tivity of the agent by rules. Each program consists of c rules where c is the capacity
of the P colony. All the objects inside an agent are evolved (by an evolution rule)
or transported (by a communication rule) in every moment of computation. Two
such rules can also be combined into checking rule, which sets a priority between
these rules: if the first rule is not applicable then the second one should be ap-
plied.

The computation starts in the initial configuration, which will be specified for
all P colonies in the presented paper in the following way: the environment and all
agents contain only copies of object e. Using their programs the agents can change
their objects and possibly objects in the environment. This gives the possibility to
affect the behavior of the other agents in the next computation steps. Computation
is realized in parallel way. In each step of the computation, each agent with at
least one applicable program nondeterministically chooses one of them and executes
it. The computation halts when no agent can apply any of its programs. The re-
sult of the computation is given by the number of some specific objects present in
the environment at the end of the computation.

Thus a P colony produces a set of numbers. P colonies are computationally
complete. A considerable effort is devoted to minimize the parameters of P colonies
preserving their computational completeness.

In the present paper we study the properties of homogeneous P colonies, i.e.
the P colonies with programs having the same type of rule (evolution, communication
or checking) for all objects inside an agent. Trivially, each P colony with capacity
one is homogeneous. Homogeneous P colonies were first considered in [1].

In the present paper we will study the number of agents and the number of
programs in the agent needed to achieve computational completeness of the homo-
geneous P colonies with capacity one and two.

We start with basic notations and definitions in Section 2.
In Section 3 we will deal with P colonies with one object inside each agent. It

has been shown in [1] that at most seven programs for each agent as well as five
agents guarantee the computational completeness of these P colonies. In the present
paper we improve these results as follows: We show that at most six programs in
each agent suffice with no limitation to the number of agents and we recall recent
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result from [2], where the number of agents is reduced to four with no limitation to
the number of programs.

Homogeneous P colonies with two objects in each agent are studied in Section 4.
Two objects in agents allow to maximally reduce the number of agents, in the sense
that computational completeness can be realized by one agent only. Moreover,
at most four programs in each agent allow to generate any computable subset of
the natural numbers (with no limitation to the number of agents).

2 DEFINITIONS

Throughout the paper we assume the reader to be familiar with the basics of the for-
mal language theory. For more information on membrane computing, see [11], for
more information on computational machines and colonies in particular, see [9]
and [6, 7, 8], respectively. Activities carried out in the field of membrane computing
are currently numerous and a comprehensive information about them is available
also at [12].

We briefly summarize the denotations used in the present paper.
We use NRE to denote the family of the recursively enumerable sets of non-

negative integers and N to denote the set of non-negative integers.
Let Σ be the alphabet. Let Σ∗ be the set of all words over Σ (including the empty

word ε). We denote the length of the word w ∈ Σ∗ by |w| and the number of occur-
rences of the symbol a ∈ Σ in w by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all finite multisets over the finite set
V is denoted by V ◦. The support of M is the set supp(M) = {a ∈ V | fM (a) 6= 0}.
The cardinality of M , denoted by |M |, is defined by |M | =

∑

a∈V f(a). Any finite
multisetM over V can be represented as a string w over alphabet V with |w|a = f(a)
for all a ∈ V . We write M = ⋆w in this case, i.e. operator ⋆ associates with w
corresponding multiset M . Obviously, all words obtained from w by permuting
the letters can also represent the same M , and ⋆ε represents the empty multiset.

2.1 P Colonies

We briefly recall the notion of P colonies introduced in [8]. A P colony consists
of agents and environment. Both the agents and the environment contain objects.
With every agent the set of programs is associated. There are two types of rules
in the programs. The first type, called evolution rules, are of the form a → b. It
means that object a inside of the agent is rewritten (evolved) to the object b. The sec-
ond type of rules, called communication rules, are in the form c ↔ d. When this
rule is performed, the object c inside the agent and the object d outside of the agent
change their positions; thus, after execution of the rule object d appears inside
the agent and c is placed outside in the environment.
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In [7] the ability of agents was extended by checking rules. Such a rule gives
the agents the opportunity to choose between two possibilities. It has the form r1/r2.
If the checking rule is performed, the rule r1 has higher priority to be executed than
the rule r2. It means that the agent checks the possibility to use rule r1. If it can
be executed, the agent has to use it. If the rule r1 cannot be applied, the agent can
use the rule r2.

In the case of rules in the same form in the program, we can say that the pro-
gram is rewriting, communication or checking one. In the case of P colonies with
two objects inside each agent the rewriting program can be modified to the form
〈ab → cd〉. In the same way we can modify communication programs to the form
〈ab ↔ cd〉.

Definition 1. The P colony of the capacity c is a construct

Π = (A, e, f, ⋆vE , B1, . . . , Bn),

where

• A is an alphabet of the colony, its elements are called objects,

• e is the basic object of the colony, e ∈ A,

• f is the final object of the colony, f ∈ A,

• ⋆vE is an initial content of the environment, ⋆vE ∈ (A− {e})◦,

• Bi, 1 ≤ i ≤ n, are agents, each agent is a construct Bi = (⋆oi, Pi), where

– ⋆oi is a multiset over A, it determines the initial state (content) of agent Bi

and |⋆oi| = c,

– Pi = {pi,1, . . . , pi,ki} is a finite set of programs, where each program contains
exactly c rules, which are in one of the following forms each:

∗ a → b, called an evolution rule,
∗ c ↔ d, called a communication rule,
∗ r1/r2, called a checking rule; r1, r2 are an evolution or a communication
rules.

An initial configuration of the P colony is an (n+ 1)-tuple (⋆o1, . . . , ⋆on, ⋆vE) of
multisets of objects present in the P colony at the beginning of the computation,
given by ⋆oi for 1 ≤ i ≤ n and by ⋆vE . In general, the configuration of P colony
Π is given by (⋆w1, . . . , ⋆wn, ⋆wE), where |⋆wi| = c, 1 ≤ i ≤ n, ⋆wi represents
all the objects placed inside the i-th agent and ⋆wE ∈ (A − {e})◦ represents all
the objects in the environment different from the object e.

In the paper parallel model of P colonies will be studied. At each step of the par-
allel computation, each agent which can use some of its programs should use one. If
the number of applicable programs is higher than one, the agent nondeterministically
chooses one of them.
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Let the programs of each Pi be labeled in a one-to-one manner by labels in a set
lab (Pi) and lab (Pi) ∩ lab (Pj) = ∅ for i 6= j, 1 ≤ i, j ≤ n.

To express derivation step formally we introduce the following four functions:
For rule r being a → b, c ↔ d and c ↔ d/c′ ↔ d′, respectively, and for multiset

⋆w ∈ A◦ we define:

left (a → b, ⋆w) = ⋆a
right (a → b, ⋆w) = ⋆b
export (a → b, ⋆w) = ⋆ε
import (a → b, ⋆w) = ⋆ε

left (c ↔ d, ⋆w) = ⋆ε
right (c ↔ d, ⋆w) = ⋆ε
export (c ↔ d, ⋆w) = ⋆c
import (c ↔ d, ⋆w) = ⋆d

left (c ↔ d/c′ ↔ d′, ⋆w) = ⋆ε
right (c ↔ d/c′ ↔ d′, ⋆w) = ⋆ε

export (c ↔ d/c′ ↔ d′, ⋆w) = ⋆c
import (c ↔ d/c′ ↔ d′, ⋆w) = ⋆d

}

for |⋆w|d ≥ 1

export (c ↔ d/c′ ↔ d′, ⋆w) = ⋆c
′

import (c ↔ d/c′ ↔ d′, ⋆w) = ⋆d
′

}

for |⋆w|d = 0 and |⋆w|d′ ≥ 1

For a program p and any α ∈ {left, right, export, import}, let

α (p, ⋆w) =
⋃

r∈p

α (r, ⋆w) .

A transition from a configuration to another one is denoted as

(⋆w1, . . . , ⋆wn, ⋆wE) ⇒ (⋆w
′
1
, . . . , ⋆w

′
n, ⋆w

′
E) ,

where the following conditions are satisfied:

• There is a set of program labels P with |P | ≤ n such that

– p, p′ ∈ P , p 6= p′, p ∈ lab (Pj), p
′ ∈ lab (Pi) , i 6= j,

– for each p ∈ P , p ∈ lab (Pj), left (p, ⋆wE) ∪ export (p, ⋆wE) = ⋆wj, and
⋃

p∈P

import (p, ⋆wE) ⊆ ⋆wE .

• Furthermore, the chosen set P is maximal, that is, if any other program r ∈
⋃

1≤i≤n lab (Pi), r /∈ P is added to P , then the conditions above are not satisfied.

In general, for each j, 1 ≤ j ≤ n, for which there exists a p ∈ P with p ∈ lab (Pj),
let w′

j = right (p, ⋆wE) ∪ import (p, ⋆wE) . If there is no p ∈ P with p ∈ lab (Pj) for
some j, 1 ≤ j ≤ n, then let ⋆w

′
j = ⋆wj and moreover, let

⋆w
′
E = ⋆wE −

⋃

p∈P

import (p, ⋆wE) ∪
⋃

p∈P

export (p, ⋆wE) .

Union and “− ” are the multiset operations here.
A configuration is halting if the set of program labels P satisfying the conditions

above cannot be chosen to be other than the empty set. A set of all possible
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halting configurations is denoted by H. With a halting computation a result of
the computation can be associated. It is given by the number of copies of the special
symbol f present in the environment. The set of numbers computed by a P colony
Π is defined as

N (Π) =
{

|⋆wE |f | (⋆o1, . . . , ⋆on, ⋆vE) ⇒
∗ (⋆w1, . . . , ⋆wn, ⋆wE) ∈ H

}

,

where (⋆o1, . . . , ⋆on, ⋆vE) is the initial configuration, (⋆w1, . . . , ⋆wn, ⋆wE) is a halting
configuration, and ⇒∗ denotes the reflexive and transitive closure of ⇒.

Given a P colony Π = (A, e, f, ⋆vE , B1, . . . , Bn) the maximal number of
programs associated with the agents is called the height, the number of agents,
n, is called the degree and the number of the objects inside each of the agents is
the capacity of the P colony.

Let us use the following notations: NPCOLpar(c, n, h) for the family of all sets
of numbers computed by P colonies working in parallel, using no checking rules and
with:

• the capacity at most c,

• the degree at most n and

• the height at most h.

If the checking rules are allowed the family of all sets of numbers computed by
P colonies is denoted by NPCOLparK. If the P colonies are restricted, we use the
notation NPCOLparR and NPCOLparKR. If the P colonies are homogeneous, we
use notation NPCOLparH and NPCOLparKH.

2.2 Register Machines

In this paper we compare the families NPCOLpar(c, n, h) with the recursively enu-
merable sets of numbers. To do this we use the notion of a register machine.

Definition 2 ([9]). A register machine is the construct M = (m,H, l0, lh, P ) where:

• m is the number of registers,

• H is the set of instruction labels,

• l0 is the start label,

• lh is the final label,

• P is a finite set of instructions injectively labeled with the elements from the
set H.

The instructions of the register machine are of the following forms:

l1 : (ADD(r), l2, l3) Add 1 to the content of the register r and proceed to the in-
struction (labeled with) l2 or l3.
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l1 : (SUB(r), l2, l3) If the register r stores the value different from zero, then subtract
1 from its content and go to instruction l2, otherwise proceed to instruction l3.

lh : HALT Halt the machine. The final label lh is only assigned to this instruction.

Without loss of generality, one can assume that in each ADD-instruction l1 :
(ADD(r), l2, l3) and in each SUB-instruction l1 : (SUB(r), l2, l3) the labels l1, l2, l3
are mutually distinct.

The register machine M computes a set N(M) of numbers in the following way:
it starts with all registers empty (hence storing the number zero) with the instruction
labeled l0 and it proceeds to apply the instructions as indicated by the labels (and
made possible by the contents of registers). If it reaches the halt instruction, then
the number stored at that time in the register 1 is said to be computed by M
and hence it is introduced in N(M). (Because of the nondeterminism in choosing
the continuation of the computation in the case of ADD-instructions, N(M) can
be an infinite set.) It is known (see e.g. [9]) that in this way we compute all Turing
computable sets.

3 P COLONIES WITH ONE OBJECT INSIDE THE AGENT

In this section we analyze the behaviour of P colonies with only one object inside
each agent “living” in this P colony. It means that every program is formed by only
one rule. This rule is rewriting, communication or checking.

Theorem 1. NPCOLparK(1, ∗, 6) = NRE.

Proof. Let us consider a register machine M = (m,H, l0, lh, P ). All the labels
from H will be objects of the P colony which we construct below. The contents of
a register i will be represented by the number of copies of a specific object ai in
the environment. We will construct a P colony Π = (A, f, e, B1, . . . , Bn) with:

• the alphabet A = H ∪ {ai | 1 ≤ i ≤ m} ∪ {Fi | 1 ≤ i ≤ |H|} ∪ {e, d,D}

• final object f = a1

• agent Bi = (⋆e, Pi), 1 ≤ i ≤ |H| + 3, and its programs are as follows:

1. We consider the starting agents B1, B2 with a set of programs:

P1 : P2 :
1 : 〈e → l0〉 1 : 〈e → D〉
2 : 〈l0 ↔ D/l0 ↔ e〉 2 : 〈D ↔ l0〉

The agent B1 generates two copies of initial label l0 of the register machine M
and stops by consuming one copy of the objectD. The second agentB2 generates
one copy of D and it is blocked with object l0. Simulation of the computation
can start with the second copy of l0 in the environment.
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2. We need one more agent to generate a special object d.

P3 :
1 : 〈e → d〉
2 : 〈d ↔ H/d ↔ e〉

In every two steps the agent B3 places one copy of d to the environment.

3. For each instruction l1 : (ADD(r), l2, l3) there is one agent in P colony Π. This
agent has to add one copy of the object ar and the object l2 or l3 to the envi-
ronment.

Pl1 :
1 : 〈e ↔ l1〉 3 : 〈ar ↔ d〉 5 : 〈d → l3〉
2 : 〈l1 → ar〉 4 : 〈d → l2〉 6 : 〈l2 ↔ e/l3 ↔ e〉

If the object l1 is present in the environment, the agent Bl1 can start to be
active, it can consume the object l1, generate the object ar, place it to the envi-
ronment and finally exchange the object l2 or l3 by e. At the end of this part of
the computation the object with the label of the next instruction of M is placed
in the environment and another agent can start to work.

4. For each instruction l1 : (SUB(r), l2, l3) from P we consider the agent Bl1 with
the set of programs:

Pl1 :
1 : 〈e ↔ l1〉 3 : 〈F1 ↔ ar / F1 ↔ d〉 5 : 〈l2 ↔ e/l3 ↔ e〉
2 : 〈l1 → F1〉 4 : 〈ar → l2/d → l3〉

The agent brings inside the object l1 again and changes it to another object
F1. In the next step the agent checks whether at least one copy of ar is present
in the environment. If so, the agent consumes ar inside itself and rewrites it
to the object l2; otherwise the agent consumes the object d and rewrites it to
the object l3. In the last step the agent again exchanges the object l2 or l3 by e.

5. For the halting instruction labelled lh we consider the agent Blh with the follow-
ing set of programs:

Plh :
1 : 〈e ↔ lh〉 3 : 〈H ↔ d〉
2 : 〈lh → H〉

The agent consumes the object lh and there is no other object lm in the envi-
ronment. This agent places one copy of the object H to the environment and
stops working. In the next step the object H is consumed by the agent B3. No
agent can start its work and the computation halts.

From the previous explanations, it is easy to see that P colony Π correctly simulates
computation in the register machine M . The computation of Π starts with no
object ar placed in the environment in the same way as the computation in M
starts with zeroes in all the registers. The computation of Π stops if the symbol lh
is placed inside the corresponding agent in the same way as M stops by executing



Homogeneous P Colonies 489

the halting instruction labelled lh. Consequently, N(M) = N(Π), and because each
agent contains at most six programs, the proof is complete. 2

Another question is how many agents are necessary to simulate any register
machine. In [2] the next theorem is proved:

Theorem 2. NPCOLparK(1, 4, ∗) = NRE.

4 P COLONIES WITH TWO OBJECTS INSIDE AGENTS

In the case of agents with two objects each program consists of two rules. If the rules
are of the same type in a program the P colony is homogeneous.

Theorem 3. NPCOLparHK(2, 1, ∗) = NRE.

Proof. Let us consider a register machine M with m registers. We construct
a P colony Π = (A, f, e, B) simulating a computation of register machine M with:

• A = {d, a, s, f, h, v} ∪ {l, l′ | l ∈ H} ∪ {ar | 1 ≤ r ≤ m},

• f = a1,

• B = (⋆ee, P ).

At the beginning of computation the agent generates the object l0 (the label of
starting instruction of M) and two copies of the object a. Then the agent starts
to simulate instruction labelled l0 and generates the label of the next instruction.
The set of programs is as follows:

1. For initializing of the simulation:

P :
1 : 〈ee → dd〉 4 : 〈sa ↔ ed〉 7 : 〈se → fg〉 10 : 〈al0 ↔ ge〉
2 : 〈dd ↔ ee〉 5 : 〈ed → ha〉 8 : 〈fg ↔ ae〉 11 : 〈ge ↔ hl0〉
3 : 〈dd → sa〉 6 : 〈ha ↔ se〉 9 : 〈ae → al0〉 12 : 〈hl0 ↔ aa〉
13. 〈sa → sa〉

Agent with two copies of object a inside is prepared to simulate the instruction
labelled by li (with object li placed in the environment). This will be achieved
in following steps: The agent starts computation with generating of objects d.
For future steps of computation it has to generate four objects d. The second
couple of objects d can be rewritten to auxiliary objects s and a. The pro-
gram 13 ensures endless computation if the number of copies of object d is not
sufficient. In the next steps the agent generates second object a, object h and
some other auxiliary symbols (not to mix up steps in a computation) and finally
the label l0. If there are two copies of object a inside the agent, the agent is
prepared to simulate the instruction labelled by li (if the object li is placed in
the environment). The initialization is done by the following sequence of steps:
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configuration of Π labels of applicable programs

step B Env P
1. ⋆ee 1
2. ⋆dd 2 or 3
3. ⋆ee ⋆dd 1
4. ⋆dd ⋆dd 2 or 3
5. ⋆sa ⋆dd 4 or 13
6. ⋆ed ⋆sad 5
7. ⋆ha ⋆sad 6
8. ⋆se ⋆haad 7
9. ⋆fg ⋆haad 8
10. ⋆ae ⋆fghad 9
11. ⋆al0 ⋆fghad 10
12. ⋆ge ⋆l0fhaad 11
13. ⋆hl0 ⋆gfaad 12
14. ⋆aa ⋆l0gfd ?

If the agent uses program 3 in the second step it has to execute program 13
in the next steps and the computation never ends. If there are more than one
applicable programs, the agent chooses the bold one and executes it.

2. For every ADD-instruction l1 : (ADD(r), l2, l3) we add the following programs
to the set P :

P :
14 : 〈aa ↔ l1e〉 17 : 〈l′

2
ar ↔ ef〉 20 : 〈ef ↔ el′

3
〉 23 : 〈l2v ↔ aa〉

15 : 〈el1 → l′
2
ar〉 18 : 〈l′

3
ar ↔ ef〉 21 : 〈el′

2
→ l2v〉 24 : 〈l3v ↔ aa〉

16 : 〈el1 → l′
3
ar〉 19 : 〈ef ↔ el′

2
〉 22 : 〈el′

3
→ l3v〉

When the agent takes objects l1 and e inside, it rewrites them to one copy of
ar and the object l′

2
or l′

3
. The next sequence of steps finishes by generating l2

or l3. This object must be sent out to the environment with object v.

configuration of Π labels of applicable programs

step B Env P
1. ⋆aa ⋆l1fghd 14
2. ⋆l1e ⋆fghdaa 15 or 16
3. ⋆l

′
2
ar ⋆fghdaa 17

4. ⋆ef ⋆l
′
2
ghdaaar 19

5. ⋆l
′
2
e ⋆fghdaaar 21

6. ⋆l2v ⋆fghdaaar 23
7. ⋆aa ⋆l2vfghdaaar ?
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3. For every SUB-instruction l1 : (SUB(r), l2, l3) there is a subset of programs:

P :
25 : 〈a ↔ l1 / a ↔ l1; a ↔ ar / a ↔ e〉 28 : 〈l2v ↔ aa〉
26 : 〈l1ar → l2v〉 29 : 〈l3v ↔ aa〉
27 : 〈l1e → l3v〉

At the first step the agent checks if there is any copy of ar on the environment
(if register r is nonempty). In the positive case it brings l1 with ar inside, in
the negative case l1 enters the agent with symbol e. In dependence on the content
of the agent, it generates the object l2 or l3.

The computation in the case when the register r is empty:

configuration of Π labels of applicable programs

step B Env P
1. ⋆aa ⋆l1fghd 25
2. ⋆l1e ⋆fghdaa 27
3. ⋆l3v ⋆fghdaa 29
4. ⋆aa ⋆l3vfghd ?

The computation for the case when the register r is not empty:

configuration of Π labels of applicable programs

step B Env P
1. ⋆aa ⋆l1fghda

n
r 25

2. ⋆l1ar ⋆fghdaaa
n−1

r 26
3. ⋆l2v ⋆fghdaaa

n−1

r 28
4. ⋆aa ⋆l2vfghda

n−1

r ?

4. For the halting instruction lh the following program is considered:

P :
〈aa ↔ hlh〉 .

By using this program, the P colony finishes computation as well as the register
machine halts its computation.

P colony Π correctly simulates any computation of the register machine M and
the number contained in the first register of M corresponds to the number of copies
of the object a1 presented in the environment of Π. 2

Theorem 4. NPCOLparHK(2, ∗, 4) = NRE.

Proof. Let us consider a register machine M = (m,H, l0, lh, P ). All the labels
from H will be objects from P colony which we construct below. The contents of
a register i will be represented by the number of copies of a specific object ai in
the environment. We will construct a P colony Π = (A, f, e, B1, . . . , Bn) with:

• the alphabet A = H ∪ {ai | 1 ≤ i ≤ m} ∪ {Fi | 1 ≤ i ≤ |H|} ∪ {e, d,D}

• final object f = a1
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• agent Bi = (⋆ee, Pi), 1 ≤ i ≤ |H| + 2, and its programs are as follows:

1. We consider the starting agents B1, B2 with a set of programs:

P1 : P2 :
1 : 〈ee → el0〉 1 : 〈ee → De〉
2 : 〈e ↔ e/e ↔ e; l0 ↔ D/l0 ↔ e〉 2 : 〈De ↔ el0〉

The agent B1 generates two initial labels of the register machine M and stops by
consuming one copy of the object D. The second agent B2 generates one copy
of D and waits for the object l0. After having transported it inside the agent
finishes its work. Simulation of the computation can start with the second copy
of l0 in the environment. The beginning of computation can be made in the
following way:

configuration of Π labels of applicable programs

step B1 B2 Env P1 P2

1. ⋆ee ⋆ee 1 1
2. ⋆el0 ⋆De 2 −−−
3. ⋆ee ⋆De ⋆el0 1 2
4. ⋆el0 ⋆el0 ⋆De 2 −−−
5. ⋆De ⋆el0 ⋆el0 −−− −−−

2. For each instruction l1 : (ADD(r), l2, l3) there is one agent in P colony Π. This
agent has to add one copy of the object ar and the object l2 or l3 to the envi-
ronment.
Pl1 :
1 : 〈ee ↔ el1〉 3 : 〈el1 → arl3〉
2 : 〈el1 → arl2〉 4 : 〈ar ↔ e/ar ↔ e; l2 ↔ e/l3 ↔ e〉

If the object l1 is present in the environment, the agent Bl1 can start to be
active, it can consume the object l1, generate the object ar and the object l2
or l3. At the end of this part of the computation the object with the label of
the next instruction of M is placed in the environment and another agent can
start to work.

configuration of Π labels of applicable programs

step Bl1 Env Pl1

1. ⋆ee ⋆l1 1
2. ⋆el1 2 or 3
3. ⋆arl2 4
4. ⋆ee ⋆arl2 ?

3. For each instruction l1 : (SUB(r), l2, l3) from P we consider the agent Bl1 with
the set of programs:

Pl1 :
1 : 〈e ↔ l1/e ↔ l1; e ↔ ar/e ↔ e〉 3 : 〈l2 ↔ e/l3 ↔ e; v ↔ e/v ↔ e〉
2 : 〈ar → l2/e → l3; l1 → v/l1 → v〉
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Again, the agent brings inside the object l1 and one copy of ar (if there is some
ar in the environment). In the positive case the agent generates the object l2.
In the negative case the agent generates the object l3. In the last step the agent
again exchanges the object l2 or l3 by e.

The computation for the case
when the register r is not empty:

configuration of Π labels of applicable programs

step Bl1 Env Pl1

1. ⋆ee ⋆l1ar 1
2. ⋆arl1 2
3. ⋆l2v 3
4. ⋆ee ⋆l2v ?

The computation in the case when the register r is empty:
configuration of Π labels of applicable programs

step Bl1 Env Pl1

1. ⋆ee ⋆l1 1
2. ⋆el1 2
3. ⋆el3 3
4. ⋆ee ⋆l3v ?

4. For the halting instruction labelled lh there is no program in any agent of
P colony.

5. The second possible sequence of steps at the beginning of computation is as
follows:

configuration of Π labels of applicable programs

step B1 B2 Bl0 Env P1 P2 Pl0

1. ⋆ee ⋆ee ⋆ee 1 1 −−−
2. ⋆el0 ⋆De ⋆ee 2 −−− −−−
3. ⋆ee ⋆De ⋆ee ⋆el0 1 −−− 1
4. ⋆el0 ⋆De ⋆el0 2 −−− 2
5. ⋆ee ⋆De ??? ⋆el0 1 2
6. ⋆De ⋆el0 ??? −−− −−−

It follows from the previous explanations that P colony Π correctly simulates
computation in the register machine M . The computation of Π starts with no
object ar placed in the environment in the same way as the computation in M
starts with zeroes in all the registers. The computation of Π stops if the symbol lh
is placed inside the corresponding agent in the same way as M stops by executing
the halting instruction labelled lh. Consequently, N(M) = N(Π), and because each
agent contains at most five programs, the proof is complete. 2
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5 CONCLUSIONS

Homogeneous P colonies are computationally complete for:

1. c = 1, h = 6 and unlimited n (P colonies with one object inside each agent,
which uses at most six programs)

2. c = 1, n = 4 and unlimited h (P colonies composed of four agents, each of them
with one object inside the agent)

3. c = 2, h = 4 and unlimited n (P colonies with two object inside each agent,
which uses at most four programs)

4. c = 2, n = 1 and unlimited h (P colonies with one agent which processes two
symbols).

The results were obtained by simulating the behaviour of register machines. In this
approach simulation of the ADD operation determines the obtained results.
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[4] Csuhaj-Varjú, E.—Margenstern, M.—Vaszil, G.: P Colonies with a Bounded
Number of Cells and Programs. Pre-Proceedings of the 7th Workshop on Membrane
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