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Abstract. The notion of continuity from above (upper continuity) for lattice-valued
possibilistic measures as investigated in [7] has been proved to be a rather strong
condition when imposed as demand on such a measure. Hence, our aim will be
to introduce some versions of this upper continuity weakened in the sense that the
conditions imposed in [7] to the whole definition domain of the possibilistic measure
in question will be restricted just to certain subdomains. The resulting notion of
partial upper convergence and continuity of lattice-valued possibilistic measures will
be analyzed in more detail and some results will be introduced and proved.
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1 INTRODUCTION

The basic idea of real-valued possibilistic measures was conceived by L. A. Zadeh
in [9] and possibilistic measures with non-numerical possibility degrees, namely those
taking these degrees in partially ordered sets and, more specifically, in complete
lattices, were introduced and analyzed in more detail by G. de Cooman in [3].
Since the appearance of these pioneering publications, a lot of work has been done
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and numerous deep, valuable and interesting results have been achieved in both
these fields of possibility (or possibilistic) measures and possibility theory under
consideration. It is quite easy to understand that the methods, constructions and
results developed, built and achieved when analyzing some formerly investigated set
functions like measure theory and probability theory as its particular case as an
inspiration and motivation for such investigations often served. Both the properties
demonstrating a degree of similarity between probability and possibility measures in
certain aspects as well as the properties showing a qualitative difference of both the
uncertainty measures under consideration in other aspects are worth being proved
and analyzed in more detail.

Continuity from above (upper continuity) and from below (lower continuity)
are important properties of set functions which significantly improve the qualities
of these functions when applied as mathematical tools for uncertainty quantifica-
tion and processing. As a matter of fact, the properties of probability and possi-
bility measures related to the notion of continuity are rather different (cf. [7] for
some former author’s results in this field). A probability measure P defined on
a σ-field A of subsets of a universe Ω of elementary random events is continuous
from above, if for each decreasing nested sequence A1 ⊃ A2 ⊃ . . . of sets from A
the relation limn→∞ P (An) = P (

⋂∞
n=1An) holds, and P is continuous from below,

if for each increasing nested sequence A1 ⊂ A2 ⊂ . . . of sets from A the relation
limn→∞ P (An) = P (

⋃∞
n=1An) is valid. As can be easily proved (cf. [6, 8] or an-

other elementary textbook on measure or probability theory), a finitely additive
probability measure P on A is continuous from above if and only if it is continuous
from below and this happens if and only if P is a σ-additive (countably additive)
probability measure on A.

For possibilistic (we will prefer this adjective in what follows) measures, real-
valued as well as the lattice-valued ones, continuity from above and from below
are not, in general, equivalent properties due to the asymmetric role of supremum
and infimum operations when defining possibilistic measures, and it is the continu-
ity from above which can be seen as a qualitatively stronger property significantly
reducing the variety of possibilistic measures obeying this continuity. E.g., also
the very simple possibilistic measure Π ascribing the value 0 to the empty sub-
set of an infinite space Ω and the value 1 to each other (i.e., nonempty) subset
of Ω is not continuous from above on P(Ω), as it is not continuous from above
in the empty set (take Ω0 = {ω1, ω2, . . .} ⊂ Ω and take An = {ωn, ωn+1, . . .},
so that Π(An) = 1 for any n = 1, 2, . . ., but Π(

⋂∞
n=1An) = Π(∅) = 0. It is

why we intend to investigate, in this paper, also partially continuous possibilis-
tic measures (mostly partially continuous from above) in the sense that the relation
Π(
⋂∞

n=1An) = inf{Π(An) : n = 1, 2, . . .} is valid only for some sets A ⊂ Ω and some
sequences A1, A2, . . . such that

⋂∞
n=1An = A. On the other side, however, we will

extend the notion of convergence also to not necessarily nested and not necessarily
countable (i.e., definable as a sequence) systems of subsets of Ω so that we will
investigate, in general, the case when the relation Π(

⋂

R) = inf{Π(A) : A ∈ R}
holds for some systems R of subsets of Ω, here

⋂

R =
⋂

A∈R A. The dual case when
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Π(
⋃

R) = sup{Π(A) : A ∈ R},
⋃

R =
⋃

A∈R A, will also be touched, even if the
problems concerning the convergence from above will be preferably focused.

2 BASIC NOTIONS, DEFINITIONS AND PRELIMINARIES

The reader is supposed to be familiar with the notion of partially ordered set (p.o.set)
defined by a pair T = 〈T,≤〉, where T is a nonempty set and ≤ is a reflexive,
antisymmetric and transitive binary relation on T (subset of the Cartesian product
T × T , in the set-theoretic notation). The operations of supremum (denoted by ∨
or
∨

) and infimum (denoted by ∧ or
∧

) in p.o. set T are defined in the standard
way and it is a well-known fact that, given a subset A ⊂ T , neither the supremum
∨

A =
∨

t∈A t, nor the infimum
∧

A =
∧

t∈A t need be defined in general. In order to
simplify our reasoning and the resulting mathematical formalization we will suppose,
throughout this work, that p.o.set T = 〈T,≤〉 satisfies the condition that

∨

A and
∧

A are defined (hence, are elements of T ) for each A ⊂ T . In this case, p.o.set
T = 〈T,≤〉 is called complete lattice. Consequently, also the elements

∧

T , denoted
by ⊘T and called the zero (element) of T , and

∨

T , denoted by 1T and called
the unit (element) of T are defined and the conventions

∧

∅ = 1T and
∨

∅ = ⊘T

for empty subset of T are applied. Because of our intention to apply complete
lattices as structures in which uncertainty degrees take their values, it is perhaps
worth recalling explicitly that both the p.o.sets 〈[0, 1],≤〉, i.e., the unit interval of
real numbers equipped by their standard linear ordering, and 〈P(X),⊂〉, i.e., the
power-set of all subsets of a nonempty set X partially ordered by the relation of
set-theoretic inclusion (complete Boolean algebra, as a matter of fact) are complete
lattices. Moreover, complete lattice seems to be the most specific structure still
common for both these most often used structures for uncertainty quantification
and processing.

The reader is recommended to consult [2, 4], or some more recent textbook or
monograph when seeking for more details concerning p.o.sets and lattices.

The idea to consider complete lattices as structures in which uncertainty degrees,
in particular membership functions of fuzzy sets, take their values, originates from
J. A. Goguen [5] and was applied to possibilistic measures and investigated in detail
by G. de Cooman in [3]. In these references, as well as in a number of other ones, also
the philosophical and methodological issues involved by lattice-valued uncertainty
degrees are analyzed and discussed, so that we purposedly omit these aspects here
and begin our considerations with a very general, but fitted for our further purposes,
definition of lattice-valued possibilistic measures.

In what follows, given a nonempty set Ω, we denote by ‖A‖ (‖S‖, ‖S̃‖, . . . ) the
cardinality (cardinal number) of a subset A of Ω (of a system S of subsets of Ω,
i.e., of S ⊂ P(Ω), of a system S̃ of systems of subsets of Ω, i.e., of S̃ ⊂ P (P(Ω)),
etc.).

Definition 1. Let T = 〈T,≤〉 be a complete lattice, let Ω be a nonempty set,
let A be a system of subsets of Ω containing the empty set ∅ and the space Ω
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({∅,Ω} ⊂ A ⊂ P(Ω), in symbols), let α be a cardinal number over the universe Ω.
The mapping Π : A → T is called α-maxitive T -(valued) possibilistic measure on
A, if Π(∅) = ⊘T , Π(Ω) = 1T , and

Π
(

⋃

R
)

=
∨

{Π(A) : A ∈ R} (1)

holds for each R ⊂ A such that ‖R‖ ≤ α and
⋃

R =
⋃

A∈R A ∈ A holds.

If A = P(Ω) and α = 2, then this definition reduces to the standard definition
of T -valued possibilistic measure on P(Ω), if A = P(Ω) and α = 2‖Ω‖, then we
arrive at the definition of complete T -possibilistic measure on P(Ω). Some more
or less trivial consequences of this definition will be presented and discussed below,
but it is perhaps worth being noted explicitly that if A 6= P(Ω), i.e., if Π is a partial
mapping on P(Ω), then α-maxitivity of Π for some α ∈ N+ = {1, 2, . . .} does not
imply, in general, β-maxitivity for β > α, β ∈ N+.

Indeed, let {Ω1,Ω2,Ω3,Ω4} be a disjoint covering of Ω by nonempty sets Ωi,
i = 1, . . . , 4, let A = {∅,Ω1,Ω2,Ω3, (Ω1 ∪ Ω2 ∪ Ω3),Ω}, let Π(∅) = ⊘T < Π(Ω1),
Π(Ω2), Π(Ω3) ≤ t < Π(Ω1 ∪ Ω2 ∪ Ω3) ≤ Π(Ω) = 1T . Then A,B ∈ A, A ∪ B ∈ A
holds only for the systems {∅, B}, B ∈ A, {Ω, B}, B ∈ A, and {Ωi, (Ω1 ∪ Ω2 ∪ Ω3)},
i = 1, 2, 3. In all these cases the relation Π(A ∪ B) = Π(A) ∨ Π(B) holds, as
may be easily checked, so that Π defines a 2-maxitive T -possibilistic measure on A.
However, the relation Π(Ω1 ∪Ω2 ∪Ω3) = Π(Ω1)∨Π(Ω2)∨Π(Ω3) does not hold and
need not hold, as neither Π(Ω1∪Ω2), nor Π(Ω2∪Ω3), nor Π(Ω1∪Ω3) are defined, so
that Ω1 ∪ Ω2 ∪ Ω3 cannot be expressed as the union of two sets from the definition
domain A of Π.

According to Definition 1, when considering a T -possibilistic measure defined
on a system A of subsets of Ω, we always tacitly assume that A contains ∅ and Ω.

Definition and processing of a real-valued possibilistic measure Π becomes sig-
nificantly simplified, if this possibilistic measure possesses the (possibilistic) distri-
bution. This is the case when all singletons {ω}, Ω ∈ Ω, are in the definition domain
A ⊂ P(Ω) of Π and the identity Π(A) =

∨

{Π({ω}) : ω ∈ A} holds for each A ∈ A.
As Ω is supposed to be in A, the relation

∨

{Π({ω}) : ω ∈ Ω} = 1 follows and Π
can be easily and uniquely extended from A to P(Ω), simply taking the identity
for Π(A) from above as the definition of Π(A) for the subsets of Ω outside of A.
Consequently, each complete real-valued possibilistic measure on P(Ω) possesses
the possibilistic distribution. Sometimes real-valued possibilistic distributions on Ω,
i.e., mappings π : Ω → [0, 1] such that

∨

{π(ω) : ω ∈ [0, 1]} = 1, are taken as
the basic stones when introducing possibilistic measures on P(Ω), taking the rela-
tion Π(A) =

∨

{π(ω) : ω ∈ A} as definition. On the other side, when introducing
real-valued possibilistic measures on A ⊂ P(Ω) axiomatically, i.e., as normalized
real-valued 2-maxitive set functions, there exist incomplete possibilistic measures
on the power-set P(Ω) of an infinite space Ω, not possessing possibilistic distribu-
tion. Indeed, let us recall the well-known example when Π(A) = 0, if A is empty or
finite, and Π(A) = 1 for infinite subsets of an infinite space Ω.
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Also in the case of lattice-valued possibilistic measures to which our attention in
this paper is focused, lattice-valued possibilistic distributions will play an important
role. Our definition will be introduced at rather abstract and general level, rela-
tivizing or better graduating the notion of possibilistic distribution in a way similar
to that in which we graduated the notion of maxitivity in Definition 1.

Definition 2. Let T be a complete lattice, let Π be a T -possibilistic measure de-
fined on A ⊂ P(Ω), let R ⊂ A be a nonempty subsystem of A. The possibilistic
measure Π possesses R-(possibilistic) distribution, if for each A ∈ A the relation

Π(A) =
∨

{Π(B) : B ∈ R, B ⊂ A} (2)

holds.
As Π is a monotone measure on A, Π(B) ≤ Π(A) holds for each B ⊂ A,

A,B ∈ A, so that the inequality Π(A) ≥
∨

{Π(B) : B ∈ R, B ⊂ A} is obviously
valid for each A ∈ A. Hence, each T -possibilistic measure Π on A ⊂ P(Ω) evidently
possesses A-distribution, as in this case for each A ∈ A A is among the subsets for
which the supremum value is taken, so that equality (2.2) holds. IfR is the system of
all singletons of P(Ω), then R-distribution is nothing else than the standard T -pos-
sibilistic distribution. In what follows, our idea will be to use, in the role of R, the
systems of sets containing just the sets of cardinality not exceeding a given threshold
value, so keeping in mind that distribution should enable to reduce the definition
and calculation of possibility degrees ascribed to “large” sets to the application of
supremum operation to the values ascribed to “small” sets.

Let us reconsider the simple example of possibilistic measure on P(Ω) not
possessing the distribution, now in the lattice-valued setting. So, let Ω be an
infinite space, let Π be the possibilistic measure defined on P(Ω) when setting
Π(A) = ⊘T , if A is empty or finite, Π(A) = 1T otherwise. As can be easily
checked, Π is an α-maxitive T -possibilistic measure on P(Ω) for each α = 1, 2, . . .
Let Rα = {A ⊂ Ω : ‖A‖ ≤ α}, α = 1, 2, . . . let R∞ = {A ⊂ Ω : ‖A‖ = ∞}. Then
Π possesses Rα-distribution for no α = 1, 2, . . . Indeed, for each infinite A ⊂ Ω,
Π(A) = 1T 6=

∨

{Π(B) : B ∈ Rα, A ⊂ A} = ⊘T , as Π(B) = ⊘T for each B ∈ Rα.
However, Π possesses R∞-distribution. If A is finite, then

Π(A) = ⊘T =
∨

{Π(B) : B ∈ R∞, B ⊂ A} =
∨

∅, (3)

as there is no infinite subset of A so that the convention for
∨

∅ applies. If A is
infinite, an infinite subset of A exists, at least A itself, so that

∨

{Π(B) : B ∈
R∞, B ⊂ A} = Π(A); hence, Π possesses R∞-distribution.

3 SOME SIMPLE RESULTS ON α-MAXITIVITY

AND R-DISTRIBUTIONS

The following assertions are almost self-evident, but they are perhaps worth being
stated explicitly.
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Lemma 1. Let T = 〈T,≤〉 be a complete lattice, let Ω be a nonempty space.

(i) Let Π be an α-maxitive T -possibilistic measure on A ⊂ P(Ω). Then Π is β-ma-
xitive on A for every β ≤ α.

(ii) Let A = P(Ω), let Π be 2-maxitive on P(Ω). Then Π is n-maxitive on P(Ω) for
every n = 1, 2, . . .

(iii) If Π on A possesses R-distribution, then Π possesses S-distribution for every
R ⊂ S ⊂ P(Ω). In particular,

(iv) if Π possesses Rα(Ω)-distribution, where Rα(Ω) = {A ⊂ Ω, ‖A‖ ≤ α}, then
Π possesses Rβ(Ω)-distribution for every β ≥ α.

Proof. (i) is obvious, (ii) can be easily proved by induction. Indeed, for n = 1
and 2 the assertion is trivial; suppose that it holds for some n ≥ 2, i.e., let Π be
n-maxitive. For every (n+ 1)-tuple A1, A2, . . . , An, An+1 of subsets of Ω we obtain

Π

(

n+1
⋃

i=1

Ai

)

= Π

((

n
⋃

i=1

Ai

)

∪An+1

)

= Π

(

n
⋃

i=1

Ai

)

∨Π(An+1) =

=

(

n
∨

i=1

Π(Ai)

)

∨ Π(An+1) =
n+1
∨

i=1

Π(Ai), (4)

so that Π is (n + 1)-maxitive and (ii) is proved. For no matter which system S of
subsets of a subset A of Ω we obtain that Π(B) ≤ Π(A) holds for each B ∈ S; hence,
∨

{Π(B) : B ∈ S} ≤ Π(A) follows. Consequently, as Π possesses R-distribution and
R ⊂ S is supposed to hold, we obtain that

Π(A) =
∨

{Π(B) : B ⊂ A,B ∈ R} ≤
∨

{Π(B) : B ⊂ A,B ∈ S} ≤ Π(A) (5)

holds, so that Π possesses S-distribution and (iii) is proved. (iv) is just a particular
case of (iii), as Rα(Ω) ⊂ Rβ(Ω) obviously holds for each α ≤ β. 2

Lemma 2. Let T = 〈T,≤〉 be a complete lattice; let Π be ‖Ω‖-maxitive T -pos-
sibilistic measure on P(Ω). Then Π possesses R1(Ω)-distribution and it is 2‖Ω‖-ma-
xitive; hence, it is complete in the standard sense.

Proof. For each A ⊂ Ω, A =
⋃

ω∈A{ω} so that, due to the ‖Ω‖-maxitivity of Π,
Π(A) =

∨

ω∈AΠ({ω}); hence, Π possesses R1(Ω)-distribution. For any R ⊂ P(Ω),

Π
(

⋃

R
)

=
∨

{

Π({ω}) : ω ∈
⋃

R
}

=
∨

A∈R

(

∨

ω∈A

Π({ω})

)

=

=
∨

{Π(A) : A ∈ R}, (6)

so that Π is 2‖Ω‖-maxitive. Finally, Π is α-maxitive for each α > 2‖Ω‖ as there are
no subsystems of P(Ω) of cardinality greater than 2‖Ω‖. Hence, Π is α-maxitive for
every cardinal number α (maxitivity for β ≤ α follows from Lemma 1(i)). 2
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Theorem 1. Let T be a complete lattice, let Π be an α-maxitive T -possibilistic
measure on P(Ω) possessing Rα(Ω)-distribution. Then Π is β-maxitive for every
cardinal number β and possesses R1(Ω)-distribution.

Proof. As Π is α-maxitive, for every A ⊂ Ω such that ‖A‖ ≤ α holds; consequently,
for every A ∈ Rα(Ω), the relation Π(A) =

∨

{Π({ω}) : ω ∈ A} holds. If A ⊂ Ω,
‖A‖ > α is the case, then we apply the Rα(Ω)-distribution of Π and we obtain that

Π(A) =
∨

{Π(B) : B ⊂ A,B ∈ Rα(Ω)} =

=
∨

{(

∨

{Π({ω}) : ω ∈ B}
)

: B ⊂ A,B ∈ Rα(Ω)
}

=

=
∨

{

Π({ω}) : ω ∈
⋃

{B : B ⊂ A,B ∈ Rα(Ω)}
}

. (7)

As {ω} ∈ Rα(Ω) and {ω} ⊂ A holds for each ω ∈ A, the relation

⋃

{B : B ⊂ A,B ∈ Rα(Ω)} = A

follows, so that Π(A) =
∨

{Π({ω}) : ω ∈ A} holds and Π is ‖Ω‖-maxitive. Due to
Lemma 2, Π is maxitive for every cardinal number β. 2

It is perhaps worth being noted explicitly that for a T -possibilistic measure Π
possessing Rα(Ω)-distribution the maxitivity of Π for any β < α is not sufficient
in order to prove that Π possesses R1(Ω)-distribution and is β-maxitive for every
cardinal number β (as Theorem 1 claims). Indeed, consider the example from above
with an infinite countable set Ω and with Π ascribing the value ⊘T to the empty set
and to finite subsets of Ω, and ascribing 1T to infinite subsets. This T -possibilistic
measure is defined on P(Ω), it is γ-maxitive for every cardinal number smaller
than ℵ0, i.e., for every γ = 1, 2, . . . ,Π possesses the Rα(Ω)-distribution for α = ℵ0,
but Π does not possess R1(Ω)-distribution, i.e., the possibilistic distribution in the
standard sense.

4 WEAKENING THE NOTION OF CONTINUITY

OF LATTICE-VALUED POSSIBILISTIC MEASURES

As analyzed in more detail for real-valued possibilistic measures in [1] and for lattice-
valued ones in [7], the question whether a possibilistic measure can be defined by
its possibilistic distribution is closely related to the property of continuity from
above and from below of the possibilistic measure in question. Like as in the case
of maxitivity and possibilistic distributions considered above, our aim will be to
weaken the notion of continuity of possibilistic measures by reducing this property
just to some of the nested sequences of sets to which the standard general definition
applies. Let us recall this definition.

Definition 3. Let T = 〈T,≤〉 be a complete lattice, let Π be a T -possibilistic
measure on a nonempty σ-field A of subsets of Ω.
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(i) Π is continuous from above on A, if for each nested sequence A1 ⊃ A2 ⊃ . . . of
sets from A the relation

Π

(

∞
⋂

i=1

Ai

)

=
∞
∧

i=1

Π(Ai) (8)

holds.

(ii) Π is continuous from below on A, if for each nested sequence A1 ⊂ A2 ⊂ . . . of
sets from A the relation

Π

(

∞
⋃

i=1

Ai

)

=
∞
∨

i=1

Π(Ai) (9)

holds (being a σ-field, A contains
⋂∞

i=1 Ai as well as
⋃∞

i=1Ai).

If Π is defined on a σ-field A ⊂ P(Ω) and if Π is continuous from below on A
in the sense of (4.2), then Π is ℵ0-maxitive on A. Indeed, let R ⊂ A be such that
‖R‖ = ℵ0. Then there exists a one-to-one enumeration of sets in R by positive
integers, i.e., R = {A1, A2, . . .}. Setting Bn =

⋃n
i=1 Ai for each n = 1, 2, . . ., we

obtain that Bn ⊂ Bn+1 holds so that, as Π is continuous from below, we obtain

Π

(

∞
⋃

i=1

Ai

)

= Π

(

∞
⋃

i=1

Bi

)

=
∞
∨

i=1

Π(Bi) =
∞
∨

i=1

Π





i
⋃

j=1

Aj



 =

=
∞
∨

i=1





i
∨

j=1

Π(Aj)



 =
∞
∨

j=1

Π(Aj), (10)

so that Π is ℵ0-maxitive. A dual assertion for Π continuous from above on A does
not hold in general. Indeed, letR = {A1, A2, . . .} ⊂ A be as above, set Bn =

⋂n
i=1Ai

for each n = 1, 2, . . . As Π is continuous from above on A, we obtain

Π

(

∞
⋂

i=1

Ai

)

= Π

(

∞
⋂

i=1

Bi

)

=
∞
∧

i=1

Π(Bi) =
∞
∧

i=1

Π





i
⋂

j=1

Aj



 . (11)

However, as
⋂i

j=1Aj = Ai need not hold for a non-nested sequence A1, A2, . . . of

subsets of Ω and also the identity Π(
⋂i

j=1Aj) =
∧i

j=1 Π(Aj) need not be the case in
general, the only consequence which can be deduced from 11 is the obvious inequality
Π(
⋂∞

i=1 Ai) ≤
∧∞

i=1 Π(Ai). Hence, in order to obtain the equality in this case, we
have to strengthen the definition of continuity from above, simply imposing the
equality Π(

⋂∞
i=1Ai) =

∧∞
i=1Π(Ai) as axiomatic demand to be satisfied for each (not

necessarily nested) sequence A1, A2, . . . of sets from A. Another advantage of this
stronger definition consists in the fact that it can be applied also to non-countable
systems R ⊂ A, as no enumeration of sets from R is necessary. So, we arrive at this
very general definition.
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Definition 4. Let T = 〈T,≤〉 be a complete lattice, let Π be a T -possibilistic
measure defined on a nonempty σ-field of subsets of a nonempty space Ω, let α, β
be cardinal numbers over Ω.

(i) Π is called 〈α, β〉- continuous from above on A, if for each R ⊂ A such that
‖R‖ ≤ α and ‖

⋂

R‖ ≥ β holds, the equality

Π
(

⋂

R
)

=
∧

{Π(A) : A ∈ R} (12)

is valid, here
⋂

R =
⋂

A∈R A.

(ii) Π is called 〈α, β〉- continuous from below on A, if for each R ⊂ A such that
‖R‖ ≤ α and ‖A‖ ≥ β for each A ∈ R holds, the equality

Π
(

⋃

R
)

=
∨

{Π(A) : A ∈ R} (13)

is valid, here
⋃

R =
⋃

A∈R A.

(iii) Π is called β-continuous from above (or from below) on A, if it is 〈‖A‖, β〉-con-
tinuous from above (or from below) on A, i.e., if (4.5) or (4.6) holds for every
R ⊂ A.

The following consequence of this definition is almost self-evident but perhaps
worth being introduced explicitly.

Lemma 3. Let T ,Π, α, β be as in Definition 4.2. If Π is 〈α, β〉-continuous from
above (or from below) on A, it is also 〈α1, β1〉-continuous from above (or from
below) on A for every α1 ≤ α and β1 ≥ β.

Proof. Set
ρ(α, β) =

{

R ⊂ P(Ω) : ‖R‖ ≤ α, ‖
⋂

R‖ ≥ β
}

, (14)

so that Definition (4.2) (i) reads that for each R ∈ ρ(α, β) (4.5) holds. If α1 ≤ α and
β1 ≥ β is the case, then ρ(α1, β1) ⊂ ρ(α, β) holds, so that for R ∈ ρ(α1, β1) (4.5)
trivially follows. For (ii) and (4.6) the situation is analogous, just with

ρ(α, β) = {R ⊂ P(Ω) : ‖R‖ ≤ α, ‖A‖ ≥ β for every A ∈ R}. (15)

Again, for α1 ≤ α and β1 ≥ β the inclusion ρ(α1, β) ⊂ ρ(α, β〉 is valid, so that for
each R ∈ ρ(α1, β1) (4.6) follows. 2

The notion of 〈α, β〉-continuity of T -possibilistic measures offers a rather flexible
tool when classifying the properties of such measures. E.g., for each n = 0, 1, . . .
there exists a finite or infinite space Ω and a T -possibilistic measure Π on P(Ω) which
is (n+ 1)-continuous, but not n-continuous, from above on P(Ω). The reasoning is
as follows: take Ω such that ‖Ω‖ > n + 1 holds and take a proper subset Ω0 ⊂ Ω
such that ‖Ω0‖ = n. Consider the mapping π : Ω → T such that π(ω) = ⊘T ,
if ω ∈ Ω0, π(ω) = 1T otherwise. Obviously, as Ω − Ω0 6= ∅,

∨

ω∈Ω π(ω) = 1T , so
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that π defines a T -possibilistic distribution on Ω. Setting Π(A) =
∨

ω∈A π(ω) for
every A ⊂ Ω, we obtain a complete T -possibilistic measure on P(Ω). Indeed, as
can be easily seen, Π(A) = 1T , if A ∩ (Ω − Ω0) 6= ∅,Π(A) = ⊘T , if A ⊂ Ω0.
For each R ⊂ P(Ω), Π(

⋂

R) = 1T iff
⋃

R ∩ (Ω − Ω0) 6= ∅, but this is the case
just when there exists A ∈ R such that A ∩ (Ω − Ω0) 6= ∅ and, consequently,
Π(A) =

∨

{Π(B) : B ∈ R} = 1T holds. On the other side, Π(
⋃

R) = ⊘T iff
⋃

A ⊂ Ω0 and, consequently, A ⊂ Ω0 for each A ∈ R holds, but in this case
Π(
⋃

R) = ⊘T =
∨

{Π(A) : A ∈ R} holds again. Consequently, Π is a complete
(2‖Ω‖-maxitive, in our terms) T -possibilistic measure on P(Ω).

Moreover, Π is (n + 1)-continuous from above (i.e., 〈α, n + 1〉-continuous from
above for every α ≤ ‖P(Ω]‖ = 2‖Ω]), as can be easily proved. Let R ⊂ P(Ω) be such
that ‖

⋂

R‖ ≥ n+1 holds, then ‖A‖ ≥ n+1 for each A ∈ R follows. Consequently,
each A ∈ R contains an element from Ω− Ω0, so that Π(A) = 1T and the equality
∧

{Π(A) : A ∈ R} = Π(
⋂

R) = 1T is valid, hence, Π is (n + 1)-continuous from
above. However, as ‖Ω‖ > n + 1 holds, there exist at least two different elements
ω1, ω2 in Ω − Ω0. Take A1 = Ω0 ∪ {ω1}, A2 = Ω0 ∪ {ω2}, R = {A1, A2}, then
Π(
⋂

R) = Π(A1 ∩A2) = Π(Ω0) = ⊘T , but Π(A1) = Π(A2) = 1T , so that Π(
⋂

R) 6=
Π(A1) ∧ Π(A2) and Π is not n-continuous from above on P(Ω).

The already mentioned possibilistic measure ascribing the value⊘T to the empty
set and to finite subsets of an infinite space Ω, and the value 1T to infinite sub-
sets, is obviously ℵ0-continuous from above on P(Ω) but not n-continuous from
above on P(Ω), no matter which the n = 1, 2, . . . may be. If R ⊂ P(Ω) is such
that ‖

⋂

R‖ ≥ ℵ0 holds, then ‖A‖ ≥ ℵ0 holds for every A ∈ R, so that the
relation Π(

⋂

R) = 1T =
∧

{Π(A) : A ∈ R} follows. On the other hand, tak-
ing a countable subset Ω0 = {ω1, ω2, . . .} ⊂ Ω and, given n finite, setting An,k =
{ω1, ω2, . . . , ωn, ωn+k+1, ωn+k+z, . . .}, we obtain that

⋂∞
k=1An,k = {ω1, . . . , ωn}.

Hence, ‖{ω1, . . . , ωn}‖ = ‖
⋂∞

k=1 An,k‖ ≥ n is the case, Π(
⋂∞

k=1An,k) = ⊘T , but
Π(An,k) = 1T for each k, so that Π is not n-continuous from above on P(Ω).

A simple generalization of this construction may read as follows. Let Ω be
an infinite space, let Π : P(Ω) → T be such that Π(A) = 1T , if ‖A‖ = ‖Ω‖,
Π(A) = ⊘T otherwise, i.e., if ‖A‖ < ‖Ω‖ is the case. As can be easily verified, Π
is a T -possibilistic measure on P(Ω). Indeed, for each A,B ⊂ Ω, Π(A ∪ B) = ⊘T

iff ‖A ∪ B‖ < ‖Ω‖ holds, but in this case ‖A‖ < ‖Ω‖ and ‖B‖ < ‖Ω‖ follows,
so that Π(A) = Π(B) = ⊘T follows as well. If Π(A ∪ B) = 1T is the case, then
‖A ∪ B‖ = ‖Ω‖ holds, but in this case either ‖A‖ = ‖Ω‖ or ‖B‖ = ‖Ω‖ must be
valid, so that the relation Π(A ∪ B) = 1T = Π(A) ∨ Π(B) holds again. Moreover,
Π is ‖Ω‖-continuous from above on P(Ω). Take R ⊂ P(Ω) such that ‖

⋂

R‖ = ‖Ω‖
holds, then ‖A‖ = ‖Ω‖ and, consequently, Π(A) = 1T for every A ∈ R follows, so
that Π(

⋂

R) =
∧

{Π(A) : A ∈ R} is the case.
However, take α < ‖Ω‖, take Ω0 ⊂ Ω such that ‖Ω0‖ = α, so that ‖Ω− Ω0‖ =

‖Ω‖ holds. For R = {Aω : Aω = Ω − {ω}, ω ∈ Ω − Ω0} we obtain that
⋂

R = Ω0,
so that ‖

⋂

R‖ = α and Π(
⋂

R) = ⊘T follows. But, ‖Ω − {ω}‖ = ‖Ω‖ for every
ω ∈ Ω, hence, Π(Ω − {ω}) = 1T and we obtain that Π(

⋂

R) = ⊘T 6=
∧

{Π(Aω) :
ω ∈ Ω− Ω0} = 1T , so that Π is not α-continuous from above on P(Ω).
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In general, however, T -possibilistic measures defined on P(Ω) need not be
‖Ω‖-continuous from above, as the following example demonstrates. Let Ω = [0, 1],
let 0 < a < 1, let Π([0, 1]) → T be such that Π(A) = ⊘T , if A ⊂ [0, a] holds,
Π(A) = 1T otherwise. Obviously, Π is a T -possibilistic measure on P(Ω), as
Π(A ∪ B) = ⊘T iff A ∪ B ⊂ [0, a], so that A ⊂ [0, a] and B ⊂ [0, a] holds, and
Π(A ∪ B) = 1T iff there exists a < x ≤ 1 such that x ∈ A ∪ B; hence, x ∈ A or
x ∈ B, so that Π(A) = 1T or Π(B) = 1T . Let R = {[0, a]∪ {x} : a < x ≤ 1}. Then
⋂

R = [0, a]; hence, Π(
⋂

R) = ⊘T , but Π([0, a]∪{x}) = 1T for every a < x ≤ 1. So,
‖[0, a] ∪ {x}‖ = ‖Ω‖ = ℵ1 for each a < x ≤ 1; hence, Π([0, a] ∪ {x}) = 1T and we
obtain that ‖

⋂

R‖ = ‖[0, a]‖ = ℵ1 = ‖Ω‖, but ‖Π(
⋂

R) = ⊘T 6=
∧

{Π([0, a]∪ {x}) :
a < x ≤ 1} = 1T , so that Π is not ‖Ω‖-continuous from above on P(Ω).

The notion of 〈α, β〉-continuity from below does not offer so flexible tool as
〈α, β〉-continuity from above as far as the classification of T -valued possibilistic
measures is concerned. As a matter of fact, each T -possibilistic measure on the
power-set P(Ω) of the space Ω is 〈α, β〉-continuous from below for each finite α =
1, 2, . . . and each β. Indeed, for each finite R ⊂ P(Ω) the relation Π(

⋃

R) =
∨

{Π(A) : A ∈ R} is obviously valid, no matter which the values ‖A‖ for A ∈ R
may be. Hence, Π is 〈α, 0〉-continuous from below, so that it is (due to Lemma 4.1)
〈α, β〉-continuous from below for each α = 1, 2, . . . and for each β.

Let us consider, once more, the possibilistic measure Π defined on the power-set
P(Ω) of an infinite countable space Ω and ascribing the value Π(A) = ⊘T , if A = ⊘
or if A is finite, and ascribing Π(A) = 1T to infinite subsets of Ω. This measure
is not 〈ℵ0, α〉-continuous from below no matter which α finite may be. Indeed,
π({ω}) = 0 for every ω ∈ Ω and the system {{ω} : ω ∈ Ω} is countable; however,
1T = Π(Ω) = Π(

⋃

{{ω} : ω ∈ Ω}) 6=
∨

{Π({ω}) : ω ∈ Ω} = ⊘T . As a matter of fact,
Π is 〈ℵ0,ℵ0〉-continuous from below, as for every R ⊂ R(Ω) such that ‖A‖ = ℵ0 for
every A ∈ R we obtain that Π(

⋃

R) = 1T =
∨

{Π(A) : A ∈ R}.
This construction may be easily shifted by one level higher. Let Ω be the space

of the cardinality of continuum, i.e., ‖Ω‖ = c in symbols. Define π : P(Ω) → T in
this way: Π(A) = ⊘T , if ‖A‖ ≤ ℵ0 holds, Π(A) = 1T otherwise, i.e., if ‖A‖ = c (the
hypothesis of continuum is accepted). As can be easily proved, Π is an ℵ0-maxitive
(σ-complete, in the standard terms) T -possibilistic measure on P(Ω). Indeed, let
R ⊂ P(Ω) be such that ‖R‖ ≤ ℵ0 holds. If ‖A‖ ≤ ℵ0 is the case for each A ∈ R,
then ‖

⋃

R‖ ≤ ℵ0 also holds, so that Π(A) = ⊘T = Π(
⋃

R) holds for each A ∈ R,
hence, the relation Π(

⋃

R) =
∨

{Π(A) : A ∈ R} results. If ‖A‖ = c for some A ∈ R,
then the relation Π(

⋃

R) = 1T =
∨

{Π(A) : A ∈ R} holds again. As no restrictions
have been imposed on the cardinalities ‖A‖ of sets from R, we may conclude that
Π is 〈ℵ0, 0〉 (hence, also 〈ℵ0, β〉 for every β) – continuous from below on P(Ω).

However, Π is not 〈c, β〉-continuous from below on P(Ω), no matter which β ≤ ℵ0

may be. As there exists the system of singletons, i.e., the system of cardinality c

covering Ω, there exists, for each 0 < β ≤ ℵ0, a system R ⊂ P(Ω) such that
⋃

R = Ω and ‖A‖ = β for each A ∈ R, hence, Π(
⋃

R) = Π(Ω) = 1T 6=
∨

{Π(A) :
A ∈ R} = ⊘T , so that π is not 〈c, β〉-continuous from below on P(Ω). Obviously,
Π is 〈c, c〉-continuous from below on P(Ω).
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5 LATTICE-VALUED POSSIBILISTIC MEASURES CONTINUOUS

ON PARTICULAR SET SYSTEMS

Definition 5. Let T = 〈T,≤〉 be a complete lattice, let Ω be a nonempty set, let A
be a nonempty ample field of subsets of Ω, let Π be a T -valued possibilistic measure
on A. Π is continuous from above on R ⊂ A, if Π(

⋂

R) =
∧

{Π(A) : A ∈ R} holds,
and Π is continuous from below on R, if Π(

⋃

R) =
∨

{Π(A) : A ∈ R} is the case,
here and below,

⋂

R =
⋂

A∈RA and
⋃

R =
⋃

A∈R A.

Let us note that the sets
⋂

R and
⋃

R are always in A, as A is an ample field, so
that the values Π(

⋂

R) and Π(
⋃

R) are defined, but in general neither
⋂

R ∈ R nor
⋃

R ∈ R need be the case. Obviously, Π is continuous from above (or from below)
on R ⊂ A, if

⋂

R ∈ R or
⋃

R ∈ R holds. E. g., let A = P(Ω), let Π(A) = 1T , if
A ⊂ Ω, A 6= ∅, let Π(∅) = ⊘T . Then Π is continuous from above on every R ⊂ P(Ω)
such that either ∅ ∈ R or

⋂

R 6= ∅, and Π is continuous from below on every
R ⊂ P(Ω). Indeed, if R = {∅}, then Π(

⋃

R) = Π(∅) = ⊘T =
∨

{Π(A) : A ∈ R}, if
there is A ∈ R, A 6= ∅, then Π(

⋃

R) = 1T =
∨

{Π(A) : A ∈ R} holds as well.
IfR ⊂ A is a field of subsets of Ω, then Π is continuous from above as well as from

below on R. As a matter of fact, taking any A ∈ R, the sets Ω−A,A∩ (Ω−A) = ∅
and A ∪ (Ω− A) = Ω are also in R, so that

⋂

R = ∅ ∈ R and
⋃

R = Ω ∈ R holds
and the simple fact from the last paragraph applies. In particular, Π is continuous
from above as well as from below on both the extremum subsystems of A, i.e., on
{∅,Ω} as well as on A itself, no matter which the T -valued possibilistic measure Π
on A may be.

Lemma 4. Let T ,Ω,A, and Π be as in Definition 5.1.

(i) Let R1 ⊂ R2 ⊂ A be such that
⋂

R1 =
⋂

R2 and Π is continuous from above
on R1. Then Π is also continuous from above on R2.

(ii) Let R1 ⊂ R2 ⊂ A be such that
⋃

R1 =
⋃

R2 and Π is continuous from below
on R1. Then Π is also continuous from below on R2.

Proof. Let the conditions of (i) hold. The inclusion R1 ⊂ R2 immediately implies
the inequality

∧

{Π(A) : A ∈ R1} ≥
∧

{Π(B) : B ∈ R2}. (16)

Moreover, for each B ∈ R2 we obtain that B ⊃
⋂

R2 =
⋂

R1 holds, so that
Π(B) ≥ Π(

⋂

R1) holds for every B ∈ R2. Consequently

Π
(

⋂

R1

)

= Π
(

⋂

R2

)

=
∧

{Π(A) : A ∈ R1} ≥
∧

{Π(B) : B ∈ R2} ≥ Π
(

⋂

R1

)

(17)
and the equality

Π
(

⋂

R2

)

=
∧

{Π(B) : B ∈ R2} (18)

follow, so that Π is continuous from above on R2.
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Let the conditions of (ii) hold. For each B ∈ R2 the inclusion
⋃

R2 ⊃ B and,
consequently, the inequalities

Π
(

⋃

R2

)

≥ Π(B),Π
(

⋃

R2

)

≥
∨

{Π(B) : B ∈ R2} (19)

are valid. So, we obtain that the relation

∨

{Π(A) : A ∈ R1} = Π
(

⋃

R1

)

= Π
(

⋃

R2

)

≥
∨

{Π(B) : B ∈ R2} ≥

≥
∨

{Π(A) : A ∈ R1} (20)

holds, so that the equality

Π
(

⋃

R2

)

=
∨

{Π(B) : B ∈ R2} (21)

follows. Hence, Π is continuous from below on R2 and the assertion is proved. 2

Besides the continuity from above and from below on a system R ⊂ A of subsets
of Ω let us introduce also the notion of continuity of a possibilistic measure Π from
above and from below in a particular set A ∈ A.

Definition 6. Let T ,Ω,A, and Π be as in Definition 5.1, let A ∈ A. The possibilis-
tic measure Π defined on A is called continuous from above in A, if it is continuous
from above on each R ⊂ A such that

⋂

R = A, i.e., if Π (
⋂

R) =
∧

{Π(B) : B ∈ R}
holds for each R ⊂ A such that

⋂

R = A. Dually, Π is continuous from below
in A, if it is continuous from below on each R ⊂ A such that

⋃

R = A, i.e., if
Π (
⋃

R) = Π(A) holds for each R ⊂ A such that
⋃

R = A.

Abbreviated, Π ↓ A or Π ↑ A denotes that the T -possibilistic measure Π is
continuous from above (or from below) in A ∈ A.

Theorem 2. Let T = 〈T,≤〉 be a complete lattice such that, for each ∅ 6= S ⊂ T

and each t ∈ T , the relation

∧

{s ∧ t : s ∈ S} =
(

∧

S
)

∧ t (22)

holds (let us recall that the inequality
∧

{s∧ t : s ∈ S} ≥ (
∧

S)∧ t holds in general).
Let Ω,A, and Π be as in Definition 5.1, let Π be continuous from above in A ∈ A.
Then Π is continuous from above in every B ⊃ A,B ∈ A.

Proof. Let B ∈ A, B ⊃ A, let R ⊂ A be such that
⋃

R = B so that, for each
C ∈ R, the inclusion C ⊃ B ⊃ A holds. Let R1 = {C − (B − A) : C ∈ R}. Then

⋂

R1 =
⋂

{C − (B − A) : C ∈ R} =
⋂

{C ∩ (B − A)C : C ∈ R} =

= (B − A)C ∩
⋂

{C : C ∈ R} = (BC ∪A) ∩ B = A ∩B = A. (23)

As Π is continuous from above in A, we obtain

Π(A) = Π
(

⋂

R1

)

=
∧

{Π(C) : C ∈ R1}. (24)
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Hence, for every R ⊂ A such that
⋂

R = B there exists R1 ⊂ A such that
⋂

R1 = A and for each C ∈ R we have C = C1 ∪ (B − A) for some C1 ∈ R1.
Consequently,

Π(C) = Π(C1) ∨ Π(B − A) (25)

for such a C1, inversely, for each C1 ∈ R1 the set C1 ∪ (B − A) is in R. So,

∧

{Π(C) : C ∈ R} =
∧

{Π(C1) ∨ Π(B − A) : C1 ∈ R1} =

=
(

∧

{Π(C1) : C1 ∈ R1}
)

∨ Π(B − A) = Π(A) ∨ Π(B − A) =

= Π(A ∪ (B − A)) = Π(B) (26)

due to the assumptions imposed on T . So, the relation

Π(B) = Π
(

⋂

R
)

=
∧

{Π(C) : C ∈ R} (27)

is valid, so that Π is continuous from above in B. 2

Theorem 3. Let T ,Ω,A, and Π be as in Definition 5.1, let Π be continuous from
above in A ∈ A, let B ∈ A, B ⊂ A be such that Π(A) = Π(B). Then Π is continuous
from above in B.

Proof. Let R1 ⊂ A be such that
⋂

R1 = B, so that C ⊃ B and Π(C) ≥ Π(B) =
Π(A) holds for every C ∈ R1. Consequently, the inequality

∧

{Π(C) : C ∈ R1} ≥ Π(B) = Π(A) (28)

also holds. Let R = {C ∪ (A− B) : C ∈ R1}, then

⋂

R =
⋂

{C ∪ (A−B) : C ∈ R1} =
⋂

{C : C ∈ R1}∪ (A−B) = B ∪ (A−B) = A.

(29)
As Π is continuous from above in A, we obtain that

Π
(

⋂

R
)

=
∧

{Π(C∪(A−B)) : C ∈ R1} =
∧

{Π(C)∨Π(A−B) : C ∈ R1} = Π(A).

(30)
For each C ∈ R, the inequality Π(C) ∨ Π(A − B) ≥ Π(C) is obvious, so that the
inequality

∧

{Π(C) : C ∈ R1} ≤
∧

{Π(C ∪ (A− B)) : C ∈ R1} = Π(A) = Π(B) (31)

easily follows. Combining (28) and (31) we obtain that
∧

{Π(C) : C ∈ R1} = Π(B),
so that Π is continuous from above in B. 2

There exists a trivial example of complete lattice-valued possibilistic measure
defined on whole P(Ω) which is continuous from above on each R ⊂ P(Ω) and
in each A ⊂ Ω – take simply T = 〈P(Ω),⊂〉 and define Π : P(Ω) → P(Ω) as
the identity Πid on P(Ω). Indeed, the demand Π(

⋂

R) =
∧

{Π(A) : A ∈ R}
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easily reduces to the identity
⋂

R =
⋂

R for each R ⊂ P(Ω). Slightly modify-
ing this trivial construction we can obtain, again for T = 〈P(Ω),⊂〉, a complete
T -valued possibilistic measure which is continuous from above in each A ⊂ Ω con-
taining a given A0 ⊂ Ω, A0 6= Ω, as its proper subset, i.e., A0 ⊂ A, A0 6= A

is supposed to hold. Let ΠA0
(A) = ∅, if A ⊂ A0, let ΠA0

(A) = A ∪ A0 oth-
erwise, so that, in particular, ΠA0

(A) = A for every A ⊃ A0, A 6= A0. Then
ΠA0

(∅) = ∅ and ΠA0
(Ω) = Ω obviously holds and for any R ⊂ P(Ω) such that

⋃

R ⊂ A0 is the case we obtain that A ⊂ A0 holds for each A ∈ R, so that
ΠA0

(A) = ∅ for every A ∈ R and the relation Π(
⋃

R) = ∅ =
⋃

{Π(A) : A ∈ R}
is valid. If (

⋃

R) − A0 6= ∅, then there is A1 ∈ R such that A1 − A0 6= ∅ holds;
hence,

ΠA0

(

⋃

R
)

= A0 ∪
(

⋃

R
)

= A0 ∪
⋃

{A : A ∈ R1, A− A0 6= ∅} =

= A0 ∪
⋃

{ΠA0
(A) : A ∈ R, A− A0 6= ∅} =

=
⋃

{ΠA0
(A) : A ∈ R, A− A0 6= ∅} =

=
⋃

{ΠA0
(A) : A ∈ R}, (32)

as ΠA0
(A) ⊃ A0 holds at least for A = A1 ∈ R and ΠA0

(A) = ∅ for every
A ∈ R, A ⊂ A0, i.e., for every A ∈ R, A − A0 = ∅. Hence, ΠA0

is a complete
〈P(Ω),⊂〉-valued possibilistic measure on P(Ω).

Let A1 ⊂ Ω be such that A0 ⊂ A1, A0 6= A1 holds, let R ⊂ P(Ω) be such that
⋂

R = A1 is the case. Then there exists ω1 ∈ A1 − A0, hence, for each A ∈ R
the inclusion A ⊃ A0 ∪ {ω1} is valid, so that ΠA0

(A) = A and
⋂

{ΠA0
(A) : A ∈

R} = A1 = ΠA0
(A1) = ΠA0

(
⋂

R). So, ΠA0
is continuous from above in any A ⊂ Ω

containing A0 as its proper subset. However, ΠA0
is not continuous from above

in A0 itself. Indeed, take R = {A0 ∪ {ω1} : ω1 ∈ Ω − A0}, then
⋂

R = A0 and
ΠA0

(
⋂

R) = ∅, but ΠA0
(A0 ∪ {ω1}) = A0 ∪ {ω1} for every ω1 ∈ Ω − A0, so that

⋂

{ΠA0
(A0 ∪ {ω1}) : ω1 ∈ Ω−A0} =

⋂

{A0 ∪ {ω1} = ω1 ∈ Ω−A0} = A0. If A0 6= ∅,
this value differs from Π(

⋂

R) = ∅.

A simple result valid in the particular case of real-valued possibilistic measures
defined by possibilistic distributions on the universe Ω is perhaps worth being in-
troduced explicitly.

Theorem 4. Let Ω be a nonempty set, let π : Ω → [0, 1] be a real-valued pos-
sibilistic distribution on Ω, so that

∨

ω∈Ω π(ω) = 1, let Π : P(Ω) → [0, 1] be the
possibilistic measure defined when setting Π(A) =

∨

ω∈A π(ω) for every A ⊂ Ω.
Then Π is continuous from above in A ⊂ Ω iff there is at most one ω ∈ Ω such that
π(ω) > Π(A) holds.

Proof. Let there be ω1, ω2 ∈ Ω such that π(ωi) > Π(A) is the case for both i = 1, 2.
Consequently, ωi ∈ Ω−A holds for both i = 1, 2, so that, taking R = {A∪{ω1}, A∪
{ω2}} ⊂ P(Ω), we obtain that

⋂

R = A. However, the inequality
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Π(A ∪ {ω1}) ∧Π(A ∪ {ω2}) = (Π(A) ∨ π(ω1)) ∧ (Π(A) ∨ π(ω2)) =

= π(ω1) ∧ π(ω2) > Π(A) (33)

follows immediately, so that Π is not continuous from above in A.
If there is no ω ∈ Ω such that Π(A) < π(ω) holds, then Π(A) = 1, hence,

Π(B) = 1 for each B ∈ R such that
⋂

R = A, so that Π is continuous from above
in A (let us recall also the more general result from above concerning the sets with
Π(A) = 1T in the case of lattice-valued T -possibilistic measures).

If there is just one ω0 ∈ Ω such that π(ω0) > Π(A) holds, we conclude easily
that Π(A) < 1 and π(ω0) = 1 must be the case. Indeed, if π(ω0) < 1 would hold,
then there must exist another ω1 ∈ Ω−A such that π(ω1) > π(ω0) is valid in order
to meet the demand that

∨

ω∈Ω π(ω) = 1. As A∪ {ω0} 6= A, there must be, in every
R ⊂ P(Ω) such that

⋂

R = A, either the set A itself, or another set B ⊃ A such
that Π(B) = Π(A) is the case. Then the identity

Π
(

⋂

R
)

= Π(A) =
∧

{Π(B) : B ∈ R} (34)

is valid, so that Π is continuous from above in A. The assertion is proved. 2
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