
Computing and Informatics, Vol. 27, 2008, 681–698

XML-BASED AUTOMATIC TEST DATA GENERATION

Halil Ibrahim Bulbul

Department of Computer Education

Gazi University, Ankara, Turkey

e-mail: bhalil@gazi.edu.tr

Turgut Bakir

Siemens AG, Ankara, Turkey

e-mail: turgut.bakir@siemens.com

Manuscript received 31 October 2006; revised 6 August 2007
Communicated by Mária Bieliková

Abstract. Software engineering aims at increasing quality and reliability while de-
creasing the cost of the software. Testing is one of the most time-consuming phases
of the software development lifecycle. Improvement in software testing results in
decrease in cost and increase in quality of the software. Automation in software
testing is one of the most popular ways of software cost reduction and reliability
improvement. In our work we propose a system called XML-based automatic test
data generation that generates the test data automatically according to the given
data definition. We also proposed a test data definition language to describe the
test data to be generated. This system reduces the testing time compared to manual

test data generation and increases the testing reliability compared to the random
test data generation by eliminating meaningless test data.

Keywords: XML, XSL, XSLT, test data generation

1 INTRODUCTION

Software testing is a critical element of a software quality assurance that aims at
determining the quality of the system and its related models. In such a process,



682 H. I. Bulbul, T. Bakir

a software system will be executed to determine whether it matches its specifica-
tion and executes in its intended environment [1]. Software testing is an expensive
and time-consuming process, especially in safety-critical applications, typically con-
suming at least 50% of the total cost involved in developing software [2]. Thus,
decreasing the sofrware testing costs decreases the overall development cost signifi-
cantly. In order to reduce the high cost of manual software testing and at the same
time to increase the reliability of the testing processes researchers and practition-
ers have tried to automate it. One of the most important components in a testing
environment is an automatic test data generator – a system that automatically gen-
erates test data for a given program [3]. There are a lot of works done most of which
mainly aim at automating the testing process.

Testing can be automates in different ways to minimize the manual tasks. Soft-
ware testing automation processes include, but are not limited to, automatic test
cases, automatic running or simulation, or automatic test data generation. Since
manual test data generation is one of the most expensive parts of testing, in our
work we focused on automatic data generation process.

There are many works referring to automatic test data generation in the lite-
rature. Some of them are focused on specific type of data such as floating-point
numbers or integers [4, 5], arrays or pointers [6]. Most of them are developed for
specific software such as Ada [7], ML [8] or Java [9]; other works propose new
algorithms for test data generation. Genetic algorithms [7, 10, 11], or dynamic
domain reduction algorithm [12] can be given as examples of proposed test data
generation algorithms.

The above works are pretty good examples of the progress in test data gene-
ration. Each of them has its own advantages and disadvantages compared to the
others. However, in our work we did not focus on a new algorithm or specific
software as listed above. Our main objective is to achieve a generic system which
automatically generates data for any software, which accepts inputs of any type.
In order to achieve this goal, properties of the data to be generated should be
clearly defined. Maurer [13] proposed a context-free grammar-based language for
generating test data. In this method a context-free grammar-based language called
DGL is developed. In Maurer’s work data is defined syntactically as a string of
characters. This definition is then given to a compiler which generates C code
accordingly. Although this is a pretty good way to generate the test data, it has
some disadvantages. First, as mentioned in [13], the system has quite complex parts
and the compiler has some design problems. Another disadvantage is the utilization
of a compiler, which limits the produced code. The coding part of this work seems to
be static because of its complex structure. In our work we tried to develop a system
which is more dynamic for new algorithms.

Under these considerations we tried to find out an easier and flexible method.
In our work we utilized XML (eXtensible Markup Language) [15] technology which
is very recent and popular. XML is a meta language, which is a subset of SGML
(Standard Generalized Markup Language). Today XML has a very wide range of
usage mainly in internet technologies. An XML stream can be used as the definition



XML-Based Automatic Test Data Generation 683

of any type of structured data. The XML stream format can be defined by DTD
(Document Type Declaration) or XSL (XML Schema Language) [16]. As the first
step of our work we defined the rules for test data definition language. This work
is very similar to that done in ATLAS test environment (ATE) [17]. Instead of
writing a parser and a compiler for the definition given in XML stream we defined
transformation rules which are independent of programming language and environ-
ment. We used XSLT (XML Schema Language Transformations) [18] technology
which defines transformation rules of an XML stream input. XSLT can be defined
so that an XML stream can be transformed to any type of output such as a text
or an HTML document. Unlike ATE our system can be used to generate a code in
any programming language. To do this, in our system changing the XSLT rules is
enough.

In Figure 1 a general scheme of the overall system is given. As seen from the
figure, test data definition language rules and language transformation rules are
defined. In practical usage of the system, test data is defined according to the
language rules. After validation of the definition given, the transformation rules
are then applied to the definition by utilizing a transformer factory. This results in
a code which is called “Test Data Generator” dynamically. The resulting code is
not necessarily in Pascal or C language. If its transformation rules are defined in
XSLT then the resulting code may be generated in any programming language.

In this article we introduced our system, including a test data definition part,
and automatic test data generation part. In Section 2, we explained the test data
definition language rules. In Section 3 we introduced the automatic test data ge-
neration rules defined by XML transformation rules. Then we depict some simple
examples showing the usage of this system. We conclude this article by summarizing
the advantages and disadvantages of the developed system (Section 7).

2 TEST DATA DEFINITION LANGUAGE

Test data generators can be classified into three types: pathwise test data generators,
data specification systems, and random test data generators [19]. In pathwise test
data generators the inputs are selected to exercise a specified set of program paths.
A data specification system assists users in generating a test case by providing a data
specification language to describe the input data. In random test generators test
data is generated by simply selecting a random point from the domain of each input
variable of a program.

In our work we realized a system for automatic test data generation classified
in data specification systems. Such systems aim at providing feasible test data in
software testing. Since random input is of little value in verifying software cor-
rectness, the controlled way of test data generation should be preferred. Software
testing with randomly generated data lasts longer than other methods for verifi-
cation of correctness of software, since more input is required. Narrowing the in-
put domain and limiting the input with some specification removes infeasible data



684 H. I. Bulbul, T. Bakir

Fig. 1. Workflow diagram of overall structure



XML-Based Automatic Test Data Generation 685

from test data set. It saved time in testing phase by passing meaningless testing
cases.

In this area Maurer [13] proposed a system utilizing context-free grammars.
Unlike this work we utilized XML technology for definition of test data. By utilizing
XML in this work we took very well known advantages of this technology. Although
originally designed for large-scale electronic publishing, XML has found a role in
supporting the exchange of a wide variety of data on the web and in other software
systems [15]. Its flexibility made our system flexible as well. Since it is extensible,
our system is also extensible. The following explanations will give more details about
the reasons for selecting XML as the basis for our definition language.

In order to propose a language, grammatical rules should be clearly identified.
For this purpose we start with identification of language rules. Unlike ATE [17] we
chose XML schema definition (XSD) instead of data type definition (DTD) language.
XSD is a newer schema language than DTD. Detailed information on XML schema
and advantages over DTD is found in [20].

2.1 Language Components

Our test data definition language has two main components – the domain part and
the output part. The domain part is the definition of the domain from which the
generated test data will be selected. The output part contains the behaviors/rules
of the test data selection such as exclusions, preferences and methods.

The element “data domain” has child elements giving detailed description of
the domain. We defined the domain type element to classify the data type of the
domain. Up to now in language definition rules we restricted the domain type with
three data types, namely “String”, “Integer” and “Decimal” . It is open for new
data type definitions like the other parts of language rules. The domain itself can
be a “Set” or a “Range”. The domain can also be a file which contains the elements
of the domain. In each case, the data domain is a set of values. This definition only
gives flexibility and convenience in the domain set definition.

Although giving domain definition by “Set” element is a fatiguing way of domain
definition, it has advantages when defining a small set of data. For example, if your
software accepts currency input like ‘USD’, ‘EURO’ and ‘TRL’, it is easy to define
this domain with only three elements. On the other hand, if your domain is large
unlike the currency example, it is not feasible to use “Set” definition. In this case
“Range” type of domain definition should be utilized if possible. For example, if
our software accepts input “Amount” data of type decimal we can define a range
from a negative value to a very big positive value. If we want to select amounts
with negative values and very large values only, then we may include them in a file.
Higher level definition rule of “data element” is given in Figure 2.

Definition of the data domain without any selection specification is nothing but
definition of random data generation. Our domain definition part gives a little more
restrictions than random data generation. In some cases this is not enough; then,
test data properties or selection methods should be defined as well. The output part



686 H. I. Bulbul, T. Bakir

<xsd:element name="data_domain">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="domain_type" type="data_type" minOccurs="1"

maxOccurs="1"/>

<xsd:element name="values">

<xsd:complexType>

<xsd:choice>

<xsd:element name="domain_Set" type="Set" minOccurs="1"

maxOccurs="1"/>

<xsd:element ref="Range" minOccurs="1" maxOccurs="1"/>

<xsd:element ref="file" minOccurs="1" maxOccurs="1"/>

</xsd:choice>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Fig. 2. “Domain type” definition rules

of the test data definition defines the test data selection rules. The rules defined in
this part are also extensible for new requirements in test data generation.

The second part of the test data definition is the “output” element part in which
the test data generator’s behavior is defined. The child elements and properties of
this part guide the test data selection methods from the domain given in the first
part. The very basic element of the output element is the “number of element” part
which specifies the number of test data to be generated. According to this value the
loop counter in the test data generator is declared. The “preffered output set” and
the “exclusion set” elements identify which values are wanted to be generated in the
test data and which values are not. It is useful to define the domain as a range and
to exclude some elements from it. For example, if “0” value is meaningless for our
software we can exclude it to avoid unnecessary test executions.

The “mean” and “variance” elements are defined for statistical approaches. In
the generated test data set a mean or a variance value is to be reached. For the
statistical ways of automatic test data generation algorithms the language can be
extended by adding new attribute or element rules into the language.

The “Successive data” element is defined mainly for string type test data. If
different successive data input is required then the value must be set to false, other-
wise true. This is an example of a grammatical approach for automatic test data
generation.

In order to include a specific test data generation algorithm, the “method” ele-
ment is included into the test data definition language. The value of this element
is the name of the algorithm to be utilized. The algorithms as given in the in-



XML-Based Automatic Test Data Generation 687

troductory part and others which have already been developed are very valuable
in their proposed area. Thus, development of such methods from the beginning
is nothing but waste of time. If we have library of such valuable methods in our
test data generation part, we can take advantage of already developed and used
systems.

The core language rules for output element are given in Figure 3.

<xsd:element name="output">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="number_of_output" type="xsd:integer"

maxOccurs="1"/>

<xsd:element name="method" type="xsd:string" />

<xsd:element name="preffered_output_set" type="Set" minOccurs="0"

maxOccurs="1"/>

<xsd:element name="exclusion_set" type="Set" minOccurs="0"

maxOccurs="1"/>

<xsd:element ref="mean" minOccurs="0" maxOccurs="1"/>

<xsd:element name="variance" type="xsd:decimal"/>

<xsd:element ref="output_type" minOccurs="1" maxOccurs="1"/>

<xsd:element ref="file" minOccurs="1" maxOccurs="1" />

</xsd:sequence>

<xsd:attributeGroup ref="Successive_data"/>

</xsd:complexType>

</xsd:element>

<xsd:attributeGroup name="Successive_data">

<xsd:attribute name="same_successive_data" type="xsd:boolean"

use="optional"/>

<xsd:attribute name="same_saccessive_data_occ" type="xsd:decimal"

use="optional"/>

</xsd:attributeGroup>

Fig. 3. Output definition rules (continued)

The last part of our language is the “generate what” element, defined in Figure 4.
In this part the form of the output itself is defined. There are several choices. The
resulting output may be a program which is a test data generator. The result may
be a function, procedure or a unit (or all). In this case the output is a program which
can be used in other programs. It can be included in the program to be tested as
well. The main goal of this part which is not implemented in this work, is supplying
input data for a testing software which automatically executes the program to be
tested. For such automatic testing software the input would be supplied by this
function or procedure output of out test data generation system. In our work, we
used existing software testing tools such as CATT [21] tool of the SAP [22] system.
This system executes the program by using external input in specified file format



688 H. I. Bulbul, T. Bakir

(either binary or text). In our test we generated the test data generator program
and gave its output to SAP’s CATT tool as input.

<xsd:simpleType name="generate_what">

<xsd:restriction base="xsd:string">

<xsd:enumeration value="Procedure"/>

<xsd:enumeration value="Function"/>

<xsd:enumeration value="Program"/>

<xsd:enumeration value="Unit"/>

<xsd:enumeration value="Data_Stream"/>

</xsd:restriction>

</xsd:simpleType>

Fig. 4. “Generate what” element definition rules

2.2 XSLT Interpreter – Generating Output

XML is extensible, easy to write and understand. Two main features named “valid”
and “well-formed” guarantee that the input stream is valid and well-formed.

In our project the test data definition is written in XML format, but it does
not mean that any XML stream which is well-formed is a definition of test data.
A definition should obey the rules defined in XSD file. Each XML file must start with
a line, which tells the parser that the rules of our language are defined somewhere.
The meaning of this expression is “I obey the language rules defined in this XSD,
otherwise do not accept me” . An example is given in Figure 5.

<test_Data xmlns="http://localhost"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=http://localhost TestDataGenerationSchema.xsd >

Fig. 5. Root element “test data” definition

Before processing the test data definition we must be sure that the given defini-
tion is a valid test data definition. To check the validity of the XML input packages
developed for most of the popular programming languages and environments can be
used. This is one of the main reasons which made us to select this technology.

Little effort is required to write a code for XML validity assurance. In our work
we used Java which is the most popular programming language today. In Figure 5,
we gave the full code of the “parse” method which gets the XML file as input and
parses it. If XML input is a valid test data definition then the parser accepts it,
otherwise it fails.



XML-Based Automatic Test Data Generation 689

public Document parse(String xmlFileURL) {

try {

DocumentBuilderFactory docFactory =

DocumentBuilderFactory.newInstance();

docFactory.setValidating(true);

docFactory.setNamespaceAware(true);

DocumentBuilder builder = docFactory.newDocumentBuilder();

MyErrorHandler eh = new MyErrorHandler(System.out);

builder.setErrorHandler(eh);

Document document = builder.parse(xmlFileURL);

System.out.println(document.toString());

return document;

} catch(Exception ex)

{

ex.printStackTrace();

return null;

}

}

Fig. 6. XML validation code written in Java

2.3 An Example

In order to illustrate a test data definition an example is given in Figure 7. It tells
that we want to produce sixty-integer output from an integer range from 1 to 5 000.
In the output stream, we prefer to have “660, 350, 400, 330, 750, 200” more often.
The mean value of the test data values will approximately be 600. Finally, we say
that we want to have a resulting program file named “TestData.pas” which will
produce this test data stream.

We can summarize the main advantages of the test data definition based on
XML technology as follows:

• It is easy to understand and to write. Since XML has very basic rules, it is easy
to write and understand.

• It has a wide application area. In this work there is no specific target software
or data domain. The rules are so generalized that test data for any software
system can be defined.

• It is extensible for new needs. As a result of the nature of XML, our language is
an extensible structure. Schema definition is open for new rules and extensions.

• It is environment-independent. Our language is not platform-dependent. That
is, it is supported by any XML parser developed in any programming language,
and in any operating system.



690 H. I. Bulbul, T. Bakir

<?xml version="1.0" encoding="UTF-8"?>

<test_Data xmlns="http://localhost"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://localhost TestDataGenerationSchema.xsd ">

<data_domain>

<domain_type>Integer</domain_type>

<values>

<Range>

<Integer_range>

<Lower_bound>1</Lower_bound>

<Upper_bound>5000</Upper_bound>

</Integer_range>

</Range>

</values>

</data_domain>

<output>

<number_of_output>60</number_of_output>

<preffered_output_set>

<String_set>

<integer_element>660</integer_element>

<integer_element>350</integer_element>

<integer_element>400</integer_element>

<integer_element>330</integer_element>

<integer_element>750</integer_element>

<integer_element>200</integer_element>

</String_set>

</preffered_output_set>

<mean>600</mean>

<output_type>

<generate_what>Program</generate_what>

</output_type>

<file>c:/program/TestData.pas</file>

</output>

</test_Data>

Fig. 7. A simple test data definition example

3 TEST DATA GENERATION

In this work, instead of generating test data directly we create a program dynami-
cally to generate test data. The resulting program is called test data generator. The
advantages are as follows:

• flexible,

• easy to maintain,



XML-Based Automatic Test Data Generation 691

• multi programming language can be supported,

• the resulting test data generator can be included by other programs.

There are some alternatives to generate the test data generator as explained
below.

One alternative is to write a program which takes the test data definition and
produces the test data directly. It is not the best choice since it is hard to main-
tain. It would be a platform dependent solution. Supported data types can not be
extended easily.

The other alternative is to write a compiler-like program which takes the test
data definition and produces the test data generator. This would be a better solution
than that mentioned above; but this is also hard to extend for the new requirements.
Which this solution, the programming language of the test data generator can not
be changed.

The solution that we decided to follow is using XSLT technology which is
platform- and language-independent solution. This gave us flexibility to extend the
supported data types and properties of the test data to be generated. As explained
below it is easy to update for the new requirements.

4 PARSING AND TRANSFORMING XML

In our project we utilized standard XML functions to create test data generator
dynamically. XSLT is the best choice we found for our process. Unlike Atlas test
environment [17], instead of writing a compiler we created an XSLT file which con-
tains transformation rules. These rules can be updated via an ordinary editor to
change or add new functions. This work does not depend on any programming lan-
guage which is the main advantage of the utilization of XML schema transformation
over the other techniques.

The work flow given in Figure 8 shows how transformation is processed. Starting
at the root element the XML is parsed and the output is produced according to the
next sibling elements. For example, if the program finds “program” in the ge-
nerate what element value, a “PROGRAM” statement is written to the output.
Then the parser searches for the Data domain elements for constant and variable
declarations.

After building the declaration part of the target source code, the program body
is built according to the output complex element. As explained in the Test Data
Definition section of this article, output element is a complex element which gives
keys to create the program body. The number of output, for example, defines the
count of the “for” loop. As another example, according to the exclusion set, in
target source code an exclusion set is defined and data produced in the “for” loop is
tested whether it is in the exclusion set or not. Thus, an appropriate “if statement”
is inserted into the target program for the exclusion set.



692 H. I. Bulbul, T. Bakir

Fig. 8. Workflow diagram for XSLT transformation

5 SOURCE CODE GENERATION

As explained above, the source code generation rules are defined in XSLT file. As
seen from Figure 1, XSLT file is applied to the XML file which is the test data
definition. It results in a source code named “Test Data Generator” . Test data
generator is a program created according to the transformation rules given. We
wrote a small Java program which gets XML file and XSLT file as input and test
data generator as output. This code is given in Figure 9.

In our work we have chosen Pascal and C programming languages for the ge-
nerated source code. This does not mean that our test data generating system can
generate source code in these programming languages only. We have shown that
by changing XML transformation rules we easily change the test data generator
programming language; no additional change is necessary to do that. This gives us
language and environment independency. At any time the source code generation
can be changed by changing the XML transformation rules.

As an example, when the parser finds “Program” value in the generate what
element, the “Program” statement is inserted into the target source code if the
Pascal code is created. The same value causes “public void main ()” statement in
the target source code if the language is C. For other programming languages we
can make similar changes in XSLT file to generate the source code.



XML-Based Automatic Test Data Generation 693

package com.gazi.project;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerException;

import javax.xml.transform.stream.StreamSource;

import javax.xml.transform.stream.StreamResult;

public class Transform {

public Transform() { super(); }

public static void main(String[] args) {

String xslFile = "";

String xmlFile = "";

String outFile = "";

for(int i=0; i < args.length ; i++) {

if(args[i].equalsIgnoreCase("XSLFile"))

xslFile = args[++i] ;

if(args[i].equalsIgnoreCase("XMLFile"))

xmlFile = args[++i] ;

}

GaziParserDom domParser = new GaziParserDom();

outFile = domParser.search(xmlFile,"file");

TransformerFactory factory = TransformerFactory.newInstance();

try {

System.out.println("Transforming Information...");

Transformer transformer_info =

factory.newTransformer(new StreamSource(xslFile));

transformer_info.transform(new StreamSource(xmlFile),

new StreamResult(outFile));

System.out.println("Automatic test data genration "+

"program completed.");

System.out.println(outFile + "Created");

} catch (TransformerException e) { e.printStackTrace(); }

}

}

Fig. 9. The Java code that parses XML and creates the test data generator

6 EXPERIMENTAL WORK

In this work we made experimental work for different use cases. Here we give a sim-
ple example that shows how this system is used in real life. The given problem
is to test an SAP (The most popular ERP software) [22] module which creates
the accountancy record. The required data to test this module include the refer-
ence number, amount, currency and cost center. The reference number should be
a string in the range of “7411RF00000000” and “7411RF99999999” . The amount is
a decimal number between 10 and 999999999.99. Currency should be selected from



694 H. I. Bulbul, T. Bakir

<?xml version="1.0" encoding="UTF-8"?>

<test_Data xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=

"http://www.w3.org/2001/XMLSchema TestDataGenerationSchema.xsd">

<data_domain>

<domain_type>String</domain_type>

<values> <Range> <String_range>

<Lower_bound>7411RF00000000</Lower_bound>

<Upper_bound>7411RF99999999</Upper_bound>

</String_range> </Range> </values>

<domain_type>Decimal</domain_type>

<values> <Range> <Decimal_range>

<Lower_bound>10.00</Lower_bound>

<Upper_bound>999999999.99</Upper_bound>

</Decimal_range> </Range> </values>

<domain_type>String</domain_type>

<values> <domain_Set> <String_set>

<string_element>TRL</string_element>

<string_element>EUR</string_element>

<string_element>USD</string_element>

</String_set> </domain_Set> </values>

<domain_type>String</domain_type>

<values> <domain_Set> <String_set>

<string_element>C151</string_element>

<string_element>C152</string_element>

<string_element>C153</string_element>

<string_element>A110</string_element>

<string_element>C160</string_element>

<string_element>F512</string_element>

</String_set> </domain_Set> </values>

</data_domain>

<output same_successive_data="true">

<number_of_output>8</number_of_output>

<method>random_string</method>

<output_type name="GenerateTestData">

<generate_what>Program</generate_what>

</output_type>

<file>D:/WSAD_WS/Test Data Generation/Test_XMLs/testdata.pas</file>

</output>

</test_Data>

Fig. 10. Test data definition as an example



XML-Based Automatic Test Data Generation 695

7411PG97564695 64,05 EUR C153

7411PG97564692 315,32 EUR F512

7411PG97564693 164,46 EUR C160

7411PG97564688 133,4 EUR C153

7411PG97594596 8,8 EUR C151

7411PG97594597 2.257,2 EUR F512

7411PG97594595 141,49 EUR C151

7411PG97594585 228 EUR C151

Fig. 11. Output of the test data generator

Fig. 12. Application of the generated test data to the module to be tested



696 H. I. Bulbul, T. Bakir

the set of strings which is equal to the set {“TRL” , “EUR” , “USD” }. Finally,
the cost center is selected from the string set {“C151”, “C152”, “C153”, “A110”,
“C160”, “F512”}.

We have a module in SAP which reads all required data from a text file and
executes the accountancy record creating the module. Our test data generator which
is created automatically from the definition of the test data creates a text file which
consists of an automatically generated data set. The output of this generator are
given as input to the module to be tested.

Test data definition, generated test data, and applied module are given in Figu-
res 10–12.

7 CONCLUSION AND FUTURE WORK

In this article we presented automatic test data generation based on the XML test
data definition. We defined an XML-based language called “Test Data Definition
Language” which identifies the test data to be produced. We also defined a set
of transformation rules used in source code generation. In this work not all the
properties that would be needed are defined. Since there is no hard coded program,
it is open for development. If there are new needs they will be identified easily.
Test data definition language can be developed by new requirements. Similarly to
test data definition language, transformation rules are also open for development.
Since XSLT does not provide functions for date type values, additional work should
be performed to handle test date in date type. In this work we tried to define
transformation rules for Pascal and C languages. As we explained in this article it
can be any programming language.

REFERENCES

[1] Keyes, J.: Software Engineering Handbook. CRC Press LLC, 2003.

[2] Beizer, B.: Software Testing Techniques. Thomson Computer Press, 2nd edition,
1990.

[3] Edvardsoson, J.: A Survey on Automatic Test Data Generation. Proceedings of
the Second Conference on Computer Science and Engineering in Linköping, 1999,
Vol. 2128.

[4] Transy, N.—Deville, Y.: Automatic Test Data Generation for Programs with
Integer and Float Variables. Proceedings of the Automated Software Engineering
Conference, IEEE Computer Society, San Diego, 2001, pp. 13–21.

[5] Miller, W.—Spooner, D.: Automatic Generation of Floating-Point Test Data.
IEEE Transactions on Software Engineering, SE-2, Vol. 3: September 1976,

pp. 233–226.

[6] Korel, B.: Automated Software Test Data Generation. IEEE Transactions on Soft-
ware Engineering, Vol. 16, 1990, No. 8, pp. 870–879.



XML-Based Automatic Test Data Generation 697

[7] Jones, B. F.—Sthamer, H.H.—Eyres, D. E.: Generating Test-Data for Ada

Procedures Using Genetic Algorithms. In Genetic Algorithms in Engineering Systems:
Innovations and Applications. IEEE, September 1995, pp. 65–70.

[8] Ryu, S.—Yi, K.: Automatic Test Data Generation for Exceptions in First-Order ML

Programs. Research On Program Analysis System, ROPAS Memo 1999-3, November
1999.

[9] Boyapati, C.—Khurshid, S.—Marinov, D.: Korat: Automated Testing Based

on Java Predicates. ACM International Symposium on Software Testing and Analysis
(ISSTA), July 2002.

[10] Watkins, A. L.: The Automatic Generation of Test Data Using Genetic Algorithms.
Proceedings of the 4th Software Quality Conference, Vol. 2, 1995, pp. 300–309.

[11] Pargas, R.—Harrold, M. J.—Peck, R.: Test-Data Generation Using Genetic
Algorithms. Journal of Software Testing, Verifications, and Reliability, Vol. 9, 1999,
pp. 263–282.

[12] Offutt, A. J.—Jin, Z.—Pan, J.: The Dynamic Domain Reduction Procedure for
Test Data Generation. Department of Information and Software Engineering George
Mason University Technical Reports, 1994, ISSE-TR-94, pp. 94–110.

[13] Maurer, P.M.: The Design and Implementation of a Grammar-based Data Gene-
rator. IEEE Software-Practice and Experience. Vol. 22, 1992, No. 3, pp. 223–244.

[14] Maurer, P.M.: Generating Test Data with Enhanced Context Free Grammars.
IEEE Software, Vol. 7, 1990, No. 4, pp. 50–56.

[15] Bray, T.—Paoli, J.—Sperberg, C.M.: Extensible Markup Language (XML)
1.0. W3C Recommendation, 10 February 1998. http://www.w3.org/TR/1998/

REC-xml-19980210.

[16] Berglund, A.: Extensible Stylesheet Language (XSL). Version 1.1, W3C Working
Draft, 17 December 2003. http://www.w3.org/TR/2003/WD-xsl11-20031217/.

[17] Chen, C.—Lee, J.K.: Case Study: An Infrastructure for C/ATLAS Environment
with Object-Oriented Design and XML Representation. Journal of System and Soft-
ware, Vol. 71, 2004, No. 1–2, pp. 83–95.

[18] Clark, J.: XSL Transformations (XSLT). Version 1.0, W3C Recommendation,
November 16, 1999, http://www.w3.org/TR/xslt/.

[19] DeMillo, I.: A Richard, Software Testing and Evaluation. The Benjamin/Cum-
mings Publishing Company, Inc., 1987, pp. 106–115.

[20] Fallside, D.C.—Walmsley, P.: XML Schema Part 0: Primer Second Edi-
tion. W3C Recommendation, 28 October 2004, http://www.w3.org/TR/2004/

REC-xmlschema-0-20041028/.

[21] http://www.sap.com/services/servsuptech/brochures/index.aspx.

[22] http://www.sap.com.



698 H. I. Bulbul, T. Bakir

Halil Ibrahim Bulbul received his Ph.D. degree in educa-

tional technology from Ankara University, Ankara, Turkey, and
his M. Sc. degree in technology education from California Univer-
sity (PA), U. S. A., in 1997 and 1990, respectively, and his B. Sc.
degree in technology education from Gazi University, Ankara,
Turkey, in 1985. He has been an Assistant Professor of Com-
puter Education Department, Gazi University, Ankara, Turkey,
since 1997. His research interests include educational technolo-
gies, e-learning, distance education, educational software design,
and database management systems.

Turgut Bakir received B. Sc. degree in computer engineering
from Middle East Technical University, Ankara, Turkey, and
his M. Sc. degree in computer education from Gazi University
Ankara, Turkey, in 2005. He is currently working for Siemens
Turkey as SAP specialist and software engineer. His research
interests include automated software testing, dynamic program
generation, and ERP systems.


