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Abstract. Transaction management for mobile and ubiquitous computing (MUC)
aims at providing mobile users with reliable and transparent services anytime any-
where. Traditional mobile transaction models built on client-proxy-server architec-
ture cannot make this vision a reality because 1) in these models, base stations
(proxy) are the prerequisite for mobile hosts (client) to connect with databases
(server), and 2) few models considered context-based transaction management. In
this paper, we propose a new network architecture for MUC transactions, with the
goal that people can get online network access and transaction even while moving
around; and design a context-aware transaction model and a context-driven coordi-
nation algorithm adaptive to dynamically changing MUC transaction context. The
simulation results have demonstrated that our model and algorithm can significantly
improve the successful ratio of MUC transactions.
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1 INTRODUCTION

Mobile and ubiquitous computing (MUC) is a new distributed computing paradigm
[1]. Through MUC, people can get online access to their preferred services even
while moving around, by sharing computing, communication and information ser-
vices anytime anywhere. Open MUC environment is prone to failures caused by
devices, applications, networks, basic services of ubiquitous systems [3]. To hide the
complexity of service processes from users as much as possible, ubiquitous systems
have to self-adapt dynamically changing transaction context and intelligently handle
failures and recovery [1, 3]. Therefore, advanced transaction management is another
key technology [2] to make MUC a reality, ensuring the reliability of MUC systems
in the disappearance way. Researchers have discussed the necessity to set up reliable
MUC systems, while pointed out that traditional mobile transaction proposals are
not directly practicable to MUC transactions because MUC environments have the
following features [2, 9–12]:

High mobility. MUC allows users to move anytime anywhere while enjoy services
transparently. With the users’ movement, nodes, data and services that can be
directly accessed keep on continuously changing.

Uncertain support from fixed communication infrastructure. Traditional
mobile transaction models rely on wired fixed networks, where transaction ma-
nagers and main data copies are distributed on fixed hosts (base stations and
servers) [10]. In MUC environments, however, computing and service are ex-
tended from fixed wired networks to various self-organized wireless networks so
that most ubiquitous transactions are completely executed on mobile devices.

Transaction management is highly related to computing paradigm. The above
characteristics of MUC environments present severe challenges to MUC transaction
management in the following aspects:

Transaction processing architecture. Traditional mobile transaction models
are structured on client-proxy-server architecture [10], where mobile hosts
(clients) initiate mobile transactions; databases (server) perform application
operations in the transactions; and base stations (proxy) bridge the clients and
the servers. Unlike traditional mobile computing, MUC environments do not
guarantee the support of wired infrastructure (e.g., base stations); and mobile
ubiquitous devices may access to both fixed hosts and mobile neighboring nodes
in the peer-to-peer way [10].

Context-aware transaction model. Context awareness is a basis to realize
transparent ubiquitous transaction services. Therefore, MUC transaction model
should be able to self-adapt to dynamical transaction context, and thus provide
general support for various ubiquitous applications.

Context-driven transaction management. Highly mobility of MUC users
makes context of ubiquitous transactions change continuously. To adapt chang-
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ing transaction context, MUC transaction management should be aware of con-
text dynamically, and should intelligently optimize the distribution and exe-
cution modes of ubiquitous transactions for improving performance of MUC
systems and reducing users’ intervention as much as possible.

In this paper, we investigate how to solve the above challenges. Firstly, we
propose a transaction processing architecture characteristic to MUC environments,
targeting on complete support for the ubiquitous access. Next, we present a context-
aware MUC transaction model that handles transactions in event-context-action
mechanism proposed in this paper. Finally, we design a context-driven coordina-
tion algorithm to adaptively manage transactions based on dynamical transaction
context.

The rest of this paper is organized as follows. In the next section, we review
related work. Section 3 proposes an architecture of MUC transaction processing.
Section 4 presents a context-aware MUC transaction model. In Section 5, we present
a context-driven transaction coordination algorithm. Experiments and evaluation
on our model and algorithm are reported in Section 6. Finally, Section 7 concludes
this paper with a discussion on our future work.

2 RELATED WORK

Traditional mobile transaction models focused on variable bandwidth, network dis-
connection, replication, synchronization, hand-off and resource restriction of mobile
hosts. Clustering [6] groups semantics-related databases within a cluster. Each
piece of data is kept in two versions: weak consistency (local consistency) version
for weak transactions and strict consistency (global consistency) version for strict
transactions. Strict and weak transactions are executed when a MH (mobile host) is
strongly and weakly connected with fixed networks. Similar to clustering, two-tier
replication [5] maintains a master copy for base transactions and multiple replicated
copies for tentative transactions. HiCoMo (High Commit Mobile) [7] keeps two kinds
of tables: base tables for base transactions and aggregate tables for HiCoMo transac-
tions. Moreover, Moflex [4] submits subtransactions to mobile transaction managers
located in base stations, which then submit the subtransactions to databases. Each
Moflex transaction is composed of a set of dependency relationships, hand-off rules
and expected final states. These mobile transaction models all require the support
of base stations; however, base stations can not be a prerequisite for online MUC
transactions. In addition, a MUC transaction model has to adapt dynamical trans-
action context. Therefore, the above mobile transaction models do not work well in
MUC environments.

There have been some reports on MUC data and transaction management.
Franklin [2] discussed requirements for data management in MUC environments, and
analyzed how to manage data according to MUC features from three aspects: sup-
port for mobility, context awareness and support for collaboration. MoGATU [10]
set up a data management framework for MUC, which abstracts all P2P devices in
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information providers, information consumers and information managers. Unfortu-
nately, these proposals did not solve basic issues of MUC transactions especially on
adaptive transaction model and context-driven transaction management.

3 MUC TRANSACTION PROCESSING ARCHITECTURE

MUC aims at providing mobile users with ubiquitous online services. Therefore,
transaction processing in MUC environments should not be restrictive to fixed base
stations because such an architecture is easy to cause the following unavailable
service problem which severely restricts users’ mobility.

3.1 Unavailable Service Problem

In client-proxy-server based traditional mobile transaction models, base stations
connected to fixed network are at the center, working as gateways among mobile
clients and fixed servers as well as mobile transaction managers in most models.
Transactional operations are mainly executed on fixed database servers. MHs can
communicate with base stations only when they locate within individual cells, i.e.,
MHs cannot access to database servers if the MHs move out of the range of any
wireless cell. We call such a situation an unavailable service problem.

Fixed Network
FH FH

MH

BS1

RA

MH: mobile host         BS: base station
FH:  fixed host           RA: ratio range of a mobile device

BS2

MH
A

MH

RA

B
RA

Fig. 1. An example of unavailable service problem

We illustrate the unavailable service problem by an example shown in Figure 1.
A MH can communicate with BS1 when it locates at the place A. However, it cannot
connect to any base station if it moves to the place B because the radio range of the
MH is not able to cover any base station.

3.2 A Robust Architecture for MUC Transactions

To make online ubiquitous services a reality, we argue that emerging MUC systems
should include various self-organized wireless mesh networks, each device main-
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taining multiple connections with neighboring nodes. Accordingly, we propose
an architecture for MUC transactions, as shown in Figure 2, where mobile devices
that support the same wireless communication protocols (e.g., Wi-Fi) automati-
cally discover neighbors and interconnect with them to set up wireless mesh net-
works.
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Fig. 2. A mobile transaction architecture for MUC environment

The proposed network architecture is composed of three layers: fixed network
in the top layer, wireless mesh routing backbone in the middle layer, and wireless
mesh sub-networks in the bottom layer. This is a layered full mesh network, each
wireless node can forward data for other nodes so that any two nodes may com-
municate by multiple hops. In Figure 2, dashed and solid lines represent wireless
and wired communications, respectively; thicker lines mean that corresponding links
have higher bandwidth; FH is a fixed host connected to a fixed network; MUD refers
to a mobile ubiquitous device without any database while MUDD with database(s);
TMH is a traditional mobile host without mesh functionalities.

MUDs (e.g., smart mobile phones) and MUDDs (e.g., powerful laptops) inter-
connect in wireless links to establish low-level wireless mesh networks automatically
and dynamically. MUDs only initiate global MUC transactions as clients while
MUDDs can not only initiate transaction requests but also execute subtransac-
tions.
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In this paper, we specify a MUC transaction is the one that is initiated by any
mobile device (MUD or MUDD), and entirely executed by mobile MUDD nodes.
A detailed definition of MUC transaction model will be presented in the following
section.

4 CONTEXT-AWARE TRANSACTION MODEL

4.1 Context of MUC Transactions

Transaction context includes information from physical space, information space
and human activities relevant to transaction processing. Summarily, context of
MUC transactions mainly concerns the following dimensions:

• Wireless network: connectivity, bandwidth, delay, ratio of losing packets, cost,
stability.

• Mobile device: computing capacity, available memory, available battery, avail-
able data, available cache, security.

• Location: longitude and latitude (or relative position).

• User: profile, purpose, requirements.

• Time: starting time and ending time.

This paper focuses on how to manage MUC transactions based on changing
transaction context because of page limitation. We will present how to collect,
manage and reason the context of MUC transactions in another paper.

4.2 Context-Aware Transaction Model

Definition 1 (MUCT). A MUC transaction (MUCT) is a 6-tuple MUCT = (T,
CT,ECA,D,TS,FS), where:

• T = {Ti | 1 6 i 6 n}: the set of all subtransactions in a MUCT;

• CT = {CTi | 1 6 i 6 n}: the set of compensating transactions of all subtrans-
actions;

• ECA = 〈ECAi〉: the list of ECA rules for all subtransactions;

• ECAi = 〈Ei,Ci,Ai〉: the list of 3-tuple with event, context and action for a spe-
cified subtransaction Ti;

• D: the set of dependencies between Ti and Tj (Ti, Tj ∈ T);

• TS = {Si | 1 6 i 6 n}: the set of states of all subtransactions;

• FS: the set of acceptable final states.

We explain each tuple in MUCT model in more details. T denotes all sub-
transactions in a MUC transaction. In this paper, we only consider compensable
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transactions, i.e., each subtransaction Ti (Ti ∈ T) can associate a compensating
transaction Ci. All compensating transactions Ci (1 6 i 6 n) of a transaction T
make up of CT, the set of compensating transactions.

ECA = 〈ECAi | 1 6 i 6 n〉 is a list of ECA rule descriptors, where ECAi is
for the subtransaction Ti and ECAi has higher priority than ECAi+1. In particular,
each ECAi = 〈Ei,Ci,Ai〉 is also a list of 3-tuple (event, context and correspond-
ing action), describing multiple execution models for a subtransaction Ti based on
context, where

• Ei = {Eij}: the set of events that occur during the execution of Ti;

• Ci = {Cik}: the set of context associated with a subtransaction Ti. Ci covers
five dimensions: wireless network, mobile device, location, user and time. Each
dimension of Ci has to meet a specified condition for the execution of Ti.

• Ai = {Ail}: the set of actions. For example, a user wants to reserve airplane
tickets from travel agent A. If the link is disconnected, transaction manager may
try to connect another travel agent B to resume the ticket reservation.

D is the set of dependencies between Ti and Tj (Ti, Tj ∈ T). We define two
kinds of dependencies: successful submission dependency (⋖s) and failed submission
dependency (⋖f). Ti⋖sTj means that Tj cannot start to execute until Ti successfully
submits. Ti ⋖f Tj denotes that Tj can start to execute only if Ti fails to commit or
is compensated if Ti has committed.

TS = {S1, S2, . . . , Sn} is the set of states of all subtransactions in a MUC trans-
action. Si, the state of Ti, is one of five possible states: I, E, S, F and C (see
Table 1). Each subtransaction starts with state ‘I’ and ends with ‘S’ or ‘F’.

Symbol State Description

I initial state Ti has not yet started to execute
E executing state Ti is executing and has not submitted
S submitted state Ti has successfully submitted
F failed state Ti has failed to submit and rollbacked to previous state
C compensating state compensating transaction Ci of Ti is executing

Table 1. Transaction state description

FS is a special set of states with expected final results. A MUC transaction
may has multiple proper final states that the user is ready to accept, with different
priorities.

5 CONTEXT-DRIVEN COORDINATION ALGORITHM

FOR MUC TRANSACTIONS

For a MUC transaction T = {T1,T2, . . . ,Tn}, global transaction T is initiated by
a mobile device (called request node) and subtransactions are distributed to n mobile
devices (called execution node), as illustrated in Figure 3. CATM (context-aware
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Fig. 3. A MUC transaction system

transaction manager) is responsible for MUC transaction management, where Coor-
dinator and Participant execute coordination algorithm to orchestrate activities in
a MUC transaction. During the execution of MUC transactions, Context Awareness
module collects and monitors transaction context for dynamically adjusting trans-
action processing policies. Log service records coordination and state information in
order to recover from potential failures. CTG (compensating transaction generator)
automatically generates compensating transactions during the execution of MUC
transactions. Communication Unit sends and receives messages for transaction pro-
cessing. LTM (local transaction manager) manages a local subtransaction Ti.

Our context-driven coordination algorithm for the proposed MUC transaction
model consists of two parts: Global transaction management and Subtransaction(Ti)
execution, which are executed by a coordinator in a request node and n Participants
(see Figure 3) located in n execution nodes.

Global transaction management, shown in Figure 4 a), is for coordinating global
MUC transactions, where a subtransaction Ti is submitted to an execution node
only when 1) it has not executed(Si=‘I’); 2) corresponding event occurs; and 3) its
context Ci is qualified. By qualified context, we denote that current context of
a transaction Ti satisfies the requirements of Ti’s execution.

A global MUC transaction T is executed until its state achieves one of accept-
able final states or any subtransaction state Si (1 ≤ i ≤ n) is not ‘I’. The order
of execution of subtransactions depends on transaction dependency D. The state
of each subtransaction is set according to its execution result. Finally, if one of
acceptable final states has been achieved, the algorithm confirms all submitted sub-
transactions. On the other hand, if the algorithm can not achieve any acceptable
final state, it requires subtransactions submitted previously to execute their com-
pensating transactions. Note that the algorithm can dispatch each subtransaction to
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Global transaction management
{ TS={I,I,. . . ,I};

repeat
select subtransaction Ti based on D;
if (event occurs) {

check current context Ci;
num=0;
while (num<RetryNum)

if (qualified context) {
send Ti to corresponding node;
Si=‘E’;
wait incoming messages;
if (message is Successful)

Si=‘S’;
else if (message is Failed)

Si=‘F’; }
num++;

endWhile }
until ((TS∈FS) or (any Si 6= ‘I’))
if (TS∈FS)

confirm submitted subtransactions;
else

compensate submitted subtransactions;}
(a) Coordination algorithm in a request node

Subtransaction(Ti) execution
{ suc:=true;

repeat
execute application operations;
if (fail to execute current operation)

suc:=false;
until ((all operations finish) or (not suc))
if (suc)
{

send Successful message to requester;
wait incoming message;
if (receive Confirm message)

report execution results to requester;
else if (receive Cancel message)
{

execute Ti’s compensating transaction;
send Cancelled message;

}
} else {

rollback to previous state;
send Failed message;

}
}
(b) Coordination algorithm in execution nodes

Fig. 4. Context-driven coordination algorithm for MUC transactions

specified mobile nodes for at most RetryNum times in terms of current transaction
context.

Subtransaction(Ti) execution, depicted in Figure 4 b), actually executes individ-
ual subtransactions, under the control of the Coordinator. If a subtransaction is
successfully executed, it will be confirmed or compensated in terms of the message
from the Coordinator. Otherwise, if failed, it automatically rollbacks to previous
system state. To achieve people-oriented MUC, it is also very important to auto-
matically generate compensating transactions. We have proposed some basic ideas
in [8].

6 EXPERIMENTS AND EVALUATION

We have implemented a prototype system to test the feasibility of our MUC trans-
action processing architecture and the effectiveness of our context-aware transaction
model and context-driven coordination algorithm.

6.1 Experiment Environment

In our system, there were totally 100 self-organized mobile nodes. Each node acted
as a request node as well as an execution node. The features of mobility are si-
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mulated by changing link states. Let wireless links among nodes disconnect in the
probability DisconnectProb. In addition, we modeled system load in the number of
concurrent MUC transactions (simplified NumMobiTran). These MUC transactions
were randomly initiated and concurrently executed in the system. Each of them
consisted of two subtransactions. Our current experiments concentrated on how to
adapt to changing network connectivity and bandwidth.

We tested and compared two kinds of transactions: context-aware transaction
(CATran) and non-context-aware transaction (NonCATran). For CATran transac-
tions, if context of a subtransaction Ti is unqualified, the transaction manager in
a request node resends Ti to other nodes for at most RetryNum (RetryNum > 1)
times. On the other hand, NonCATran transaction fails if at least one link among
a request node and execution nodes is unqualified. In experiments, we set
RetryNum = 3.

6.2 Results and Evaluation

Highly mobility and frequent network disconnection significantly decrease the prob-
ability of successful transaction commits so that successful ratio (SucRatio) of MUC
transactions is one of important performance metrics. Therefore, we evaluate MUC
transactions in SucRatio which means the ratio of the number of successfully sub-
mitted transactions to the number of totally initiated transactions within a given
period.

6.2.1 System Load

In this experiment, we varied the number of concurrent MUC transactions from 100
to 500, where link disconnection probability is fixed such that DisconnectProb = 0.1.
The performance results obtained for the two kinds of transactions CATran and Non-
CATran are shown in Figure 5. From this figure, we can see that the SucRatio of
the system degrades for both strategies as the transaction load increases, and for all
ranges of the transaction load CATran performs better than NonCATran. This is
because CATran may redispatch a transaction for at most RetryNun times if previ-
ous requests failed while NonCATran sends a transaction request only once. It can
be expected that the more RetryNum, the higher SucRatio of CATran transactions.

The reason for the decrease in the SucRatio with both execution strategies is
that more load on the physical resources caused more heavy data conflicts.

6.2.2 Link State

When a link disconnects or has not enough bandwidth, nodes connected with the link
can no longer initiate transaction requests or report execution results. Therefore, for
both CATran and NonCATran transactions, link states have significant impact on
the SucRatio. In this experiment, we measured the transaction SucRatio by varying
the DisconnectProb from 0.1 to 0.7 in increments of 0.1. The performance results
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are shown in Figure 6, where the number of concurrent MUC transactions in system
was fixed such that NumMobiTran = 50.

As we can see, as the value of link disconnection probability increases, the per-
formance of the system becomes worse with both execution strategies CATran and
NonCATran. The reason is that with the increment of failure probability of wireless
links, more subtransactions can not be sent to targeted nodes. However, the rela-
tive performance of CATran and NonCATran is not affected by the probability of
wireless link failure because CATran transactions tried to resend subtransactions to
other nodes more times than that in NonCATran transactions.

7 CONCLUSIONS AND FUTURE WORK

We have proposed a new network architecture for MUC transaction processing,
presented a context-aware transaction model and designed a context-driven coordi-
nation algorithm. The proposed network architecture breakthroughs the structural
limitation of traditional mobile transaction models, allowing people to access ubiq-
uitous services anytime anywhere by self-organized wireless networks. Our context-
aware transaction model and context-driven coordination algorithm can adapt to
dynamical transaction context, significantly improving the successful ratio of MUC
transactions.

We are going to investigate light-weight mechanisms to automatically generate
compensating transactions for MUC environments. Further, we also consider to
design efficient protocols for non-compensable MUC transactions.
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