
Computing and Informatics, Vol. 27, 2008, 853–873

A NEW MECHANISM FOR TRACKING A MOBILE
TARGET USING GRID SENSOR NETWORKS

Ahmed M. Khedr

Mathematics Department, Faculty of Science

Zagazig University, Egypt

e-mail: amkhedr@zu.edu.eg

Manuscript received 9 May 2006; revised 2 July 2008
Communicated by Ladislav Hluchý

Abstract. Tracking moving targets is one of the important problems of wireless
sensor networks. We have considered a sensor network where numerous sensor nodes
are spread in a grid like manner. These sensor nodes are capable of storing data
and thus act as a separate datasets. The entire network of these sensors act as
a set of distributed datasets. Each of these datasets has its local temporal dataset
along with spatial data and the geographical coordinates of a given object or target.
In this paper an algorithm is introduced that mines global temporal patterns from
these datasets and results in the discovery of linear or nonlinear trajectories of mov-
ing objects under supervision. The main objective here is to perform in-network
aggregation between the data contained in the various datasets to discover global
spatio-temporal patterns; the main constraint is that there should be minimal com-
munication among the participating nodes. We present the algorithm and analyze
it in terms of the communication costs.

Keywords: Target tracking, sensor networks, in-network aggregation, spatio-tem-
poral mining

Mathematics Subject Classification 2000: MS2000 68T05

1 INTRODUCTION

A sensor network consists of a set of sensors, deployed in hundreds to thousands over
a region, that is capable to gather acoustic, magnetic, spatial, or seismic data and



854 A.M. Khedr

performing distributed computations over the gathered data by individual sensors
to make meaningful inferences and then send the data to end user or base station.
Sensor networks promise novel applications in several domains, for example forest
fire detection, battlefield surveillance, or monitoring of human physiological. One
of the main challenges raised by sensor networks is the fact that they are usually
power constrained, since sensing nodes typically exhibit limited capabilities in terms
of processing, communication, and especially power. Thus, energy conservation is of
prime consideration in sensor network algorithms in order to maximize the network’s
operational lifetime.

In this paper, we assume that stand alone sensors are spread in a grid like manner
in a region to be supervised. They are capable of sensing predefined parameters such
as temperature, motion and geographical coordinates of objects in their vicinity
and it is of interest to determine global patterns in a geographically distributed
collections of sensors. Both the sensing range and the distance from the neighbors
are customizable attributes. The sensors are capable of running self-decomposable
algorithms that extract useful information from the data stored in the sensors.

We first characterize a particular type of tracking problem in region populated
by sensor nodes that have limited wireless communication capabilities. We intro-
duce a new distributed mechanism to perform data mining on the data stored in
sensor nodes to extract useful information then a further round of exchange of mes-
sages is done to discover global spatio-temporal patterns from these sensors which
represent the track of the moving target. our mechanism can be readily extended
for multitargets as we discuss in the end of this work.

Traditional data mining depends on centralized data in that the central site
obtains and processes the compressed information from all the sensors. Each sen-
sor could report a time stamp and other measurable values, without the need for
detailed measurements. The central site receives such information from all sensors
and analyzes it to arrive at useful information. But, in such a case, bandwidth
limitations make it virtually impossible to accumulate all sensor data at a central
location for processing. Exchange of information between nodes and the central
processing node would result in a very high communication cost of the network.
Since communication cost is a major constraint, it is not practical to transfer and
integrate large amounts of data to a single site before carrying out an analysis. This
only results in very high overall complexity of the system. In most of the sensors,
the local computations cost is very low when compared to the communication cost
between sensors. A lot of local processing capabilities is present in each of the sensor
nodes. Hence we need to develop algorithms which would minimize the exchange
of messages between sensors and maximize the computations at the local site. The
main aim of the algorithm would be to minimize the use of the available bandwidth
and to maximize the use of the local processing sensor node site. Thus, instead
of centrally processing all data, algorithms need to be designed to summarize and
aggregate data while they are in the network.

Our algorithm development based on the analysis of location-time points for
patterns in sensor network, one of the interesting applications of our algorithm is



A New Mechanism For Tracking a Mobile Target Using Grid Sensor Networks 855

mining the trajectories of animals in a farming area, to determine migration patterns
of certain groups of animals. The topographically addressed sensor nodes are similar
to the way we have dealt with the placement of nodes in our work [11, 12].

The rest of the paper is organized as follows: In the next section, we discuss the
related work. In Section 3, we give an introduction to the basic concepts. A step by
step outline of our algorithm is described in Section 4. We describe the trajectory
of tracking in Section 5. Section 6 analyzes the complexity of our algorithm. In
Section 7, we present our simulation results. We conclude our work in Section 8.

2 RELATED RESEARCH

Surveillance and monitoring applications using sensor networks have attracted con-
siderable attention in the research community during the past few years. These kinds
of applications form a canonical class of applications which can be constructed with
sensor networks. The work presented in this paper is based on and inspired by
various other research efforts. In the context of this paper, the prior work can be
primarily classified into two categories. One relates to the different ways of con-
structing aggregation routing structures and the other relates to computing various
global quantities using aggregation.

Target tracking with sensor networks was extensively studied by researchers
from various areas. Different approaches were suggested using signal processing
techniques, and aggregation techniques. The work presented in [5] uses collabora-
tive signal processing of wideband acoustic and seismic signals for source localization
and beamforming in an energy-constrained sensor network. In [13], the authors dis-
cuss similar collaborative signal processing techniques to detect, classify and track
multiple targets. The authors assume that multiple target detection at each sensor
is separated either in space or time, i.e. two targets are either separated by some
distance or appear in two different time durations. In [2], the authors proposed
a collaborative computation approach where they count the number of targets in
a sensing terrain. They equate the computation of the number of targets to the
computation of leader nodes in the network with maximum signal strength. They
aggregate this information to get a final report of the total count. The work de-
scribed in [6, 14, 18, 20, 21, 22] provides similar distributed collaborative algorithms
for target localization, classification and tracking. The work presented in this paper
is similar to the goals addressed in these papers, but the approach suggested is at
the application level involving collaborative computation rather than at the signal
processing level.

In the context of information dissemination and data fusion in sensor networks,
in-network aggregation has attracted considerable attention due to the data-centric
nature of computations in sensor networks. In [10], the authors presented a novel
approach called Directed Diffusion which addressed the data dissemination and ag-
gregation tree building in sensor networks. This novel protocol addressed the data-
centric dissemination, reinforcement based adaptation to empirically best path and



856 A.M. Khedr

in-network data aggregation and caching. The work in [3] discussed the impact of
data aggregation on computation in sensor networks. The authors clearly discussed
the advantages of using data centric approach in sensor networks as opposed to
address centric approach used in traditional networks. The authors also examined
the impact of source-destination placement and communication network density on
the energy costs and delay associated with data aggregation. In [17], Madden et al.
presented a TAG (Tiny Aggregation) approach for aggregation in low power, wire-
less sensor network environments. TAG allows users to express simple, distributed
queries and have them efficiently executed in sensor network using in-network ag-
gregation. The authors also discuss the properties of aggregates and show how these
properties affect the performance of in-network aggregation. The papers [8, 16, 25]
give details on in-network aggregation, aggregate representation and computation
mechanisms using aggregation trees. The work presented in this paper is closest
to the work described in the above papers, but differs from them in that a tem-
poral attribute of data is involved in our work. In contrast to this the main aim
of our paper is to determine global patterns in the network by using in-network
aggregation.

In [24], a clustering based approach is proposed in which sensor nodes perform
sense-predict-communicate-sense tasks as required by the cluster heads. In another
approach [7], sensors detect the presence of a target for a threshold value. Nodes
broadcast an alert message when this threshold value is reached and three similar
messages have been received from their neighbor nodes. A trajectory of moving
target is estimated as nodes alert their neighbor nodes while broadcasting these
messages. In [15], the authors presented a grid based approach to address the
problem of continuous delivery of data from the source to the mobile sinks.

In [19], Kirill et al. presented a two-level cooperative tracking algorithm using
binary-detection sensors to track the object with more precision and accuracy. In
the first level phase, the local target position estimation is computed. Initially, the
target is estimated to equal to the position of the sensor node. As more information
from the other sensor nodes is available, the position estimate is recomputed as
a weighted average of the sensor locations. Sensor nodes that lie closer to the
path of the target receive more weight. These estimations are then aggregated to
compute the path of the object, which produces a more precise estimate for the
target location. In the second level, a piecewise linear approximation of the path
is computed using a line-fitting algorithm on the positions obtained in the first
level.

Knowledge discovery and data mining are emerging fields, whose goals are to
make sense out of large amounts of data collected, by discovering hitherto unknown
patterns. Many interesting and efficient data mining algorithms have been proposed
for example [1, 23]. There hasn’t been a lot of work in the area of mining temporal
concepts. Most of the existing work is based on time series analysis of temporal
sequences, [4] discusses some of the challenges posed by the temporal data. In this
paper, we discuss an algorithm which discovers temporal patterns among distributed
datasets.



A New Mechanism For Tracking a Mobile Target Using Grid Sensor Networks 857

3 PROBLEM FORMULATION TERMS

We consider sensor nodes that spread in grid across a geographical area and colla-
borate among themselves to establish a grid sensor network. Our development is in
the context of temporal data being recorded by a number of sensors. We outline
some of the terms used in the development of our algorithm. The dataset used in
our algorithm consists of x and y coordinates of the points at which the light event
is sensed, along with the timestamp [9]. We refer to the term point to a combined
set of information about moving object which includes x, y coordinates and the
timestamp. Each sensor may have a number of such data points recorded in its
local memory.

3.1 Local Hypothesis

A Local Hypothesis (LH) is a set of three or more points, satisfying the following
criteria:

1. Taking sets of three points or more, they should lie on the same line in the same
direction;

2. The points in the LH should be in ascending timestamp manner.

The angle between two points p1 and p2 can be computed by the following equation:

Angle(p1, p2) = arctan[(Ycord(p2)− Ycord(p1))/(Xcord(p2)− Xcord(p1))]. (1)

Figure 1 shows that the points p1, p2, p3, and p4 make a local hypothesis as indicated
by a rectangular box. LH is considered as a straight line starting at the first point
(FP ), and ending with the last point (LP ) with a specific angle. For that, we
consider the structure of LH as (FP , LP , angle).

3.2 Global Hypothesis

A Global Hypothesis (GH) is formed when different LHs are merged in ascending
manner according to their timestamps. We keep track of GH direction by updat-
ing the PointChangeList which includes the points at which the GH changes its
direction. The GH starts at the first point of the first attached LH and ends at
the last point of the last attached LH. We define the GH structure as (Start Point
(SP ), 〈PointChangeList〉, End Point (EP )). We define the length of GH to be the
number of LHs considered during forming GH. In Figure 1, the solid black line is
the GH, and the small boxes represent the PointChangeList.

4 ALGORITHM OUTLINE

There are two stages of our algorithm; the first stage will be executed at every
sensor node in the system to generate the LHs (Local Computation), while the



858 A.M. Khedr

Fig. 1. Example of LHs and GH

second stage will be executed at the temporary central nodes to generate the global
hypothesis component GHc (Global Computation). The main goal of this algorithm
is to maximize the local processing of data at the local sensor nodes and to minimize
exchange of information, which produces meaningful results, between the nodes.

Algorithm Assumptions
The assumptions about our sensor network are as follows:

1. All sensors have the same characteristics;

2. All sensors have the capability to capture the information of any moving object in
their sensing range. The information includes the approximate x, y coordinates,
and the timestamp.

No specific assumptions are made about the movement pattern of the target. How-
ever, we assume that the targets originate outside the sensing region and then move
inside. Also, the aggregated data are reported to the end user. The outline of the
whole mechanism is as follows.

4.1 Step 1: Local Computations

Every sensor node that has recorded points will execute the following steps to gene-
rate LHs:



A New Mechanism For Tracking a Mobile Target Using Grid Sensor Networks 859

• Initially, each node arranges the recorded points in ascending manner according
to their timestamps.

• Compute the angles between the first and the second points, and between the
second and the third points.

• If the computed angles are not equal, we skip the first point of the three points,
and start from the second one; otherwise the LH is established by setting up
the first point as the FP , the third point as the LP and LH angle will be the
angle between the second and the third point.

• For further points may be added to the current LH, we take the next point pj
and determine its angle with the last added point to the current LH. If (pj−1,
pj) angle equals to the LH angle, we update LH.LP to pj, otherwise we create
a new LH starting from pj .

The following is the Local Computation Pseudocode:

1. sort your data in ascending order according to their timestamps

2. let i = 1

3. while (i < N), where N is the number of points in the database

4. compute the angles between pi, pi+1, and pi+1, pi+2

5. if the angles between the three points are the same

6. establish LH by setting up the first point as FP and the third point as
LP of the LH

7. for every next point pj (j = i+ 3 to N)

8. compute the angle between pj and last added point to the current LH
(pj−1)

9. if the computed angle equals to the previous one in step 4

10. add the point pj to the current LH and update LP to pj

11. else start creating a new LH by setting i = j and go to step (3)

12. end for

13. else i = i+ 1 and go to step (3)

14. end while

15. End Procedure.

4.2 Step 2: Global Computations

Every node in the system is associated with an index number which indicates the
position of the node. If the index number is 1, then it denotes the node at the bottom
left corner. Index 2 refers to its adjacent node on the right and the numbering of
the index goes on in this way.



860 A.M. Khedr

1. The list of LHs which is sent by the neighboring nodes is collected by the
temporary central node and is added in one data structure which exists in the
temporary central node. In this way, we can gather the details of the LHs of all
the neighbors in the system.

2. Once the list of the LHs is collected, we go through them and merge them
with the list of LHs of the temporary central node to form Global Hypothesis
components for the temporary central node. The conditions which we check
while merging these entries are whether the LHs of the different nodes lie in the
same direction or not and whether the time stamps of the LHs in the nodes are
in ascending order or not. The main criterion while forming the GHcs is that
the temporary central node should be a part of this GHc.

4.2.1 Global Hypotheses at Zero Iteration

After the list of LHs is formed at each node in the system, every node will send its
LHs to its neighbors, and then the node is ready to perform computations on the
received lists of LHs to form the Global Hypothesis components, by executing the
following steps:

• Store the received LHs in your data structure and arrange them in ascending
manner according to their timestamps.

• The components of global hypotheses (GHcs) can be created as follows:

– if the object moves in one direction, all LHs are set into one GHc,

– different GHcs will be created if the object changes its direction during the
moving.

The following is the Pseudocode of creating Global Hypothesis components:

1. send your LHs to your neighbors

2. wait to receive the set of LHis from your neighbors

3. add the received LHs to your DSi

4. sort all LHs in DSi according to their timestamps in ascending manner

5. set j = 1, where j is the current number of GHc

6. set GHc(j).SP=LH1.FP , GHc(j).angle = LH1.angle, Angle1 = GHc(j).angle

7. for every next LHk in the arranged LHs of DSi

a) set Angle2 = LHk.angle

b) if (Angle1 = Angle2)

i. add LHk to GHc(j), and set GHc(j).EP= LHk.LP

c) else

i. j = j + 1,



A New Mechanism For Tracking a Mobile Target Using Grid Sensor Networks 861

ii. set Angle1 = Angle2, GHc(j).SP = LHk.FP , and
iii. GHc(j).EP =LHk.LP , and GHc(j).angle = LHk.angle

8. end for

9. End Global Hypotheses at Zero Iteration.

After executing zero iteration, we have two options: The first one is to compute
the entire global summarized pattern for all the nodes in the system, or to compute
the entire global summarized pattern for a predefined node only.

4.2.2 First Approach: Computing Global Hypothesis at All Nodes

In this approach, we compute the consolidated global hypothesis at every node Ni in
the system from the set of global hypothesis components. The GHcs for every node
is merged with the GHcs obtained from the neighbors to obtain the consolidated
GH. This can be done by doing the following steps:

1. First the number of iterations to be performed is determined by the user, where
as the number of iterations increased more actual patterns have been discovered.

2. Store all the GHcs of the input list into your data structure; then arrange the
components according to their timestamps in ascending manner.

3. Merge your GHcs with the GHcs of your neighbors by calling MergeGHCs
procedure.

4. Create the globalGH structure by setting the start point as the start point of the
first GHc, the end point as the end point of the last attached GHc component,
and the PointChangeList will be returned from MergeGHCs.

The following is the Pseudocode of creating Computing global hypotheses at all
nodes:

1. for (number of iterations required)

a) send your GHcs to your neighbors

b) wait to receive GHcs from your neighbors

c) add all the GHcs from the input list into your DSi

d) sort the GHcs in ascending manner according to their timestamps

e) call MergeGHCs(GHcs of DSi) // merge the successive GHcs that have the
same angle and keep the results in DSi

f) Start-Point-of(GH)= GHc(1).SP

g) End-Point-of(GH)= the end point of last attached GHc

2. end for

3. End Entire Global Computations for all the Nodes



862 A.M. Khedr

Merging Global Hypotheses Components
The GHcs merging procedure works as follows: assign the start point, the angle, the
end point of first component in your data structure to the start point, the angle, the
end point of new GHc(j), respectively. If the angle of the current GH component
(GHc(i+1)) is equal to the angle of the previous GH component (GHc(i+1)), we merge
GHc(i+1) to the GHc(i); otherwise, we initiate a new GHj+1 with the start point, the
angle, and the end point to the start point, the angle, and the end point of the
GHc(i+1). In this case, the start point and the angle of the new GHj+1 will be added
to the PointChangeList.

Procedure MergeGHCs(GHcs of DSi)

1. set PointChangeList = Φ

2. set i = 1, j = 1, where i is the current number of GHc in DSi and j is the
current number of new GHc

3. set GHc(j).angle = GHc(i).angle, and

4. GHc(j).SP = GHc(i).SP , GHc(j).EP= GHc(i).EP

5. Angle1 = GHc(i).angle

6. for every next GHc (GHc(i+1)) in DSi)

a) Angle2 = GHc(i+1).angle

b) if (Angle1 = Angle2)

• GHc(j).EP = GHc(i+1).EP

c) else

• j = j + 1
• set Angle1 = Angle2
• GHc(j).angle = GHc(i+1).angle
• GHc(j).SP = GHc(i+1).SP , GHc(j).EP = GHc(i+1).EP
• add the point (GHc(j).SP , GHc(j).angle) to the PointChangeList

d) end if

7. end for

8. return (PointChangeList)

9. End MergeGHCs procedure.

4.2.3 Second Approach: Computing Global Hypothesis at a Target Node

Because of the high complexity of the first variant where we determine theGH for all
the nodes in the system, we modify our requirements such that the global hypotheses
for only a single node is required. First we introduce the following concepts:

Target Node is a predefined node in the system and it could be chosen as any
node in the system, but as a results of our simulations, it is advantageous to select



A New Mechanism For Tracking a Mobile Target Using Grid Sensor Networks 863

the target node to be the middle node of the grid and that to reduce the number of
exchanged messages.

Levels (Gradient) is defined as the distance of each sensor node in the system
to the target node.

Gradient(Sensor Node) = Distance between(Target node, Sensor Node) (2)

This distance is calculated as the city block distance between the two nodes. We
calculate the distance of all the nodes form the target node in terms of units. Once
the gradient for all the nodes is calculated, we divide the nodes into levels. The level
of the target node is set to zero and that of its neighboring nodes is set to one, where
the number of levels increases by increasing the distance from the target node. The
main idea behind assigning levels to the entire system of the sensor nodes is that
communication between the nodes can be only in one way. This means that nodes
at higher level only can send messages to those at lower level and the nodes at lower
level are not allowed to send messages to the nodes at higher level. In this way, we
save a lot on communication cost.

We introduce the second approach of global hypotheis as two procedures, the
first procedure will be executed at the non target nodes and the second one will be
executed at the target node.

GH Computation Procedure for Non Target Node

1. compute your distance from target node based on coordinates of the node

2. assign your level based on computed distance

3. wait to receive list of GHcs from neighboring nodes at higher level

4. sort the GHcs in ascending manner according to their timestamps

5. call MergeGHCs(GHcs of DSi)

6. send the current GH so far to neighboring node at the lower level.

In lines 1 and 2, we compute the distance between the target node and the other
nodes in the system and assign the levels to all the nodes in the system based on
its distance from the target node. The steps of exchanging of messages to form the
summarized global pattern come after we assign the level for all the nodes. In lines 3,
4, and 5 each node at the lower level receives the current GHcs from its neighboring
nodes at the higher level, sorts the received GHcs, and then merges the successive
GHcs that have the same angle by calling MergeGHCs and keep the results in DSi.
In line 6 each node checks all its neighbor levels, if they are at a lower level; simply
each node at the current level sends its merged GHcs to its neighbors at lower level,
the PointChangeList will be returned from MergeGHCs.

GH Computation Procedure at the Target Node

1. assign zero as your level



864 A.M. Khedr

2. wait to receive list of GHcs from neighboring nodes at higher level

3. sort the GHcs in ascending manner according to their timestamps

4. call MergeGHCs(GHcs of DSi)

5. set start-Point-of(GH) = GHc(1).SP , End-Point-of(GH) = the EP of last GHc.

In line 1, we assign zero level for target node. In lines 2, 3 and 4, nodes
at the higher level send their GHcs to the target node which sorts the received
GHcs, and then combine the successive GHcs that have the same angle by applying
MergeGHCs procedure. In line 5, the global GH start point will be the start point
of the first GHc, the end point will be the end point of the last GHc component, and
the PointChangeList will be the start point and the angle of each GH component
in DSi. The current GH will be the consolidated GH and the desired output.

4.2.4 The Two Variants Comparison

• The first variant computes the GHs of all the nodes in the system whereas the
second variant will compute the GH for the target node only.

• In the first variant, there is no concept of a level whereas in the second variant,
we use concept of levels extensively to obtain the end results.

• For the second variant, there is an initial step of computing the levels for each
of the sensor nodes before the in-network aggregation can start. For the first
variant, there is no such initial step.

• In the first variant, the information flow or message flow is in all possible direc-
tions whereas in the second variant, the information flow is from the outer level
of the system towards the inner level (or towards the target node).

• The first variant requires more than one iteration to aggregate the data (or
LHs) from the different sensor nodes to form the final result (GHs); the second
variant requires only one iteration to perform the in-network aggregation and
to get the final result. If the number of iterations is restricted, it is possible
that the length of the GHs for the nodes in the system for the first variant is
less than that would be final length of the GHs whereas in the second variant,
the constraint on the number of iterations does not affect the length of the final
GH.

• In the second variant, the nodes at the edge of the system do not form GHs of
length more than three. In a similar way, we can say that the nodes just below
those at the edge do not form GHs of length more than four; but in the first
variant, any node in the system can form a GH of any length greater than or
equal to three.

• In the first variant, the length of the GH increases by either one or two with
every iteration depending on the placement of the node. In the second variant,
this is not applicable as the final length is formed for the GHs for all the possible
nodes at the end of the first iteration itself.



A New Mechanism For Tracking a Mobile Target Using Grid Sensor Networks 865

• The complexity of the first variant is much higher than that of the second variant;
but the amount of information available in the first variant is also much higher
than with the second variant.

• In the first variant, processing of the GHs for all the nodes is done in a pa-
rallel manner; the nodes compute the GHs independent of the other nodes.
In the second variant, the processing of the GHs for the target node is done
in a sequential manner. The processing of the GHs is first done for the nodes
at a higher level and then is shifted to the nodes at the lower level.

5 TRAJECTORY DESCRIPTION

The end user will have the summarized GH as a set of points (〈x, y, time〉 in
3-dimensional location-time) and the objective is to represent the trajectory of the
moving object at the end user. A trajectory can be represented by a sequence of
connected segments each of which joins two consecutive reported points, i.e. the start
point of the reported summarized GH is connected by line segment to the first point
in the PointChangeList and the first point in the PointChangeList is connected by
line segment to the next point till the last point in the PointChangeList which is
connected with the end point of the reported summarized GH. To produce these
segments, one way is to use the interpolation schemes (Line Based Models). These
schemes create trajectories that have angles at reported locations which do not
represent well the smooth trajectories of moving objects. The second representation
is the curve based trajectory representation model using Catmull-Rom spline which
provides much more accurate trajectories than line-based models when we have the
same amount of data. One of the features of using Catmull-Rom spline is that the
specified curve will pass through all of the control points.

In curve based trajectory representation model, we represent the trajectory by
a sequence of curve segments, rather than of line segments, each of which connects
two consecutive points, where most natural moving objects, such as airplanes, ves-
sels, and vehicles, draw a smooth trajectory with no angles. The parametric form
of a third-order polynomial to obtain a spline is given by the following equation

P (t) = a0 + a1t+ a2t
2 + a3t

3, (3)

where a0, a1, a2 and a3 are constant coefficients. These coefficients are determined
from several equations that reflect the properties of the cubic spline. To calculate
a point on Catmull-Rom spline curve, two points on either side of the desired point
are required. The point is specified by a value t that signifies the portion of the
distance between the two nearest control points.

6 ANALYSIS AND COMPLEXITY COMPUTING

Since the effective lifetime of each sensor node is determined by its power supply,
and since transmitting a single bit of data by sensor node is equivalent to the execu-



866 A.M. Khedr

tion of 800 instructions at a sensor node (i.e. a lot of energy is required to transmit
a single message). For these reasons the most preferable system is that which re-
quires minimum number of messages to be exchanged between the nodes as much
as possible to preserve the amount of bandwidth and maximize the sensor node life-
time. Hence the main way to evaluate our system complexity will be in terms of the
number of messages exchanged between the nodes in the system. We consider the
two variants of our algorithm; however, for both these variants, the initial two steps
(computing of the local hypotheses and the global hypotheses at zero iteration) are
common.

1. Local Computation Cost Each node in the system analyzes the collected
data to extract the local patterns, since the extraction of the local patterns or
forming the LHs occurs locally, therefore there is no communication cost.

2. Global Computation Cost

a) Computation Complexity of GHcs at zero Iteration For computing
the GHcs at zero Iteration, each node gets the list of LHs from all of its
neighbors, according to the placement of the node in the system the number
of neighbors for any node ranges from three to eight. A node at the corner
has three neighbors whereas a node anywhere on the edge has five neighbors,
and a node anywhere else has eight neighbors. If we consider n × n system
in which we have n2 nodes, the total number of neighbors for all nodes in the
system will be: 3×4+5×4(n−2)+8× (n−2)2 = 8n2−12n+4. Therefore,
the number of required messages for this step will be 8n2 − 12n+ 4.

b) Computation Complexity of entire GHs

• Computation Complexity of entire GHs for all Nodes In this
step, we compute the entire GH for all the nodes in the system. Here
again, the messages will be exchanged between nodes and all of their
neighboring nodes, but the difference here is that these messages are to
form a combined GH. So the number of messages needed for this would
be the same as before, namely 8n2− 12n+4. After every iteration a new
GH component will be added to GH or the length of GH component
increases by either one or more depending on their location in the system
and every node replaces its existing GH with the new GH which was
formed during that iteration. Therefore the total number of exchanged
messages will be:

Exchanged Messages = (k + 1)(8n2 − 12n+ 4), (4)

where k is the number of iterations k = n/2− 1, this occurs for all nodes
in and around the center of the system, where every node has neighboring
node on both sides. k = n− 1, this occurs for the nodes on the edge and
at the corner of the system, where they have neighboring node on only
one side to contribute to the growth of their GHs during every iteration;
the length of their GH increases by only one.



A New Mechanism For Tracking a Mobile Target Using Grid Sensor Networks 867

• Computation Complexity of GH for Target Node only In this
case the user specifies a predefined target node from among the nodes in
the system. The GH are then computed for this node only. The first step
in this case is that the target node informs all the nodes in the system
about itself being the target node. This requires 8n2 − 12n+ 4 messages
in the worst case, which is the total number of neighbors for all the nodes
in the system.
The next step is the forming of the levels in the system based on the
gradient of each node, starting from level zero or the target node, levels
are assigning to all the nodes in the system in sequential manner. The
number of messages required is 8n2 − 12n+ 4.
Once all the levels are assigned, messages start getting exchanged from
nodes in the outer level to those in the inner level. If we assume the
average number of levels to be assigned is L, average number of nodes
in each level is n0, and the average number of neighboring nodes in the
lower level for any node in the higher level is ni then the total num-
ber of exchanged messages is L × n0 × ni. Therefore the total number
of messages required to compute the GH for the target node only will
be

Exchanged Messages = 2(8n2 + 12n+ 4) + L× n0 × ni. (5)

From equations 4, and 5 we can conclude that the complexity of com-
puting the consolidate GH is reduced from O(n3) to O(n2) in the case of
second approach.

7 SIMULATION RESULTS

The algorithms were programmed and tested by Java language. In the initial tests,
25, 36, 49, 64, 81, and 100 nodes were placed in a grid like manner ((5 × 5), to
(10 × 10)). We choose the following issues to generate results to compare the two
variants:

• the total number of nodes in the system,

• the total number of iterations (this will be applicable to first approach only),

• the location of the target node in the system (this will be applicable to second
approach only), and

• the total number of exchanged messages.

Here we present the results of the tests we had run for both variants of our algorithm.

• The total number of nodes in system: In the first approach, the number of
messages exchanged between nodes in the system increases with increasing grid
size. The increase in size of the grid from 5× 5 to 10× 10 implies increasing the
number of messages by almost 66%.



868 A.M. Khedr

In the second approach, we fixed the target node and varied the size of the grid
from 5× 5 to 10× 10; this implies increasing the number of messages by almost
50%.

• The location of target node in the system: We compare the number of
messages exchanged with different positioning of the target node in the system.
We assumed that the size of the grid is 10× 10 with the total number of nodes
in the system to be 100. We vary the position of the target node from the center
of the grid to the edge of the grid and to the corner of the grid. The number
of levels formed is lesser when the target node is placed at the center than at
the edges or at the corner. We found that the number of messages increases
with the number of levels in the system. Hence the complexity or the number of
messages increases when the target node is placed at the edge or at the corner
of the system.

Figure 2 shows comparison between the numbers of messages exchanged and
the location of the target node. As expected the number of messages when the
target node is at center is less than the number of messages when the target
node is at the edge or the corner.

Fig. 2. The number of exchanged messages versus the target node location

• The total number of iterations: We found that we require more than one
iteration to obtain the entire list of summarized GHs. In our implementation
we did vary the number of iterations from one to eight, and we found that
the number of iterations required for a node on the edges or on the corner is
equal to the grid size and the nodes elsewhere require a total of (grid size/2− 1)
iterations.



A New Mechanism For Tracking a Mobile Target Using Grid Sensor Networks 869

The nodes at the corner or at the edge need about double the number of itera-
tions to build their entire GH when compared to the other nodes in the system,
see Figure 3.

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of Iterations 

N
u

m
b

er
 o

f 
M

es
sa

g
es

 

Number of Messages

Fig. 3. Exchanged messages versus the number of Iterations – for a node not on
edges/corner

• The total number of exchanged messages: We found that using the second
variant the number of messages is reduced. If we use 10 × 10 system of sensor
nodes:

1. We require 684 exchanged messages to form the GHcs at each node in the
system.

2. For the first variant, we require 6165 exchanged messages for all the nodes
in the system to form the global entire summarized pattern.

3. For the second variant, we require only 1 611 exchanged messages to form
the global entire summarized pattern at target node.

Therefore it is clear that there is significant amount of saving in messages between
the two variants, see Figure 4.



870 A.M. Khedr

20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

Number of Nodes

N
u

m
b

er
 o

f 
M

es
sa

g
es

First Approach
Second Approach

Fig. 4. Exchanged Messages in the two Variants

7.1 Multitargets Tracking

Our mechanism can be readily extended to track multitargets by assuming that
each target has a unique ID. Then according to our mechanism the problem will be
handled as follows:

1. each sensor forms the local hypothesis LH for each ID. In this case the LH
structure will be changed to LHid=(ID, FP, LP, angle)

2. Once the list of LHs of the different targets is collected at the temporary central
node, we go through them and form the global hypothesis components GHid

c s for
each target by merging its LHids that lie in the same direction and in asending
time stamps.

3. The global hypothesis GH will be formed by merging the global hypothesis
components for each target. In this case the GH structure will be changed to
(ID, SP , 〈PointChangeList〉, EP ).



A New Mechanism For Tracking a Mobile Target Using Grid Sensor Networks 871

8 CONCLUSIONS

In our work, we considered the problem of mining temporal data in distributed
datasets. We worked with sensor nodes which were capable of capturing and storing
approximate coordinate information about a moving object or a target object. These
nodes were placed in a grid and our algorithm was used to predict the nonlinear
trajectory of the moving object. We considered this equivalent to mining of global
spatiotemporal patterns from geographically distributed datasets. Since there is only
one database scanning required at the beginning, the complexity of our algorithm
is reduced. The concept of maximizing the computations at the local sites and
minimizing the exchange of messages between nodes help reduce the load on the
network. This formed the crux of our algorithm. We reduced the complexity further,
by introducing a variant of our algorithm wherein the global patterns are required
for a single node only. We defined a target node and levels in the system. Then we
went on to show that the number of exchange of messages required in the second
variant of our algorithm was much lower and that the complexity of the second
variant falls down to as low as 33% of the first variant of our algorithm. We then
did a comparison and contrast of the two variants and presented results obtained
for the various test cases for both the variants of our algorithm.

REFERENCES

[1] Agrawal, R.—Shafer, J.: Parallel Mining of Association Rules. In IEEE Trans
on Knowledge and Data Engineering, Vol. 8, 1996, No. 6, pp. 962–969.

[2] Aslam, J.—Zack, B.: Florin Constantin, Valentino Crespi, George Cybenko and
Daniela Rus: Tracking a Moving Object with a Binary Sensor Network. The First
ACM Conference on Embedded Networked Sensor Systems (Sensys 03), Los Angeles,
CA, USA, November 2003, pp. 150–161.

[3] Bhaskar, K.—Estrin, D.—Wicker, S.: The Impact of Data Aggregation in
Wireless Sensor Networks. TeInternational Workshop in Distributed Event-Based Sys-
tems, Austria, 2002, pp. 575–578.

[4] Bongki, M.—Lopez, V.—Fernando, I.—Vijaykumar, I.: Scalable Algo-
rithms for Large-Scale Temporal Aggregation. Technical Report TR 98-11, Tucson,
AZ 85721, 1998.

[5] Chen, J.—Yao, K.—Hudson, R.: Source Localization and Beamforming. IEEE
Signal Processing Magazine, March 2002.

[6] Chen, W.—Hou, J.—Sha, L.: Dynamic Clustering for Acoustic Target Tracking in
Wireless Sensor Networks. 11th IEEE International Conference on Network Protocols
(ICNP ’03), Atlanta, Georgia, USA, November 2003.

[7] Gupta, R.—Das, S. R.: Tracking Moving Targets in a Smart Sensor Networks.
Proc. of VTC Fall 2003 Symposium, October 2003.

[8] Hellerstein, J.—Hong, J.—Madden, S.—Stanek, K.: Beyond Average: To-
wards Sophisticated Sensing with Queries. 2nd International Workshop on Informa-



872 A.M. Khedr

tion Processing in Sensor Networks (IPSN ’03), Palo Alto, CA, USA, March 2003,

pp. 553–569.

[9] Heinzelman, W.—Chandrakasan, A.—Balakrishnan, H.: Energy-Efficient
Communication Protocols for Wireless Microsensor Networks. Proc. 33rd Hawaii In-
ternational Conf. on Systems Science, January 2000.

[10] Intanagonwiwat, C.—Govindan, R.—Estrin, D.: Directed Diffusion: A Scal-
able and Robust Communication Paradigm for Sensor Networks. In Proceedings of
the Sixth Annual International Conference on Mobile Computing and Networks (Mo-
biCOM2000), Boston, Massachusetts, August 2000, pp. 56–67.

[11] Khedr, A.M.—Bhatnagar, R.: A Decomposable Algorithm for Minimum Span-
ning Tree. Distributed Computing-Lecture Notes in Computer Science Springer-
Verlag Heidelberg, Volume 2918, 2004, pp. 33–44.

[12] Khedr, A.M.—Bhatnagar, R.: Agents for Integrating Distributed Data for Com-
plex computations. Computing and Informatics, Vol. 26, 2007, pp. 149–170.

[13] Li, D.—Wong, K.—Hu, Y.—Sayeed, A.: Detection, Classification, and Tracking
of Targets. In IEEE Signal Processing Magazine, Vol. 19, 2002, No. 2, pp. 17-29.

[14] Liu, J.—Jie, L.—Reich, J.—Cheung, P.—Zhao, F.: Distributed Group Mana-
gement for Track Initiation and Maintenance in Target Localization Applications.
2nd Workshop on Information Processing in Sensor Networks (IPSN ’03), Palo Alto,
California, April 2003.

[15] Luo, H.—Ye, F.—Cheng, J.—Lu, S.—Zhang, L.: TTDD: Two-Tier Data
Dissemination in Large-scale Sensor Networks. ACM 1-58113-X/02/0009, Mobi-
COM2002, Atlanta, Georgia, USA, 2002, pp. 1–13.

[16] Madden, S.—Szewczyk, R.—Franklin, M.—Culler, D.: Supporting Aggre-
gate Queries Over Ad-Hoc Wireless Sensor Networks. Workshop on Mobile Comput-
ing and Systems Applications, Callicoon, NY, USA, June 2002, pp. 49–58.

[17] Madden, S.—Franklin, M.—Hellerstein, J.—Hong, W.: TAG: A Tiny Ag-
gregation Service for Ad-Hoc Sensor Networks, Operating Systems Design and Im-
plementation (OSDI). Boston, MA, USA, December 2002.

[18] McErlean, D.—Narayanan, S.: Distributed Detection and Tracking in Sensor
Networks. Signals, Systems and Computers, 2002. Conference Record of the Thirty-
Sixth Asilomar Conference, Vol. 2, 2002, pp. 3–6.

[19] Mechitov, K.—Sundresh, S.: Cooperative Tracking with Binary-Detection Sen-
sor Networks ACM Sensys ’03, 2003.

[20] Pattem, S.—Poduri, S.—Krishnamachari, B.: Energy-Quality Tradeoffs for
Target Tracking in Wireless Sensor Networks. 2nd Workshop on Information Process-
ing in Sensor Networks (IPSN ’03), Palo Alto, California, April 2003.

[21] Ramanathan, B.: Location-Centric Approach for Collaborative Target Detection,
Classification, and Tracking. In Proceedings of IEEE CAS Workshop on Wireless
Communication and Networking, Pasadena, California. September, 2002.

[22] Shin, J.—Guibas, L.—Zhao, F.: A Distributed Algorithm for Managing Multi-
Target Identities in Wireless Ad-Hoc Sensor Networks. 2nd Workshop on Information
Processing in Sensor Networks (IPSN ’03), Palo Alto, California, April 2003.



A New Mechanism For Tracking a Mobile Target Using Grid Sensor Networks 873

[23] Srikant, R.—Quoc, Vu.—Agrawal, R.: Mining Association Rules with Item

Constraints. In Proceedings of the Third International Conference on Knowledge
Discovery and Data Mining, August 1997, pp. 67–73.

[24] Yang, H.—Sikdar, B.: A Protocol for Tracking Mobile Targets using Sensor Net-

works. Proc. of IEEE workshop on sensor Network Protocols and Applications. An-
chogare, AK, May 2003, pp. 71–81.

[25] Zhao, J.—Govindan, R.—Estrin, D.: Computing Aggregates for Monitoring

Wireless Sensor Networks. The First IEEE International Workshop on Sensor Net-
work Protocols and Applications (SNPA ’03), Anchorage, AK, USA, May 2003,
pp. 139–148.

Ahmed M. Khedr received his B. Sc. degree in mathemat-
ics in June 1989 and the M. Sc. degree in the area of optimal
control in July 1995 both from Zagazig University, Egypt. In
March 2003 he received his Ph.D. degree in computer science
from University of Cincinnati, Ohio, USA. From March 2003 to
January 2004, he was a research assistant professor at ECECS
Department University of Cincinnati, USA. From January 2004
till now he is working as faculty at the Mathematics Depart-
ment, Faculty of Science, Zagazig University, Egypt. He has
coauthored 21 works in journals and conferences relating with

optimal control, decomposable algorithms, and wireless sensor networks.


