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Abstract. The paper presents an algorithm for finding the optimal initial mesh for
the self-adaptive hp Finite Element Method (hp-FEM) calculations. We propose
the application of the hierarchical chromosome based genetic algorithm for optimal
selection of the initial mesh. The selection of the optimal initial mesh will optimize
the convergence rate of the numerical error of the solution over the sequence of
meshes generated by the self-adaptive hp-FEM. This is especially true in the case
when material data are selected as a result of some stochastic algorithm and it is not
possible to design optimal initial mesh by hand. The algorithm has been tested on
the non-stationary mass transport problem modeling phase transition phenomenon.
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1 INTRODUCTION

The paper focuses on the problem of finding optimal initial mesh for the self-adaptive
hp-FEM (hp Finite Element Method) [1, 7] calculations. Here h stands for the ele-
ment dimension, p stands for the polynomial order of approximation. The problem of
the mass transport during the simulation of the austenite-ferrite phase transforma-
tion with moving boundary interface [10] is considered. The model parameters are
provided by the Cellular Automata (CA) simulation [10]. The simulation involves
solving the non-stationary mass transfer problem on a sequence of meshes generated
by the self-adaptive hp-FEM. The solution at a current time step depends on the
solution from the previous time step as well as on the material data obtained from
CA simulation. The self-adaptive hp-FEM starts from an arbitrary initial mesh,
selected by the user. It generates a sequence of meshes delivering convergence of
the accuracy of the numerical solution with respect to the mesh size. The sequence
of meshes is obtained by performing multiple h, p or hp refinements. The h re-
finement consists in breaking selected finite element into smaller son elements, and
the p refinement consists in adjusting polynomial order of approximation on selected
element edges and interiors. The convergence rate of the solution process over a se-
quence of meshes depends on the quality of the selected initial mesh. The regular
initial mesh is often insufficient – it doesn’t provide good convergence. The best
convergence is obtained when the initial mesh fits material data. In other words,
the coefficients of the partial differential equation being solved, e.g. the diffusion
coefficient in our example, usually are non regular functions, since they result from
measurements or from execution of some stochastic algorithms. The FEM approxi-
mation is constructed over finite element mesh, and the initial approximation must
roughly capture singularities (local extremum) of material data functions, to provide
guidelines for the adaptation process.

Designing such an optimal initial mesh by hand is very difficult, and sometimes
even not possible. The problem of finding the optimal initial mesh is similar to
the shape optimization problem. It can be solved by some deterministic algorithms,
analyzing the material data properties, however genetic algorithms [2] are widely re-
spected as a proper tool for solving shape optimization problems. Thus, we propose
the application of the genetic algorithm for selection of the optimal initial mesh.
We will use the hierarchical chromosome based genetic algorithm (HCBGA). The
algorithm works on tree based data structures [1]. It allows to code artifact with
different number of components (in our case - meshes with different number of ele-
ments). The hierarchical genetic operators utilized by the genetic algorithm create
offspring that differs in size and shape from their parents. The described genetic
algorithm can solve the design problem even if the optimal number of artifact com-
ponents is not known. The paper is organized as follows. In the following section the
non-stationary mass transport driven by CA simulation is described. The results
obtained by the self-adaptive hp-FEM code for different initial meshes are presented
in the next section. Finally, the HCBGA applied for the selection of the optimal
initial mesh is presented. Some conclusions are summarized in the last section.
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2 NON-STATIONARY MASS TRANSPORT PROBLEMS

The two-dimensional self-adaptive hp-FEM code [1] generates a sequence of finite ele-
ment meshes, improving the accuracy of the numerical problem under consideration.
The two-dimensional code was extended to support non-stationary mass transport
problems [7]. The problem of mass transport during the simulation of the austenite-
ferrite phase transformation with moving boundary interface [10] is considered here.
There are many phase transition models considered in the literature, some of them
focus on the heat transport problem only [13], the mass transport only [4], or com-
bined heat and mass transport problems [14, 6]. The interface between the fluid
and solid phases can be captured by using the front tracking technique by decou-
pling solid and fluid phases and introducing some interface conditions [13, 4, 14], or
by utilizing the Cellular Automata (CA) technique [6]. In our model, the material
data, such as the heat transfer coefficients, density and specific heat are computed
on the basis of the CA simulation results [10]. This approach provides the possibi-
lity to replicate phase transformation during solidification and to take into account
the progressing movement of the crystallization front. The simulation consists in
solving the non-stationary mass transfer problems on a sequence of meshes gener-
ated by the self-adaptive hp-FEM. The considered strong form of the non-stationary
mass transport problem is as follows: Find the concentration distribution scalar field
c ∈ C2 (Ω) satisfying



















∂c
∂t

−∇ · (D∇c) = 0 on Ω× I

n · ∇c = 0 on ∂Ω× I

c(x, 0) = c0 on Ω.

(1)

The weak form of the non-stationary mass transfer problem is as follows. Find the
concentration scalar field c ∈ V , where V = {v ∈ H1(Ω) : v = 0 on ΓD}, satisfying

(ċ, v)Ω +
∫

Ω

D∇c ◦ ∇vdΩ = 0 ∀v ∈ V (2)

(c(0), v)Ω = (c0, v)Ω ∀v ∈ V. (3)

The values of the diffusion coefficient D are defined by utilizing the general formula

D = D1fs + (1− fs)D2 (4)

where fs is the fraction of the solid phase given by the cellular automata (CA) [10]
over the entire domain. Exemplary CA simulation results are presented in Fi-
gure 1 a). The CA computations are performed concurrently with respect to the
FEM computations. For the mass transfer problems, FE – discretization in time
gives the following matrix system:

Mu̇+Ku = f. (5)
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Applying the trapezoidal rule for the time discretization we obtain

(M + αδK)uk+1 = [M − (1− α)δK]uk + δfk (6)

where M is the mass matrix, δ is the time step, α ∈ [0, 1] gives different time
integration schemes.

3 RESULTS FOR DIFFERENT INITIAL MESHES

The self-adaptive hp-FEM is utilized to solve the problem at every time step. The
solution at a new time step depends on the solution from the previous time step as
well as on the material data obtained from the cellular automata (CA) simulation.
The hp-FEM generates a sequence of meshes delivering exponential convergence of
the numerical error with respect to the mesh size.

a) b)

c) d)

Fig. 1. a) Exemplary fraction of the solid phase obtained by CA simulation described
in [7]; b) c) d) Coarse, fine and optimal meshes for the first iteration. Different colors
denote different polynomial orders of approximation on element edges and interiors

The hp-FEM starts from an initial mesh. The exemplary initial mesh is pre-
sented in Figure 1 b). This mesh is called the coarse mesh. The hp-FEM executes
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global hp refinement on the initial mesh to obtain the so-called fine mesh, presented
in Figure 1 c). It is done by breaking each finite element into 4 new elements, and
increasing polynomial order of approximation by one, on all elements edges and inte-
riors. The variational problem under the consideration is solved on both the coarse
and fine meshes, to obtain the coarse uhp and the fine uh/2,p+1 mesh solutions. The
following strategy is utilized to obtain the so-called optimal mesh, presented in Fi-
gure 1 d). Various refinement strategies are considered for each finite element from
the coarse mesh. An element can be either h refined (broken in horizontal, or ver-
tical or both directions into new smaller finite elements), or p refined (polynomial
orders of approximation are updated on selected element edges or in the element
interior) or hp refined (both h and p refinements are performed at the same time).
The corresponding error decrease rate is computed for each considered strategy:

rate =
‖uh/2p+1 − uhp‖K,1 − ‖uh/2p+1 − w‖K,1

∆nrdof
(7)

where w denotes the local solution corresponding to a considered refinement strategy,
obtained by utilizing the projection based interpolation technique [1], and ∆nrdof =
nrdofw −nrdofhp denotes the number of degrees of freedom required to execute the
considered refinement. The difference between the coarse and fine mesh solutions is
measured in the energy norm (H1 Sobolev space norm) restricted over the considered
element K. For a given finite element from the coarse mesh, the refinement strategy
providing maximum error decrease rate is selected. This is because the maximum
error decrease expressed in the nominator in (7) is expected, while the minimum
investment of the new degrees of freedom expressed in the denominator of (7) is
wanted. The optimal mesh obtained by performing selected h or p or hp refinements
becomes the coarse mesh for the next iteration, and the entire process is repeated.
The stopping criterion is to obtain the required accuracy of the coarse mesh solution

‖uh/2p+1 − uhp‖Ω,1

‖uh/2p+1‖Ω,1
. (8)

Let us discuss the computational cost related to the generation of the optimal
mesh from an initial mesh. We focus on four initial meshes presented in Figure 3.
The first regular initial mesh, presented on panel a), has been created manually. The
three remaining meshes, presented on panels b), c) and d) in Figure 3, have been
obtained by executing the HCBGA algorithm. The histories of convergence of the
self-adaptive hp-FEM (mesh sizes and corresponding relative errors) over the initial
meshes from Figure 3 are presented in Figure 2. The relative error presented on
panel b) is defined according to (8) and multiplied by 100%. The resulting optimal
meshes, obtained after 10 iterations of the hp-FEM, are presented in Figure 4.

The computational cost for the whole sequence of ten meshes involves ten calls
of direct solver routine for the coarse and fine mesh problems, and ten generations
of consecutive optimal meshes. The number of degrees of freedom over a single hp

finite element with polynomial orders of approximation (p1, p2) is (p1+1)(p2+1) =
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a)

b)

Fig. 2. Mesh size and relative error for a sequence of 10 meshes generated from the initial
meshes presented in Figure 3

(p1p2+ p1+ p2+1), compare [1]. The fine mesh is obtained by performing global hp
refinement - each finite element is broken into four new elements and the polynomial
order of approximation is uniformly raised by one. The number of degrees of freedom
over four new elements is of the order of 4(p1 + 2)(p2 + 2) = 4(p1p2 + 8p1 + 8p2 +
16). Thus, the number of degrees of freedom (d. o. f.) over the refined element is
between 4 up to 10 times larger than original element size Nfine = αNcoarse, where
α ∈ [4, 10] depends on the polynomial orders of approximation. We can estimate
the computational cost of a single iteration as

N 2
coarse logNcoarse +N 2

fine logNfine = N 2
coarse logNcoarse + (αNcoarse)

2 log(αNcoarse)
(9)

where O(N 2 logN) is the estimation of the solver computational cost. We can
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a) b)

c) d)

Fig. 3. Four exemplary initial meshes utilized in the experiment reported in Figure 2

estimate total computational cost for all iterations for a given time step by assuming
the average α = 6 and utilizing Equation (9). The total computational cost of
generation the optimal mesh from the regular mesh is

812 log 81 + 62812 log(81× 6) + 812 log 91 + 62932 log(93× 6)
+ 1252 log 125 + 621252 log(125× 6) + 1362 log 136 + 621362 log(136× 6)
+ 1672 log 167 + 621672 log(167× 6) + 2052 log 205 + 622052 log(205× 6)
+ 2162 log 216 + 622162 log(216× 6) + 2362 log 81 + 622362 log(236× 6)
+ 3432 log 343 + 623432 log(343× 6) + 3492 log 349 + 623492 log(349× 6)
= 55 430 825

(10)

while the total computational cost related to the initial mesh estimation is just
812 log 81 +62812 log(81× 6). It implies that a single estimation of the initial mesh
is more than 55 430 825/663 405 = 83 times less expensive than performing 10 iter-
ations of the algorithm. These estimations don’t include computationally expensive
algorithm making decisions about optimal refinements and generating the optimal
mesh. These additional expensive components are not executed during a single ini-
tial mesh evaluation, but only during the process of the optimal mesh generation.
Moreover, the presented estimation includes only 10 iterations. In order to obtain
the solution with 1% relative error it is necessary to perform more than 20 itera-
tions, and 0.1% accuracy requires more than 40 iterations. Thus, the estimation of
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the initial mesh is hundreds times less expensive than the entire generation of the
high accuracy optimal mesh. In three dimensions this difference is several orders of
magnitude higher.

Relative error over the mesh
Mesh type Size Simulation 1 Simulation 2 Simulation 3 Final accuracy

2 81 92.48% 99.98% 115% 12%
3 81 49.99% 49.98% 49.98% 6%
4 289 25.03% 27.23% 29.53% 5%

Table 1. Summary of best individuals

Thus, we have performed the following experiments. We have executed the 20
steps of the HCBGA algorithm three times from initial population with 20 indi-
viduals. We utilized the relative error over the individual as the estimator of the
individual’s quality. In the first sequence of experiments, the individuals from the
initial populations have fixed four partitions in horizontal and vertical directions,
and some additional random partitions. The first row in Table 1 presents the best
individuals obtained after these simulations. The two individuals presented in the
first row, resulting from the first and the second simulations, are visually undistin-
guishable, and one of them is the initial mesh presented on panel b) in Figure 3.
These individuals provide relative error estimation of the level of 90–100%, and the
final accuracy on the level of 12%, which is not satisfactory.

With the lesson learnt after the first three executions, we have changed the
locations of horizontal and vertical partitions on the initial populations, still with
some additional random partitions. We have executed the three experiments with
20 steps of the HCBGA from the new initial population again with 20 individu-
als. The second row in Table 1 presents the best individuals obtained after these
simulations. All these three best individuals presented in the second row are visu-
ally undistinguishable, and one of them is the initial mesh presented on panel c)
in Figure 3. These individuals provide relative error estimation of the level of
50%, with the final accuracy on the level of 6%, which is a very satisfactory re-
sult.

To check the quality of the obtained individuals, we have increased the num-
ber of horizontal and vertical partitions in the initial population from four to eight,
and executed three new simulations with 20 steps of the HCBGA from the new
initial populations with 20 individuals. The third row in Table 1 presents the best
individuals obtained after these simulations. All these three best individuals pre-
sented in the third row are again visually undistinguishable, and one of them is
the initial mesh presented on panel d) in Figure 3. These individuals provide re-
lative error estimation of the level of 25–30%, with the final accuracy on the level
of 5%. This implies that the best individuals obtained in the previous sequence of
experiments are high quality meshes, since they provide similar accuracy after 10
iterations of the hp-FEM, with lower computational cost, since the meshes utilized
in the previous experiments were much smaller. It follows from Figure 2 that the
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history of convergence depends on the quality of selected initial mesh. The regular
mesh from panel a) in Figure 3 doesn’t provide the best convergence. The best
convergence is obtained when the initial mesh fits material data generated by the
CA algorithm. We also conclude that the numerical error over the initial mesh
can be utilized as the estimator for prediction of the quality of convergence on the
sequence of meshes obtained from the considered initial mesh. Smaller numerical
error over the initial mesh implies better accuracy obtained after 10 iterations. The
numerical error over the initial mesh from panel c) is about three times smaller than
the numerical error over the regular initial mesh, and the accuracy obtained after
10 iterations from the initial mesh from panel c) is also about three times smaller
than the accuracy obtained from the regular initial mesh. The initial mesh from
panel d) provides somewhat better accuracy after 10 iterations. However, the size of
the initial mesh is much larger than sizes of all other presented initial meshes. The
optimal mesh obtained after 10 iterations of the hp-FEM from the initial mesh from
panel d) is also much larger than the optimal meshes obtained from other initial
meshes.

a) b) c)

d) e)

Fig. 4. Four optimal meshes obtained after 10 iterations from the first, second, third or
fourth initial mesh, respectively. Different colors denote different polynomial orders of
approximation on finite element edges and interiors. The last panel presents resulting
concentration field distribution computed on one of the optimal meshes
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We can make the following conclusions. It is necessary to start computations
from optimal initial mesh, to obtain fastest convergence on the generated sequence
of meshes. Such the optimal initial mesh must fit material data as well as predict
location of singularities of the numerical solution. We propose the application of
the genetic algorithm for optimal selection of the initial mesh. The selection of the
optimal initial mesh will optimize the convergence rate of the numerical error of the
solution over the sequence of meshes generated by the self-adaptive hp-FEM. This
is especially true in the case when material data are selected as a result of some
stochastic algorithm and it is not possible to design optimal initial mesh by hand.

4 APPLICATION OF HIERARCHICAL CHROMOSOME BASED

GENETIC ALGORITHM FOR INITIAL MESH SELECTION

We propose the hierarchical chromosome based genetic algorithm as the tool for
finding the optimal initial mesh. This algorithm can be applied to solve several de-
sign and engineering problems. The presented genetic algorithm works on tree based
structures (called hierarchical chromosomes). The term “genetic programming” [5]
is sometimes used for such kind of algorithms. However, the HCBGA can be rather
called the genetic algorithm [3] to underline the most important differences between
those two types of the algorithms. First of all, there are two disjoint spaces defined
for the genetic algorithm: the search space (the phenotype space) and the solution
space (the genotype space), while there is only one space (space of programs repre-
sented as parse trees) defined for the genetic programming. Secondly, in the genetic
algorithm the evaluation process of an individual consists in decoding the genotype
into the phenotype and evaluating it according to the fitness function, while in the
genetic programming the same process consists in running the program. HCBGA
can be described according to the scheme (µ, λ), where µ = λ [11]. The reproduc-
tion in the algorithm is done by fitness proportional selection and succession is done
by elite selection, where ♯Elite = µ. Because of the hierarchical representation of
the phenotypes, the hierarchical mutation and the hierarchical crossover have to be
used, in spite of the traditional genetic operators. The hierarchical genetic operators
are described later in this section. The hierarchical chromosome, which represents
an object in our genetic algorithm, codes the structure and the meaning of an ob-
ject from the point of view of the designer. Figure 5 presents an exemplary mesh
and the hierarchical chromosome coding the mesh. Our exemplary mesh (denoted
by S1) is described by two components: X and Y . Component X consists of two
subcomponents: PX1 and PX2. Component Y consists of three subcomponents:
PY1, PY2 and PY3. Each subcomponent is described by two parameters: the left
and the right limit of the interval, denoted by xi. These values are coded as the
binary string (xi = b0b1 . . . bm).

The whole process of finding the optimal initial mesh can be described as follows.
At the beginning the initial population is created. We assume that each mesh from
the initial population has the same number of components on the second level.
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Fig. 5. An exemplary mesh and the hierarchical chromosome coding it

However, the overall size and shape of the hierarchical chromosomes coding initial
meshes can be different. After generation, the new initial population should be
evaluated. The computational problem is solved for each individual representing
a single initial mesh, and the global hp refinememnt is performed. Then, the problem
is solved again, and the relative error estimator for the individual is computed.
After that the new offsprings are created (by using the hierarchical crossover and
the hierarchical mutation) and added to the population. Then the whole process
of evaluation and generation of offsprings is repeated. The algorithm stops, if the
optimal initial mesh is found. The HCBGA allows for generating offsprings from
parents of different size and shape (in our case – from initial meshes with different
number of components), thank to the hierarchical representation of objects and
hierarchical genetic operators. It also allows for creating offsprings with different
number of components than their parents. As was mentioned above, the hierarchical
mutation and hierarchical crossover are used to generate offsprings from artifacts
coded as hierarchical chromosomes. The hierarchical mutation of group of alleles
(coded components) allows for adding or removing the whole component from the
genotype. This genetic operator is responsible for changing of the genotypes size.
The algorithm for mutation of the group of alleles can be described as follows. First
randomly choose the group of alleles (a component) and decide randomly, whether
it should be remover or split. If removing was chosen, then remove the whole group
of genes from the chromosome. If splitting was chosen then randomly choose the
clipping coordinate, calculate the genes values for both components and add new
group of alleles to the hierarchical chromosome. Figure 6 a) presents a phenotype
before mutation. Figure 6 b) presents the phenotype after removing the component.
Figure 6 c) presents the phenotype after splitting of the component. Figure 6 d)
presents hierarchical chromosomes corresponding to the mesh from Figure 6 c). To
sum up, the two kinds of the hierarchical mutation can be described as follows:
removing of the component consists in removing of the suitable subtree from the
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hierarchical chromosome, while splitting of the component consist in adding new
subtrees to the corresponding node of the hierarchical chromosome.

a) b)

c) d)

Fig. 6. a) phenotype before mutation, b) phenotype after mutation – removing of the
component, c) phenotype after mutation – splitting of the component, d) hierarchical
chromosomes corresponding to the mesh from panel c)

The next genetic operator used is the hierarchical crossover [8]. The hierarchical
crossover is the two stage process, which consist in finding the suitable crossover
point P in the parent individuals (in our case the number of the component from
the second level of the hierarchy tree) and applying the crossover to the offspring
generation. The second step consists in copying all the components located left
from P and their subtrees to the children being generated – from the first parent to
the first child, from the second parent to the second child. After that the components
of number P with their subtrees and all primitives located right from P and their
sub-trees are copied to the children – from the first parent to the second child, from
the second parent to the first child. Thank to such a definition of the crossover, the
generated children can have different size and shape than their parents. Figure 7
presents hierarchical chromosomes of the parents, and their offspring, created by
crossing at crossover point P. The described hierarchical chromosome based genetic
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algorithm was used to find optimal initial two-dimensional mesh, but it can be easily
extended to three-dimensional meshes. Based on [12], according to the theorem
proved in [9], the Markov chain modeling the algorithm is ergodic and the presented
HCBGA has asymptotic guarantee of the success in the probabilistic sense.

5 CONCLUSIONS

The paper presented an application of the hierarchical chromosome-based genetic
algorithm for finding the optimal initial mesh for the self-adaptive hp-FEM calcu-
lations. The application of the genetic algorithm for the initial mesh optimization
was motivated by the fact that the ratio of convergence of the self-adaptive hp-FEM
depends on the quality of the initial mesh, and it is reasonable to invest some com-
putational time for the initial mesh optimization. The presented genetic algorithm
can be simply extended to three-dimensional meshes.

Fig. 7. Hierarchical chromosomes of the parents, an offspring created from the parents,
and the hierarchical chromosome coding it
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