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Abstract. In recent years the concept of emergence has gained much attention
as ICT systems have started exhibiting properties usually associated with complex
systems. Although emergence creates many problems for engineering complex ICT

systems by introducing undesired behaviour, it also offers many possibilities for
advance in the area of adaptive self-organizing systems. However, at the moment the
inability to predict and control emergent phenomena prevents us from exploring its
full potential or avoiding problems in existing complex systems. Towards this end,
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this paper proposes a framework for empirical study of complex systems exhibiting

emergence. The framework relies on agent-oriented modelling and simulation as
a tool for examination of specific manifestations of emergence. The main idea is to
use an iterative simulation process in order to build a coarse taxonomy of causal
relationships between the micro- and macro layers. In addition to the detailed
description of the framework, the paper also discusses the corresponding verification
and validation processes as important factor for the success of such a study.
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1 INTRODUCTION

There is a variety of systems which are perceived as complex. In the natural world
cells, immune systems, nervous systems, ant colonies and many others can be viewed
as complex systems. Similarly in the human world a wide range of cultural and social
systems like families, political parties, companies, scientific communities, economi-
cal markets and many others are also complex systems. However, in recent years
the study of complex systems has gained particular interest in the field of computer
science. The main reason for this trend is the increase in the complexity of In-
formation and Communication Technology (ICT). ICT systems are becoming more
complicated, open and distributed [6]. In fact it is not difficult to imagine a fu-
ture where automatic composition of billions of elementary web services will form
more complex services. However, this will lead to enormous amounts of unplanned
and unregulated interactions. These interactions will undoubtedly cause appear-
ance of unexpected emergent behaviours which are usually associated with complex
systems.

The importance of emergent behaviours in ICT can be viewed from two aspects.
From the engineering perspective mastering the control of emergent phenomena can
be very useful. Emergence is responsible for self-organization, self-optimization,
adaptation and other beneficial properties encountered in complex systems. The
utilization of these emergent behaviours in an information system can benefit the
development and performance of the system making it highly available, scalable
and robust. On the other hand, however, perhaps a more important concern for
computer scientists and software engineers is the appearance of undesired emergent
behaviour or so called “misbehaviour”. Emergent misbehaviour can be viewed as
unexpected behaviour with undesired effect which infringes the system’s operation
by diminishing its functional performance or by introducing behaviour which is dif-
ferent from the intended one. An example presented in [29] shows that complete
degradation of the service can occur in fairly simple multi-tiered distributed appli-
cation due to a small increase database server latency. This and similar examples
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show that it is vital to prevent appearance of emergent misbehaviour in ICT sys-
tems. However, since the phenomenon of emergence is inevitably linked with the
complexity of the information systems, it cannot be simply avoided. Consequently
there is a need to devise means for the development of correct systems which will
guarantee (to some extent) that there will be no undesired emergents at runtime.

Nevertheless, given the stochastic nature of emergence it is practically infeasible
to formally verify the appearance of emergent behaviour [35]. Therefore in recent
years agent-oriented modelling and simulation have been suggested as a tool which
can shed light on the problem [12, 13, 14, 23]. The idea is to model the components
of a complex system as agents and use them in a simulation study. Nevertheless,
so far there is no study which deals with the practicalities of constructing a disci-
plined way of analysing emergent formations. In this paper we address this issue
by proposing a structured two-phase framework for empirical exploration of emer-
gent behaviour through multi-agent modelling and simulation. The initial phase of
the methodology addresses the verification and validation of the multi-agent model,
while the second phase is an experimental process aimed at determining the causal
relations between the micro level interaction and the visible effects of emergence at
the macro level. The end goal of this process is to address the problem of analysing
emergent behaviour in complex systems through a structured set of well defined
activities and practices.

The rest of the paper is structured as follows. Section 2 offers an introductory
discussion on the phenomenon and types of emergence, followed by a discussion on
the different ways in which emergence is conceptualized in Section 3. The appli-
cation of the multi-agent paradigm for modelling of complex systems is elaborated
in Section 4. Section 5 provides a detailed overview of the proposed methodology
followed by a discussion. Finally conclusions and future work are summarized in
Section 6.

2 EMERGENCE AND TYPES OF EMERGENCE

The term “emergence” (from Latin “emergere”) means “to become apparent”, “to
turn up”, “present itself”, “to appear” (Oxford dictionary). The whole idea behind
emergence was popularized by Anderson in [1], where he argued that simple compo-
nent interactions can give rise to complex phenomena which is more than a sum of
the properties exhibited by the elementary components. A simple example of this
is the liquidity in water. There is nothing to suggest, in a single H2O molecule,
that millions of molecules at room temperature have the properties of a fluid. An-
other example is the interaction between local weather patterns, which influences
emergent formations like hurricanes, tornadoes, temperature inversions and other
weather phenomena. Similarly stock market crashes can be viewed as emergent
phenomena based on the interaction between traders on the stock market. The
phenomenon of consciousness in the human brain follows the same basic principle
of emergence. While one neuron is a relatively simple entity, the collective interplay
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of millions of neurons in the human brain can result in something much more than
a simple sum of the neuron’s properties and behaviour.

If we examine these examples in more detail, we can come to the conclusion that
emergence describes a system where a global phenomenon arises from the local in-
teractions between the individual (micro level) components of the system. However,
due to the diversity and complexity of emergent phenomena, in natural as well as so-
cial systems, different sciences have focused on different aspects in the investigation
of emergence. Consequently there is a variety of definitions [3, 4, 7, 19, 20, 23, 25, 34]
used to describe emergence, but none is generally accepted. Nevertheless, in order
to continue the discussion on emergence, there is a need for a working definition
within the field of computer science. The authors of this paper adopted the defini-
tion proposed by Wolf and Holvoet in [12], where they view emergence as part of
the system:

“. . . when there are coherent emergents at the macro-level that dynami-
cally arise from the interactions between the parts at the micro-level. Such
emergents are novel w.r.t. the individual parts of the system.”

In this context “coherent emergents” denotes orderly (logically or aesthetically) con-
sistent effects (properties, behaviours, structures, patterns) which are product of the
process of emergence at the macro (system) level, caused by interactions at the mi-
cro (individual, elementary) level. While the definition describes the basic principle
behind emergence, it gives almost no insight in the particular manifestations of
emergence. Therefore in order to understand the forms of emergence there is a need
to differentiate and classify different types of emergent phenomena.

Very often the concepts of weak and strong emergence are used in order to
differentiate between emergent phenomena [4, 8]. However, this classification, al-
though relevant for philosophical discussions, is too general to be useful in the field
of computer science. There is a need for more clearly defined classification structure
like the one proposed by Fromm in [18], where he builds upon the classification for
cellular automata proposed by Wolfram [37]. He distinguishes four primary classes
(types I-IV) based on the causal relations of the phenomena. Furthermore, the clas-
sification follows a gradation in complexity. Class I contains the simplest emergent
phenomena with a single feed-forward relation which can be found in engineered sys-
tems (e.g. the intentional design of a machine like a clock, computer program and
so on) and systems exhibiting aggregated emergent phenomena (e.g. wave fronts in
water, avalanches, cascades). Classes III and IV have the highest level of complexity.
Class III phenomena have multiple feedbacks, both positive and negative. This type
is common in open systems with high complexity and it is usually associated with
activator-inhibitor systems (e.g. patterns in biological entities, stock market rush,
prisoners dilemma) as well as evolutionary and adaptive systems (e.g. evolution of
ecosystems, sudden scientific or mental revolutions and so on). Class IV, on the other
hand, contains the emergence of completely new complex systems (e.g. culture, life).
From an engineering perspective a particularly interesting case is type II emergence
which encompasses systems exhibiting self-organization and other useful properties
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(type IIA), as well as emergent phenomena which are based on imitation and self-
amplification (type IIB). The latter sub-type is responsible for the so called negative
emergents like crashes and bubbles in the stock market, explosions of social unrest,
buzz in the news and so on. In principle these are the kinds of phenomena which are
perceived as misbehaviour in ICT systems. Consequently the framework proposed
in this paper is primarily concentrated on emergent phenomena of this type (II).

3 DIFFERENT PERSPECTIVES ON EMERGENCE

Although emergence is one of the key issues in complexity research, the phenomenon
is also a very active research topic in various scientific disciplines as well as a theme
of philosophical discussions. In addition to exploring different aspects of emergence,
different studies have adopted different views on the nature of the phenomenon, its
relationship to the system and the observer, the structure of causal relations which
influence it, the hierarchy of systems exhibiting it and so on. In this section we make
an attempt to capture several perspectives on the nature and core ideas behind the
concept of emergence as presented in different publications addressing these issues
from computer science perspective. We start with subjective approaches and move
towards more objective ones.

One very intriguing view on emergence is put forward by Bonabeau and Dessalles
in [5]. In their view the key in understanding emergence is the observer rather than
the system itself. Their argument is based on the notion that an emergent phe-
nomenon can only be defined while the system is being observed. Consequently,
their primary focus is on the relation between the observer (as a detector) and the
system (being observed). They argue that the emergent patterns appear only when
the observation takes place at the right level in the system’s hierarchy. For example
observing a city by walking through its streets cannot give an indication about its
fractal structure which is visible in a picture taken from a satellite. This idea is
closely linked with the so called “emergence of higher structures” theories, where
the phenomenon of emergence is viewed as a property (pattern or behaviour) taking
place at level Lh which is a result of processes taking place at a lower level L1 and
when the properties exhibited at Lh are impossible (or “difficult”) to explain given
the behaviour at L1. Another aspect of the system-observer relation, addressed
in [5], is the nature (capabilities) of the observer and the observation tools used.
In this context, the authors do not consider emergence as an absolute property of
the system, but as relative to the observer. This idea is supported by situations
where a phenomenon that cannot be described or understood using a certain set
of observers (and observation tools) can be detected and understood with the in-
troduction of additional observers and/or observation tools. This implies that by
introducing additional observers the description of the system can be simplified.
Consequently, there is a perceived complexity shift in the observed system, which
leads to the conclusion that “emergence is associated with a decrease in the relative
complexity” [5].
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The view put forward by Bonabeau and Dessalles is actually a “highly subjec-
tive” approach to emergence, where the main focus is on the observer and obser-
vation apparatus as main factors in the detection and definition of the emergent
phenomena. Taken to the extreme this perspective on emergence correlates with
Epstein’s view expressed in [16] where he says:

“To call something emergent is therefore not to say anything about the
property at all, but merely to make a confession of scientific and mathematical
incompetence.”

In order to fully appreciate the depth of Epstein’s statement, one may consider
it through a presence of an ultimate observer which embodies all of the available
scientific knowledge. In relation to this (hypothetical) all-encompassing observer,
Epstein labels the concept of emergence as a “scientific mystery” (or a scientific
unknown) which exists purely on the basis of the observer’s limitations. In other
words, according to Epstein, emergence exists due to the (current) unavailability of
scientific mechanisms to detect, predict and control causal relations in certain com-
plicated systems. Thus an emergent phenomenon as such is temporarily limited with
the advance of the scientific mechanisms which will be able to resolve it. Although
Bonabeau and Dessalles do not tackle this issue explicitly (since they do not assume
an all-encompassing observer), the same reasoning holds because, like Epstein, they
too perceive the observer (and/or the observing mechanism) as a dynamic entity
which is subject to change.

However, in the case where a particular emergent manifestation is examined
within a well defined observation setting, which is usually the case for practical
studies of complex systems in the field of computer science, the discussed implica-
tions of the dynamic observer lose their relevance. Thus, in such an environment
the emphasis is shifted from the observer to the behaviour perceived in the model.
The basic idea behind this so called “emergence relative to model” is expressed by
Rosen in [32]:

“One way to define emergence is to call a behaviour of a system emergent
when it can no longer be described by the model that described the system
until then.”

Building on this idea an approach proposed by Ronald et al. in [31] aims at devising
a practical test for emergence based on three main elements: design, observation and
surprise. In the proposed setting, emergence appears as a surprise from observer’s
point of view when the local behaviour of the system described in language L1

during the systems’s design is different from the language L2 in which the global
behaviour of the system is described at runtime and there is an non-obvious causal
relation between the two languages. In this sense the element of surprise is basically
a discrepancy between the intended and the actual (observed) behaviour of the
system. In other words there is a “cognitive dissonance” between the observer’s
mental image of the system at design time and the observed behaviour of the system
at runtime. The rationale for the appearance of the surprise, in Havel’s view [22],
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can be explained as a gap in the observer’s ability to interpret relations in the
particular domain due to lack of understanding of the causal laws in that domain.
Consequently, one might argue that an increase in the observer’s understanding of
a particular problem domain might lead to shift in the observer’s domain horizon
which will overcome the element of surprise in the particular context. This is in fact
supported in [31] through an analysis of the flocking behaviour. Authors consider
the flocking behaviour in birds to be an emergent behaviour when it first appeared
in Reynolds’s flocking simulations (see [30]) done in 1987. However, they argue that
since then the flocking behaviour lost the element of surprise because the causal
relations in the model have become well known. Thus, similarly to the view adopted
by Bonabeau and Dessalles, the work of Ronald et al. [31] follows a “subjective”
approach to emergence by signifying the role of the observer. Nevertheless, the view
proposed by Ronald et al. incorporates pre-conceptions about the system’s design,
thus avoiding to rely only on observation as in the case of Bonabeau and Dessalles.
This represents a significant shift in conceptualization of emergence, but at the same
time limits the applicability of the approach to artificial systems.

Although the test for emergence proposed in [31] gives a vague description (from
formal perspective), the work done by Freund et al. [17] shows that the basic concept
guiding the emergence test can be practically applied in grammar systems. The
authors illustrate this in [17] with an example where the simple sum of two finite
grammars produces a finite language when applied in isolation, but at the same
time generates an infinite language when the rewriting rules of the two grammars
are applied in combination. In this case the surprise is due to the gap between the
finite and the infinite behaviour exhibited by a system composed out of the same
basic components. In this direction the authors formalize a theoretical framework
for emergence in systems which can be described using string languages. In addition
they also discuss how the defined formalism of emergence applies to various types
of grammar systems.

Another attempt to define emergence in relation to grammar systems has been
made by Kubik in [27]. Nevertheless, he completely refuses to acknowledge the
observer’s surprise as relevant in defining emergence:

“. . . judging the behavior of complex systems on the basis of our subjective
feeling of surprise is misleading and obscures better explanations.”

Instead he combines Rosen’s idea of emergence relative to model, with Bedau’s no-
tions of micro-macro relations [4] as primary postulates on which emergence should
be formally defined. Furthermore, he supports the multi-agent approach to emer-
gence advocated by Holland [23], where the behavioural rules of the agents and their
mutual interaction are viewed as a way of describing the relations in a complex sys-
tem exhibiting emergence. In this sense Kubik’s view in conceptualizing emergence
is the same as the view advocated by supporters of the multi-agent modelling and
simulation approach. Nevertheless, his main goal is to move towards a more formal
theory with well defined meaning. He proposes array grammar for this task, based
on the notion that different grammars can be used to formally specify a multi-agent
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system [10]. Within this framework, Kubik defines emergence as an array obtained
when isometric production rewriting rules are applied on the entire language. This
is different from the sum obtained after the rewriting rules have been applied se-
parately on all language parts, thus formally describing systems behaviour which
is more than the sum of its parts. The major criticism on this approach is that
without a restriction in the rewriting rules in some cases it might be impossible to
determine whether a particular array is emergent. Nevertheless, this approach ma-
nages to avoid dealing with the subjectivity of observation and moves much closer
to a concept where emergence is viewed as a property of the system. This is in fact
the core idea behind modelling and simulation approaches to emergence, which is
elaborated in more detail in the next section.

4 MULTI-AGENT MODELLING OF COMPLEX SYSTEMS

EXHIBITING EMERGENCE

Many researchers [3, 9, 13, 14, 19, 23] dealing with the problems posed by emergence
agree that an initial approach in understanding emergence should be done through
modelling and simulation. One of the main reasons supporting this is based on the
notion that emergence is “more than the sum of the parts”. The main implication
of this idea is that emergence can not be captured with a model of the system.
According to this point of view an emergent phenomenon is only visible at runtime
operation or through an animation of the system. This is due to the novelty in-
troduced at the system level which cannot be deduced from the properties of the
individual components. Consequently, the developer of the model cannot simply
design a synthesis rule, but only use simulation as means of achieving the micro-to-
macro aggregation. From a computational point of view, as defined by Darley [11],
this means that a system of size n is emergent if the condition u(n)≥ s(n) holds,
where s(n) is the optimal amount of computation for predicting the system’s be-
haviour through a simulation and u(n) is the amount of computation required in
order to resolve the problem using some form of “creative analysis.” In the manner
described, the modelling and simulation approach adopts an objective approach in
dealing with emergence.

In this context, the Multi-Agent Systems (MAS) paradigm is considered (at the
moment) to be the most suitable way to model and simulate complex systems ex-
hibiting emergence [14, 23]. There are several reasons behind such a claim. First of
all there is a natural correspondence between the structure of complex systems and
MAS. They both rely on many individual components (agents) in order to achieve
their goals. Each agent in MAS is autonomous and able to interact in a stochas-
tic manner with other agents. Moreover, there is no limitation on the interaction
scenarios, which means that an agent is able to communicate indirectly on multi-
ple levels by modifying the local environment, which arguably is the most common
approach used for communication in natural complex systems. For example, ants
communicate indirectly to each other by dropping pheromone which modifies the
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environment and serves as a guide towards food. Another correspondence between
MAS and complex systems is the level of complexity. A MAS can achieve almost any
level of complexity and thus a multi-agent system of specific complexity is essentially
a complex system.

Nevertheless, this does not mean that any MAS is complex or possesses emergent
behaviour by default. There are several properties common in MAS exhibiting
emergence [24]:

Agent mobility or visible states for fixed systems – e.g. spatial repositioning
for mobile agents.

Ability to influence the environment – e.g. chemotaxis, self-replication or other
approaches for modifying the environment.

Ability to distinguish between groups and individuals – e.g. flocking of birds
as a model composed of individual agents and groups (flocks).

In addition, it can be argued that the basic multi-agent modelling concepts –
abstraction, decomposition and organization [24] correspond to the modelling of
complex systems. The first notion is the ability to abstract. Basically, it denotes
the ability of the agent models to simplify the representation of the system by
hiding unnecessary complexity. Some properties of the model are emphasized while
others are suppressed. This is very important when dealing with a system whose
entities may be complex systems themselves. Otherwise it would be very difficult
(if not impossible) to develop the complete model, at the same time it may require
considerably more time and effort.

The second concept is decomposition. The idea behind it is to divide a complex
problem into several smaller, more manageable components. Thus, each component
could be examined and analysed in relative isolation. Nevertheless, the application
of decomposition in systems exhibiting emergence is a very delicate issue. Decompo-
sition of a system might diminish the emergent phenomena. For example, dividing
a living entity into parts could result in a bunch of dead pieces. This is because
“life”, as an emergent phenomenon, relies on interaction between different compo-
nents in the system and might not be a property of the component when examined in
isolation. Nevertheless, this does not mean that decomposition is useless in the case
of emergence, but rather that it is important to devise an appropriate decomposition
strategy which will not influence the phenomenon.

The third concept discussed by Jennings and Woodridge in [24] is organization.
Although the development of an individual agent is a relatively straightforward pro-
cess, the intentional design of organizational structures formed by agents may be
extremely difficult. This is primarily due to the dynamicity and unpredictability of
interaction patterns within the system. This unpredictability of interaction creates
problems from an engineering perspective since it diminishes the predictability of
the system’s behaviour. However, in the case where the MAS model is used in a si-
mulation study, the uncertainty of the runtime dynamics is neither a disadvantage
nor a problem for that matter. In fact, it offers the unique possibility to the inves-
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tigator to gain insight of the possible behaviours that might occur in the modelled
system.

Although the discussed principles and natural correspondence to complex sys-
tems make the MAS paradigm an intuitive approach for modelling complex systems
exhibiting emergence, developing a MAS model of the system is not sufficient to
understand the causality of a particular emergent manifestation. For this purpose
there is a need for adopting a structured approach which will guide the animation
of the model through an iterative experimental process.

5 FRAMEWORK FOR EXPLORING EMERGENCE

The following sections present a framework for a disciplined exploration of emergent
phenomena using multi-agent simulation. The fundamental idea is based on an in-
cremental increase in the understanding of the causal relations in the model under
study. Section 5.1 presents a general overview of the two phases in the proposed
framework, while a more detailed description of the activities and artefacts in each
phase is elaborated in Section 5.2. The model verification and validation process
is discussed in Section 5.3 followed by a discussion on the experimental phase in
Section 5.4.

5.1 General Overview

The main object of study in the proposed framework is a multi-agent model of the
system exhibiting emergent phenomena. The animation (simulation) of this model
represents the main instrument to achieve the synthesis of the elementary behaviours
and interactions to a macro level emergent behaviour. In addition, the simulation
process is also used in order to generate the data needed for the analysis and deline-
ation of the causes for the observable emergent effects. The overall process can be
divided into two phases: a development and verification phase and an experimental
phase.

• The development and verification phase is an initial phase which encom-
passes the development and verification of the model in respect to the expected
behaviour. The role of the investigator, in this phase, is to make iterative refine-
ments to the model in order to bring it closer to the desired state, thus contin-
uously increasing the confidence in the behaviour of the model throughout the
refinement. The refinement and evaluation of the model are an important part
in the development because they provide an alternative to formal verification
and validation of the model, which cannot be achieved for a dynamic complex
systems with non-deterministic interaction [13, 35]. Once the model is validated
the process can move to the second phase.

• The second stage of the investigation is an experimental phase. It is essen-
tially an analytical process aimed at detection of invariants, interaction patterns,
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local properties and other elements that can influence the macro effects of emer-
gence. The goal is to define the possible causal relations which impact the
observable emergents. The process relies on the investigator to form a testable
hypothesis which will be evaluated in the next iteration. The observation of
the model execution and the analysis of the gathered data should prove or dis-
prove the hypothesis, thus increasing the understanding of the specific emergent
phenomenon.

A phase, as defined in the framework, can contain several iterative cycles. Each
cycle is composed out of predefined arrangement of activities (steps) and transitions.
An activity defines the tasks (operations) which need be performed at a particular
point, while the transitions define the output from one activity and the input to the
next one.

5.2 Activities and Transitions

Figure 1 presents an overview of the activities and transitions envisioned in a cycle.
The first two activities are performed only in the initial cycle of the verification
and validation phase, since they deal with the initial system description and model
specification. The activities 3-8 represent the elements of a single iteration. The
description of the activities, transitions and the corresponding artefacts that follows
is discussed through a herd dynamics case study example based on [21].

Activity 1: The initial transition is a jump from the real system to a correspond-
ing theoretical description. Depending on the case study the most appropriate
person to perform this activity is an expert in the field of study. For example
when dealing with a natural system, like the herd dynamics case, the theoretical
description should be performed by a biologist.

Activity 2: The second activity relies on the analysis of the system description
which is provided in the initial step. The main goal in this activity is to derive
a specification of the model properties. In this context the overall specification
of the model should be captured in the following documents:

• The agent type specification document containing the description for
each type (if more than one) of agent in the model. In the case of herd
formation the document should provide the specification of the properties of
an individual animal.

• The environment and communication document should describe the
properties of the environment and the forms of interaction and communi-
cation in the model. This document needs to provide details of all explicit
communication protocols (if any) and at the same time it should describe any
indirect (or implicit) way of communication between the agents as well as
the interaction between an agent and the environment. In the herd scenario
example the communication is achieved through modification of the environ-
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Fig. 1. Artifacts and transitions in the proposed methodology

ment by repositioning of the animals. The animal perceives the position of
its neighbours and decides where to move next.

• The emergence specification document should focus on a clear (quan-
tifiable, if possible) definition of the visible emergents which are expected
to appear in the system. The characteristics of the emergent phenomenon
could be defined through macroscopic variables as proposed in [12] or using
other indicators. In the herd dynamics example (where the herd is the actual
emergent phenomenon) such an indicator could be the level of herd cohesion
in different groups.

Activity 3: Based on the specification created during activity 2, an appropriate
model for each type of agent needs to be developed. A good practice is to use
formal modelling language, in order to be able to verify the properties of the
model and determine that there are no undesired discrepancies and errors in the
models.
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Activity 4: The model(s) of the individual agents should be combined with the
appropriate representations (models) of the environment and communication in
order to form the complete multi-agent model of the system. An important issue
in this activity is the representation of the relation between the individual agent
and the environment, which is supposed to enable non-deterministic multilevel
interaction.

Activity 5: At this point the complete model should be transformed (implemented)
in an environment which should allow animation of the model. The selection
of a simulation environment may vary depending on the system under study.
A visual animation of the model may prove very useful in cases like the herd
dynamics scenario, where visual animation of the model can give insight into
the herd formation process. In addition all of the data required for the analysis
needs to be generated during the animation process. Therefore it is essential that
parameters which define the model’s behaviour, both at micro and macro levels,
are recorded in sufficient details for later analysis. The data should present two
views on the executed simulation.

• First containing quantitative measurements on the state of the micro-level
at a particular time frame, offering traceability in terms of continuous model
execution.

• The second type of data should provide insight into the properties of the
macroscopic level. The most suitable way is to use global variables (prefer-
ably gradual rather than binary) which will describe aspect of the emergent
phenomenon at a specific point in the execution of the model.

Activity 6: This step involves analysis of the gathered simulation data. The goal
of the data analysis process is different in the two phases.

• In the initial phase (development and verification) the analysis of the data
should be done in order to evaluate the current state of the model in respect
to the desired model. Invariants in the data can be used in order to trace
possible errors in the model.

• In the experimental phase, the analysis of the gathered data should be com-
pared with the expected outcomes in order to test the hypothesis. The ana-
lysis should focus on evaluation of the stability of emergents in the model
and detection of patterns by means of statistical and correlation analysis
as well as detection of invariants. Based on the findings the investigator
should derive conclusions about the behaviour of the model in the particular
simulation run.

Activity 7: This activity involves evaluation of the findings in the previous step.

• In the development and verification phase, the goal of this activity is to iden-
tify elements of the model which cause discrepancies in the model behaviour.
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Based on this the investigator can propose changes to the model in order to
bring it closer to the expected behaviour.

• The main focus in the experimental phase is on the formulation of a hypo-
thesis which will be examined in the next iteration. The hypothesis should
be empirically testable in respect to the model. In addition, the investigator
should define criteria according to which the hypothesis will be confirmed or
refuted.

Activity 8: The final activity of the cycle can be viewed as an initial stage of
the next iteration. It involves modification (refinement) of the model in order
to refine the behaviour of the model or test a hypothesis. As can be seen in
Figure 1, the modification can be done on all aspects of the model including the
individual agent, the environment and communication. Additionally changes
in the data reporting routines of the simulation environment may be needed in
order to gather additional data.

The discussed activities represent a single cycle in an iterative process. The
number of iterations is not fixed, but it should be sufficient to confirm or refute
the hypothesis being examined. In this manner the proposed framework adopts an
iterative experimental approach to exploring emergence in existing systems.

However, since the object of the study is a model of the real system rather
than the system itself, there is a major concern that the developed model might
not possess sufficient details, i.e. it might omit important factors or make wrong
assumptions about the system. In this case the model would be potentially useless
in respect to the goals of the study. This is the main reason why the verification
and validation of the model is a very important part for the success of the study.

5.3 Verification and Validation of the Model

The verification and validation of the model is incorporated in the initial phase of
the proposed framework. The main goal in this phase is to minimize the potential
discrepancies between the real system and the model. In respect to this, several
issues concerning validation and verification need to be addressed.

Figure 2, based on Sargent’s work in [33], presents an overview of the modelling
process and the associated verification and validation steps. The problem entity de-
notes the “real” system which is the object of the study, while the conceptual model
is an abstract representation of the system which is developed during the modelling
process. The validation of the conceptual model should determine whether the
model corresponds to the real system for the intended purpose. Although the prac-
tical details of various validation techniques are beyond the scope of this discussion
(for more information see [33]), there are several issues that need to be considered.
In this context perhaps the most important issue is the selection of a representa-
tion technique. There are several aspects that need to be taken into account when
selecting a representation technique [2]:
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Fig. 2. Overview of model verification and validation process, taken from [33]

• The expressive power of the representation technique. Can the model be fully
captured with the particular technique?

• The technical knowledge of the people to whom this model will be communi-
cated. Other people, involved in the study, should be able to understand the
notation used to describe the model.

• The application of formal analysis and verification of the model in the particular
form.

• Automation of the transformation from communicated to programmed model.
How can the conceptual model be transformed (implemented) into a form which
can be animated and used in a simulation study?

Given the variety of representation techniques, there is no generic solution to
all of these problems. The success of a particular representation schema depends
on the system under study as well as the environment and people involved in the
study. Therefore we avoid proposing a particular technique as part of the framework.
Nevertheless, we strongly believe that a formal representation should be used in
order to develop the model of the individual agent. By using formal methods the
investigator can verify that the model of the individual agent is correct and can
therefore focus its attention on the validation of the communication and interaction
between the agents. However, not all formal methods are suitable for developing
models of agents. In general, in order for a formal method to be useful for modelling
agents, it should satisfy the following criteria [15]:
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• to model both the data and the internal changes of an agent,

• to model separately the behaviours of an agent and the ways in which the be-
haviours interact with each other,

• to be intuitive, practical and effective towards the implementation of an agent,

• to facilitate the development of correct agents.

While using formal techniques may be applicable to an individual agent, it is
practically infeasible to formally verify a complex multi-agent system with stochastic
interaction [13]. Consequently the only viable solution is to validate the interacting
multi-agent model by means of simulation. However, in order to do so the conceptual
model needs to be implemented (programmed) in a form which can be animated.
The transition from the conceptual to the programmed model is the second step in
the validation and verification process presented in Figure 2. The primary concern
in this step is to ensure correctness and correspondence of the implementation to
the conceptual model design. In the best case this transformation could be done
using an automated tool (which has been extensively tested) in order to ensure
correctness. However, depending on the problem and the representation technique
used, such a tool might not be available. In this case the transformation needs to be
performed manually. In this context a variety of verification techniques which are
used in software engineering could be applied [26]. Detailed analysis of various test-
ing techniques is beyond the scope of this discussion; for a comprehensive overview
see [36].

At a point when the transition from the conceptual to the programmed model
is complete, the investigator has the means to validate the complete multi-agent
model. This is the final verification and validation step in Figure 2, labelled opera-
tional validity, which aims at validating the correspondence between the behaviour
exhibited by a programmed model and the real system. The final behaviour of the
programmed model must have a reasonable accuracy in respect to the real system
and exhibit the required emergent phenomenon. According to Sargent [33] a general
division of the operational validation process suggests two main types:

Objective approaches, which usually rely on statistical or mathematical proof of
the correspondence between the model. This approach is much more demanding
in terms of time and effort, but it has a higher credibility (compared to the second
type). Nevertheless, it is not always applicable, especially in the case of complex
systems.

Subjective approaches can rely on different techniques to observe and to some
extent evaluate the model. However, the final decision whether the model is
appropriate representation of the real system is made by the development team
in the way they see fit. These kinds of approaches are usually used to ensure
operational validity of complex systems, since in most cases it is practically
impossible to perform this process in a formal way.
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The idea that we propagate through the framework is to use mathematical vali-
dation where applicable; however, since this is rarely the case with complex systems,
we suggest an iterative process which will enable the investigator to gradually build
confidence in the behaviour of the model.

5.4 Two-Way Experimental Approach

The experimental phase follows the development and verification phase and com-
mences once the investigator has assessed that the model as correct (valid for the
purpose of the study). As previously discussed, the main aim in this stage is to
explore the causal relations between the micro- and the macro levels through an ite-
rative experimental approach. In each experiment the role of the investigator is to
formulate a hypothesis and then test it by executing an appropriate simulation. In
order to do so, the simulation conditions or even the model itself can be modified.
This process in essence resembles the so called “general scientific method”, where
by testing a hypothesis the knowledge about the system is gradually increased.

The examination of the simulation execution in the proposed framework is ad-
dressed in a manner similar to the two-way approach for investigation of emergence
as proposed by Conte and Castelfranchi in [9] as well as the experimental method
proposed by Edmonds and Bryson in [14]. Consequently the process encompasses
both bottom-up and top-down processes in order to analyse micro-macro connec-
tions.

The bottom-up process facilitates attaining collective behaviour from the in-
dividual agents. It offers insight on how their behaviour is combined and aggregated.
The role of the investigator during this process is to identify interactions that have
an immediately visible result at the system level. In addition, through observation
of the model animation the investigator has the opportunity to gain insight into the
behaviour and stability of the emergent phenomena. This knowledge can be very
useful during the analysis and evaluation.

The top-down process is concentrated on analysis of the data gathered during
the simulation. The analysis process should address several issues:

Behaviours of micro entities. Deduce the behaviour of the individual element
(agent) from the global behaviour of the system. This includes identification of
how the micro elements behave at a given time instance, what behaviour should
be visible at the micro level given the behaviour of the overall system, as well
as definition of how the behaviour of the system imposes restrictions on the
behaviour of an agent (top-down feedback).

Behaviour of emergent phenomenon. Define a set of global variables which in-
dicate different aspects of the observed phenomenon. Where applicable avoid
specifying binary variables. If possible devise a metric for each of the variables.
Define values for the variables for each time instance. Compare changes in the
variable values (if more than one variable). Correlate the changes in a variable
with micro level events.
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Associate roles and states. Identify the possible roles and role transitions for
the micro level entities (agents) in terms of responsibilities, permissions and
activities. Identify the possible states and state transitions for the system at
the macro level. Determine the possible roles of the micro level components for
a particular state at the macro level. Identify how state changes at the macro
levels influence the role changes at the micro level. Associate the role changes
at the micro level with the state transitions at the macro level.

Communication and conflicts. Identify the micro level communication (interac-
tion) and coordination mechanisms and if possible determine tolerable conflicts
and inconsistencies. This includes identification of the type of communication
(interaction) exhibited by the agents as well as the reason for the initiation of
communication. It is also important to determine if there are repetitive interac-
tion patterns and how a particular interaction pattern in the micro level yields
an observable system behaviour at the macro level.

It has to be noted that both processes (bottom-up and top down) are comple-
mentary to each other and share a common goal. Therefore the findings of the
bottom-up observation and top-down analysis need to complement each other. Any
contradictory findings need to be further examined either by re-examining the data
or by repeating the simulation in an iterative manner until the conflict is resolved.
All the findings need to be consistent in order to determine the micro level factors
which have observable influence on the emergents at the macro level.

5.5 Summary

The experimental process proposed in the methodology can only yield beneficial
results when it is applied on a “correct” model of the system. Therefore ensuring
the correctness of the model is of paramount importance. The best way to deal with
this issue is to use formal techniques to verify the correctness of the components
(agents) and simulation in order to verify the correctness of the entire multi-agent
model. The verification through the model animation should follow an iterative
process which should gradually build the confidence of the model performance. The
experimental phase, on the other hand, is essentially a two-way (bottom-up and
top-down) iterative simulation study which aims at defining micro-macro relations in
order to build a coarse cause and effect taxonomy of the specific emergent behaviour.

6 CONCLUSIONS

In recent years the phenomenon of emergence, as one of the fundamental proper-
ties of complex systems, managed to capture significant attention from the scientific
community. There are several reasons behind this development. First of all, emer-
gence seems to be everywhere in nature. It appears in different forms and shapes in
a variety of systems from simple to the most complex. It is responsible for a variety
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of fascinating properties and behaviours. The ability to engineer emergent phenom-
ena can be very beneficial in many areas of science and technology. On the other
hand, emergence can also be viewed as negative phenomenon, it can significantly in-
fringe the functional performance of engineered systems. This prospect is especially
disturbing since there is a growing trend in engineering open distributed systems
with high complexity. Nevertheless, to the best of our knowledge, at the moment
there are no studies which deal with the practicalities of constructing a framework
(comprised of a well defined process supported by a set of practices and tools) which
will guide the analysis of existing emergent phenomena.

We address this issue by proposing a framework for empirical exploration of
emergent formations. The core idea is to offer a structured approach which utilizes
iterative multi-agent simulation as means for experimental examination of emergent
manifestations. The goal of the process is to gradually increase the understanding
of the causal relations between the individual (micro) and emergent (macro) levels
of the system under study. It is essentially an analytical process aimed at detection
of causal relations in the model, through evaluation of hypotheses about the ex-
pected behaviour of the model under certain conditions. Nevertheless, such a study
can only yield beneficial results when it is applied on a “correct” model of the sys-
tem. Therefore ensuring the correctness of the model is of a paramount importance.
However, formal validation of the complete multi-agent model, on the other hand,
is often impossible or too expensive in terms in time and effort. Consequently we
propose a validation of the model through iterative simulation and refinement.

The future work will be concentrated on the evaluation of the proposed process
and practices as well as assessment of the practical applicability of the proposed
framework. Towards this end we have committed to examination of the herd for-
mation as an emergent phenomena in the herd dynamics case study. Although the
work is ongoing, for brief overview of the simulation model and the mechanism for
automated detection of herd formations please refer to [28]. In addition we are
exploring the several tools (like for example the automatic detection of invariants)
which will help us facilitate the different activities. Once this work is completed,
the study will move to the experimental examination in order to explore the causal
relations responsible for formation of herds.
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