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Abstract. We present models, methods, implementations and experiments with
a system enabling personalized web search for many users with different prefer-
ences. The system consists of a web information extraction part, a text search en-
gine, a middleware supporting top-k answers and a user interface for querying and
evaluation of search results. We integrate several tools (implementing our models
and methods) into one framework connecting user with the web. The model repre-
sents user preferences with fuzzy sets and fuzzy logic, here understood as a scoring
describing user satisfaction. This model can be acquired with explicit or implicit
methods. Model-theoretic semantics is based on fuzzy description logic f-EL. User
preference learning is based on our model of fuzzy inductive logic programming.
Our system works both for English and Slovak resources. The primary application
domain are job offers and job search, however we show extension to mutual invest-
ment funds search and a possibility of extension into other application domains.

Our top-k search is optimized with own heuristics and repository with special in-
dexes. Our model was experimentally implemented, the integration was tested and
is web accessible. We focus on experiments with several users and measure their
satisfaction according to correlation coefficients.
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1 INTRODUCTION AND MOTIVATION

One of the main goals of the semantic web is to enable easy and automatic access
to web resources and services by middleware engines or agents. Enabling access
should be achieved by annotations with ontology metadata. Our research leads to
a model of a middleware system which will help users in searching for objects from
heterogeneous sources but a single domain. Connection of the middleware with web
resource annotation is achieved by a Web Information Extraction (WIE) model and
methods implemented in our tool OMIN. Annotation is done with respect to a do-
main ontology. In this paper, we present different approaches to the most important
aspect of such a system – retrieving the best objects according to user’s preferences.
This can be achieved either by key word search (tool JDBSearch, originated in [21])
or user model dependent top-k search (implemented by the Top-k tool). Input for
the latter search consists of user preferences that cover evaluation of user preferred
domain values of attributes and fuzzy logic programming rules, mined by our fuzzy
inductive logic programming tool IGAP.

All of these methods are developed under the umbrella of the NAZOU pro-
ject [24] where the main application domain is job offer and job search. Our method
implementations (from now on called tools) are integrated into the portal-like web
application (web accessible on http://x64.ics.upjs.sk:8080/nazou/, currently
in the pilot status). Our tools are also integrated into pilot application of the whole
NAZOU project.

Let us consider the following example: Imagine a user looking for a job which
has good salary, good location or distance from a place (of living) and has good work
area in the domain of user expertise and acceptable traveling duties. Each user (or
group of users) has his/her own sense of quality (i.e. the preference) for each relevant
attribute of an object. For example, one user could prefer only the highest salaries,
while another would prefer reasonable minimum and all the higher salaries would be
considered equally good. Good location and/or distance to work can differ from user
to user. A mother with a small child would like to work close to her home. A young
single programmer would like to collect experience abroad. Domain of expertise
can also be considered differently. One user does not like to learn new things and is
highly specialized in .NET programming, another one would like to learn new things
and prefers new technologies – e.g. programming for Web 2.0 applications. Level of
traveling involved can be measured in different ways by different users.
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The underlying meaning of these orderings is that users determine the relations
“better” or “worse” between two values of a given property like salary, location and
work area. For each such property, the user has a notion about the ordering of
objects based on real value of property from an attribute domain. We call these
orderings of particular attribute domains the user local preferences.

Nevertheless, these user-specific local preferences usually lead to incomparable
objects, e.g. one job offer has higher salary than another, but it has disadvantages in
job location; another job offer with better location offers lower salary. It is necessary
to combine local preferences to one overall score. This would allow to compare the
whole objects. The combination of local preferences is called global preference and
will be modeled by fuzzy aggregation operators.

Having presented the motivation and the basic notions, we can summarize the
main contributions of this paper:

• User preference model based on fuzzy description logic (truth value understood
as scoring and user preference degree) and ontologies.

• Methods of web information extraction (WIE), fuzzy inductive logic program-
ming (ILP), top-k and preference acquisition.

• Implementations of WIE (OMIN), fuzzy ILP (IGAP), preference search Top-k,
preference acquisition and management (UPreA). Integration of all these me-
thods via the UPreA tool.

• Experiments with our system with several users.

• Usability models and methods with arbitrary domain.

• Presentation of pilot web application.

The paper is organized as follows: Section 2 introduces models of user prefer-
ences, based on fuzzy description logic and ontology representation. It also presents
domain ontology of job offers. Section 3 describes methods for detecting user prefer-
ences and searching for relevant objects. Section 4 provides more detailed description
of the system, tool implementations and integration. In the last part of the Sec-
tion 4 there is general view on the overall system. Section 5 describes the system
evaluation and experiments. Finally, we discuss our findings in Section 6 and we
provide some plans for future research.

2 MODELS

In this chapter, we describe models we use for solution of the problem of web search.
These models will be used as a starting point for design and implementation of the
tools, which are described in the next section.

2.1 Basic Fuzzy Model of User Preferences

We can represent terms like “high salary”, “good work area” or “close”, mentioned
in the introduction, as fuzzy sets. Compared to classical sets (also denoted as crisp
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sets), fuzzy sets allow partial membership of their elements. The fuzzy membership
function range is [0, 1]. The membership value 1 means full membership of an
element in the fuzzy set, while lower values indicate partial membership and 0
means no membership. E.g., a fuzzy set membership function high salary(x) will
have higher value for better paid jobs. Thus we have an ordering of job offers with
respect to the user preference of salary.

In practice, if the domain of attribute is ordered, user preferences usually belong
to one of the following variants of trapezoidal membership function (see Figure 1).
Such attributes are called ordinal. Typical examples are integer or decimal numbers.
Many attributes have a finite range of possible values, usually strings, with no
apparent ordering (other than lexical). We call them nominal attributes and we
usually express user preference as a crisp set of suitable values. However, user can
still prefer some values more than other values. It is possible to specify user’s degree
of preference to some values. This method is called fuzzification of crisp attribute

• lower-best function (LB) – lower attribute values are better,

• higher-best function (HB) – higher attribute values are better,

• middle-best function (MID) – middle values are preferred,

• marginal-best function (MAR) – marginal values are better than middle values.
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Fig. 1. Basic fuzzy set types

There are many possibilities of aggregating fuzzy local preferences to one overall
value. We only require such combination function to be order preserving in all
arguments. It can be represented as a composition of fuzzy connectives (conjunctions
or disjunctions). Another possibility is a weighted average. In our preference model,
we can specify global preferences also by monotone classification rules which can be
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learned from objects ranked by the user [18]. These rules reflect global preferences
in more natural and comprehensible way. The following example shows a set of
classification rules:

• good job(x) ≥ 0.8 IF high salary(x) ≥ 0.8 AND good work area(x) ≥ 0.3

• good job(x) ≥ 0.4 IF high salary(x) ≥ 0.5 AND good job term(x) ≥ 0.5 AND
close(x) ≥ 0.1.

Every rule consists of a head (e.g. good job(x) ≥ 0.8) and a body, which is
a conjunction of clauses (e.g. high salary(x) ≥ 0.8 AND good job term(x) ≥ 0.3).
If these conditions are fulfilled for some object, then this object has overall pre-
ference value at least the same as on the left side of the rule (head). Note that
more than one rule can apply for some object. Let us consider an object job1
with local preference values good salary(job1) = 0.91, good work area(job1) = 0.4,
good job term(job1) = 0.7 and close(job1) = 0.5. It is easy to see that this object
satisfies the conditions of both rules stated above. We infer good job(job1) ≥ 0.8
from the first rule and good job(job1) ≥ 0.4 from the second rule. The higher
value 0.8 is taken as a final result. The inequality good job(job1) ≥ 0.8 implies also
good job(job1) ≥ 0.4, so both rule heads are fulfilled.

As we can see from the example above, an object can satisfy condition clauses
of several rules at the same time. The result value has to be such that it satisfies
all corresponding rule head inequalities. The evaluation algorithm would therefore
check all rules for this object, select the rules that are fulfilled by the object and
finally take the highest result value, i.e. the greatest lower bound.

2.2 Fuzzy Description Logic

Our model is based on fuzzy description logic f-EL@ formally introduced in [31,
32]. This logic removes some features of both classical and fuzzy description logic
(like negation, universal restriction and fuzzy roles). On the other hand, it adds
an aggregation operator @. It should be also noted that we lose the ability to
describe fuzziness in roles. However, our source data are crisp – we do not consider
uncertainty in values. User preferences are represented as fuzzy concepts and they
are the source of fuzziness in results. Thus, we gain combination of particular user
preferences to a global score by his aggregation function denoted as @. An advantage
of this description logic is in lower complexity of querying. Expressivity is lower
than that of full fuzzy description logics (DL), but still sufficient for our task and
embeddability into web languages and tools (see [32]).

Concepts and roles are the basic building blocks of every description logic. Here,
roles express properties of job offers. We sometimes express RDF triples 〈subject,
predicate, object〉 in the language of logic as predicate(subject, object).

The alphabet of f-EL@ consists of sets NC of concepts names, NR role names
and NI instance names. The roles in f-EL are crisp and the concepts are fuzzy.
Our language of description logic further contains a constructor ∃ and a finite set
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of aggregation functions symbols @U for each user and/or for each group of users.
Concept descriptions in f-EL are formed according to the following syntax rules:

C → ⊤ | A | @(C1, . . . , Cn) | ∃r.C.

In order to give this syntax a meaning, we have to define interpretations of our
language. In f-EL we have interpretations parameterized by a linearly ordered set
of truth values with aggregations. For a preference structure (a set of truth values
P = [0, 1]), a P -interpretation is a pair I = 〈∆I , •I〉 with a nonempty domain ∆I

and fuzzy interpretation of language elements:

• AI : ∆I → P , for A ∈ NC

• rI ⊆ ∆I ×∆I, for r ∈ NR

• (∃r.C)I = sup{CI(y) : (x, y) ∈ rI} ∪ {0}

• (@(C1, . . . , Cn))
I(x) = @•(CI

1 (x), . . . , C
I

n(x)).

Suppose that we have NR = {Salary,Region,TravelingDuties, . . .} where ele-
ments of this set represent the RDF predicates from the domain ontology.

NC = {high salaryU , closeU}

where high salaryU and closeU are fuzzy membership functions explicitly figured
by user. Fuzzy function high salaryU depends on the specified salary, while closeU
depends on the region. As Region is a crisp attribute, the user must say directly
how “close” he considers some area to be. This simple approach can be improved
by using GPS coordinates and determining distances automatically. Such attribute
would be called metric attribute, then.

NI = {Java Developer, Secretarial Support, 42 000 Sk/W,US,FR . . .}

In Herbrand-like interpretation H we have:

Java DeveloperH = Java Developer

Secretarial SupportH = Secretarial Support

42 000Sk/WH = 42 000

USH = US

FRH = FR

high salaryHU (42 000) = 0.53

closeHU (US) = 0.9

SalaryH = {(Java Developer, 42 000), (Secretarial Support, ???)}

RegionH = {(Java Developer, US), (Secretarial Support, FR)}

Note that we work with open world assumption as usual in description logics.
Some values are not presented on the web, or our WIE tool was not able to recognize
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it, so ??? means unknown value of salary for the Secretarial Support job offer. We
overload our concept high salaryU and closeU also for job offers by using existential
quantifier:

high salaryHU (x) = (∃salary.high salary)H(x)

and subsequently

high salaryHU (Java Developer) =

sup{high salaryHU (y) : (Java Developer, y) ∈ SalaryH} ∪ {0} = 0.53

high salaryHU (Secretarial Support) =

sup{high salaryHU (y) : (Secretarial Support, y) ∈ SalaryH} ∪ {0} = 0.

Similarly, by several other bindings we can get closeHU (Java Developer) = 1.

The supremum affects the case when we have more different salaries for one job.
Then we take the highest result. If there is no salary specified, the result will be 0
according to the definition. Aggregation from particular job offer attributes scoring
to global score is modeled by fuzzy aggregation

(@(high salaryU , closeU))
H(Java Developer ) =

@•(high salaryH

U (Java Developer ), closeHU (Java Developer )) =
(3×high salaryH

U
(Java Developer )+2×closeH

U
(Java Developer ))

5
= 0.72

hence a TBox can contain a statement good jobU ≡ (@(high salaryU , closeU ))
H.

Fuzzy description logic f-EL@ is the motivation for creating a model for fuzzy
RDF. For example, a fuzzy instance high salaryHU (Java Developer) = 0.53 can be
modeled by the RDF triple: 〈Java Developer, high salaryHU , 0.53〉.

This is an embedding of a fuzzy logic construct into classical RDF, which needs
to translate also constructions of DL, namely ∃salary.high salary in fuzzy DL turns
to composition of roles, where ∃salary.(∃high salary.⊤) needs an aggregate max
(or top-k) extending DL with a concrete domain (see [1]). It is out of the scope
of this paper to describe such DL with a concrete domain and embedding of our
fuzzy DL in more detail. What we claim here is an experimental implementa-
tion of both our fuzzy DL, special crisp DL with a concrete domain and a related
model of RDF with extended syntax and semantics of owl:someValuesFrom. This
f-EL@ description logic forms a model theoretic part of our semantics. In practice,
methods and implementations (computational model) are based on many valued
logic programming. In generalizing logic programming to many valued case we
have two basic possibilities. We can consider a rule as an implication (see [33])
or a clause (see [26]). In this paper, we have chosen the first approach, espe-
cially because it has a good induction model. Rules learned can get the form
good job(U, JO)←− @(high salary(U, JO), close(U, JO)).
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2.3 User Preference Ontology

Description logics are theoretical counterparts of OWL ontologies. Therefore we
also use an ontology to represent and store our user preference model. Ontology
structure is especially suitable for storing user preferences because of their rich
irregular structure and possible missing values. The main ontology class User has
the following properties that express relevant personal information:

• hasAge

• hasMaritalStatus

• hasGender

• hasEducationLevel.

Every user is then represented as an instance of class User with a unique URI
identifier. Personal information is collected as a part of user’s registration in the
system. It can be used later to determine initial set of local user’s preferences.

User’s personal information is independent from particular domain, but prefer-
ences are domain dependent. It means that the user may have different preferences
to place in different domains, e.g., flats and job offers. User instance is therefore
connected with one DomainSpecificUser instance for every domain that we want to
model, e.g., one instance for job offers and another instance for notebooks. Instances
of DomainSpecificUser can be acquired from different sources and with different
methods. Together they form a complex model of domain specific preferences which
are used for finding best objects.

DomainSpecificUser has the following properties:

• hasAttributePreference – local preferences related to domain specific attributes

• hasRuleCharacteristic – part of global preferences.

Local preferences are related to fuzzy, fuzzified or crisp attributes. In the first
case, AttributePreference instance is connected with fuzzy set, as shown in Figure 2.
Fuzzy set membership function is piecewise linear and it is specified by a set of points
with x, y coordinates and string labels. We consider only fuzzy sets that correspond
to four basic types mentioned in Section 2.1. Thus, every fuzzy set in our ontology
must have a specified type. In Figure 2, HB is an abbreviation for higher-best fuzzy
membership function and LB for lower-best function, MID means middle-best and
MAR means marginal-best.

All ontology visualizations in this chapter are created with the Ontoviz tool1.
They have frame-like structure – every ontology class is represented by a frame
containing the class name and a list of its attributes. Every attribute has a specified
type, which can be either some primitive datatype like e.g. float, or (instances of)
another class. Thus we distinguish datatype attributes and object attributes. Object
attributes can also be represented by an arc labeled with attribute names. Special

1 http://protegewiki.stanford.edu/index.php/OntoViz
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AttributePreference

hasWeight: float

relatesToAttribute: GenericAttribute

GenericAttribute FuzzyCharacteristic

FuzzySet

FuzzySetType

FuzzySetPoint

hasX: float

hasY: float

hasXString: string

MARMIDLBHB

hasType hasPoint

hasFuzzySet

relatesToAttribute

Fig. 2. Ontology representation of preference to fuzzy attributes

types of arcs include instance relationship (indicated by a full arrow head) and
subclass relationship (indicated by an empty arrow head).

In the case of crisp attributes, we can express preference as a (crisp) set of
preferred attribute values (Figure 3).

However, the user may still prefer some values of such attribute more that other
values. It is possible to specify user’s degree of preference to some values. This
method is called fuzzification of crisp attribute. In the user preference ontology (see
Figure 4), each fuzzified value consists of the original crisp value and its evaluation
from [0, 1].

As stated in Section 2.1, global preferences can be represented as monotone
classification rules. Each rule consists of one or more condition clauses and a result
value. An example of clause is good salary(x) ≥ 0.5 where good salary is a fuzzy
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AttributePreference

hasWeight: float

relatesToAttribute: GenericAttribute

GenericAttribute

relatesToAttribute

CrispCharacteristic

hasCrispValue: string*

Fig. 3. Crisp attributes

AttributePreference

hasWeight: float

relatesToAttribute: GenericAttribute

GenericAttribute

relatesToAttribute

FuzzyfiedCharacteristic

FuzzyfiedValue

hasString: string

hasEval: float

hasFuzzyfiedValue*

Fig. 4. Fuzzified attributes

set for domain specific attribute Salary, ≥ is an instance of class Relation and 0.5
is a datatype value. Ontology schema for classification rules is shown in Figure 5.

2.4 Domain Ontology

Domain ontology models the application domain. In the NAZOU project, it includes
all information about concrete job offers collected from the web. The extraction of
the job offers from the web can be performed in different ways through the different
methods. In this paper the tool OMIN (see Section 3.1) represents methods of
data extraction. Due to the experimental status of this tool we complement the
extracted data with job offers that were entered manually via specially crafted web
interface.
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RuleCharacteristic

hasResultValue: float

Clause

hasDatatypeValue: any

hasObjectTypeValue: Instance

GenericAttribute c:Relation

c:rEqual c:rBelow c:rAbove

hasClause*

hasAttribute
hasRelation

Fig. 5. Rule characteristic

The domain ontology consists of concepts, relations between concepts and in-
stances of concepts. There are two types of concepts – domain independent and
concepts that depend on domain. Therefore domain ontology of job offers includes
several independent ontologies:

• offer – defines job offer in general,

• offer-job – defines concrete job offer, the organization which offers the job posi-
tions and additional concepts (e.g. salary and benefits),

• region – domain independent ontology, which defines geographical (prefix r) and
administration regions and their instances,

• classification – classifies branch of industry, profession or education level (prefix
c:),

• offer-job-inst – in contrast to previous ontologies which define only schema
(metadata), this ontology contains instances (data). Simply said, offer-job-inst
imports other four ontologies and extends them with instances. This approach
ensures that the ontology schema is separated from data and it does not change
when data is added or deleted.

Domain independent ontologies can be used in other application domains.
In the ontology offer general job offer is represented by class offer with has-

Source, hasCreator, hasValidityInterval, name and summary. Otherwise, the most
important class is in the ontology offer-job and it is called JobOffer, which rep-
resents the real job offer. In Figure 6, objects properties of the JobOffer are
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jo:Prerequisite

c:ProfessionClassification

jo:JobOffer

jo:isOfferedIn*

jo:hasPrerequisite *

jo:offersPosition

jo:JobTermjo:hasJobTerm*

jo:Responsibility

jo:hasResponsibility *

jo:Organization

jo:isOfferedBy jo:isOfferedVia

jo:Benefit

jo:hasBenefit *

jo:ContractType

jo:hasContractType*

jo:ApplyInformation

jo:hasApplyInformation *

r:Region

jo:hasDutyLocation*

jo:Salary

jo:hasSalary

jo:TravelingInvolved

jo:involvesTraveling

c:ManagementLevel

jo:isOfManagementLevel

jo:offers*
jo:mediates *

jo:isBasedAt jo:isDutyLocationOf*

r:isPartOf* r:consistsOf*

Fig. 6. Object properties of the class JobOffer designed in the NAZOU project [24]

shown, which are connected with the classes ApplyInformation (information about
job application), Benefit (e.g. company car, insurance), ContractType (e.g. full-time,
part-time), c:ManagmentLevel (company level of the position in hierarchy of man-
agement), Organization (organization that offers or mediates the job), Prerequisite
(preconditions for job candidate), ProfessionClassification (profession classification
according to OSN),r:Region (allocation of work position), Salary (highest/lowest
salary, reward, currency, time interval of salary), TravelingInvolved (encodes the
information if traveling is included in job content).

Except for object properties (attributes), there are also datatype properties:

• hoursPerWeek – the float number about work hours per week,

• name – any string to encode the name of the offer,

• startDate – date as a start date of the beginning the work,

• startDateASAP – property to encode if it is necessary to start work right now,

• subordinateCount – number of subordinates and

• text – text source of the offer (for test purpose).

Usually, it does not make a sense to develop the system for one use (for one
domain). Therefore we have tried to design our methods in such a way that the
system mentioned above (with small adjustments) can search for mutual funds,
flats or car for sale or other entities. Therefore our tools are attribute-oriented.
That means that every single tool which needs to handled with the data is not
directly working with an ontology (domain or user preference), but it is working



User Preference Web Search 527

with attributes and their values. Instances of the both ontologies are mapped into
attributes.

For domain ontology, we identified the following attributes. Some attributes
have finite number of values (degrees) identified from careful analysis of the domain
of job offers and real data.

• EducationLevel – fuzzy attribute with 10 values denoting from elementary edu-
cational level to PhD level,

• MinSalary – minimal salary normalized to Slovak crowns per week,

• Place – duty location, which belongs to crisp attributes,

• ExperienceLevel – fuzzy attribute with 5 values (from basic to expert),

• ManagementLevel – fuzzy attribute, which has 10 levels (from worker to presi-
dent of the company),

• TravelingInvolved – fuzzy attribute to express amount of traveling with 3 levels
(from none to often),

• StartDate – start date of the job position,

• Profession – offered position (crisp attribute),

• HoursPerWeek – number of hours per week,

• Benefits – benefits besides salary (crisp attribute),

• ContractType – fuzzy attribute to denote type of contract with possible values,
e.g. Permanent, Temporary or SelfEmployed,

• Industry – crisp attribute denoting industry sector of the job offer.

3 METHODS

In this section, we introduce the methods used in our system, namely web informa-
tion extraction, preference acquisition, preference learning and top-k search.

3.1 Web Information Extraction

The information extraction module is the foremost part that retrieves data from the
web. We consider the HTML pages, which individually contain the data for a single
domain object (we shall call them detail pages). Each retrieved HTML is processed
by the OMIN tool [22] in order to retrieve document the domain object attribute
values. The actual process is based on the two approaches: on the algorithm of
comparison of two HTML sources and on the simple extraction ontology based on
the regular expressions, which refines found attribute values.

Many detail pages are dynamically generated on the server side by some kind
of a template engine. A typical template represents a skeleton of HTML page with
variables, which are substituted with dynamic data, thus yielding a result HTML
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page which is then sent to client. Therefore, we can expect considerable similarity
between two pages generated from a single template.

We compare HTML sources of two web pages by using the well-known diff 2

algorithm and focus on the difference spots, i.e., places in which do the two sources
differ. They can correspond to the variables from the original template (which is
unknown) and most often, these variables represent the domain object attributes.

By applying various heuristics and picking a large number of page pairs for
comparison, we can deduce the object attribute values. A simple extraction onto-
logy with regular expression patterns can further reduce the number of invalid or
misappropriate entries.

3.2 User Preference Acquisition

We use an explicit acquisition method with a GUI that enables users to define both
local and global preferences. This GUI also lets user skip explicit specification of his
preferences if it is too complicated for him or her. User profile can be also modified
later.

The graphical interface for global preferences contains one slider for every at-
tribute (see Figure 7). User can drag this slider from the value “Unimportant” to
“Important” and thus specify a weight of particular attribute. This weight is used
in weighted average, i.e., initial aggregation function. This weighted average is later
replaced with classification rules learned from evaluated results.

Fig. 7. GUI for explicit specification of global user preference

Local preference specification is different for fuzzy and crisp attributes. In the
case of fuzzy attributes, the interface shows possible values of this attribute in the
first column. Every value has a slider in the second column. The slider enables the
user to specify a degree of preference for corresponding attribute value (see Figure 8).

Crisp attributes have a finite range of possible values, usually strings. These
values have no apparent ordering. The interface shows a combo box with possible
string values. If the user selects some value, it appears on the right side of the GUI

2 http://www.gnu.org/software/diffutils/
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Fig. 8. GUI for local user preference to fuzzy attributes

together with a slider and a “remove” button. This button removes the correspond-
ing slider from the GUI and returns the value back to the combo box. This may
be useful if the user decides that he is not interested in the value anymore. The
slider has the same functionality as with fuzzy attributes: it specifies a degree of
preference for corresponding value. Thus we specify a fuzzification of crisp attribute
(see Section 2.3). Figure 9 shows the interface for the Region attribute. Three va-
lues (Europe Central, Europe Western and Europe Northern) have been previously
selected and their preference degrees have been set with sliders. All user preferences
specified with this interface are stored to ontology and used for searching the best
objects (see Section 3.5).

Fig. 9. GUI for local user preference to crisp attributes

Missing parts of user profile are filled by modified collaborative filtering method.
Collaborative filtering systems [7] are able to find a group of users similar to the cur-
rent user and to predict his/her preferences as average preferences within the group.
We find a group of similar users according to basic user’s personal information from
the registration questionnaire. This information is stored in the domain independent
part of our user ontology (see Section 2.3). We store only a few user characteristics
with finite number of values (e.g., education level, gender, age). Different combina-
tions of these values are called user types. There is also a finite number of attributes.
We can compute a hash function for every user type and every attribute. Thus we
get two-dimensional hash table.

Table 1 shows a simplified example of such hash table. The first column contains
hashed user types, the first line contains attribute names (in real implementation,
these attribute names are also hashed). For spatial reasons we restrict this table to
five user types and two attributes, EducationLevel and Salary. This table contains
four numbers for every user type and attribute: number of higher-best, lower-best,
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EducationLevel Salary

HB LB MID MAR HB LB MID MAR

−34 115 1 7 0 0 5 0 3 0

44 125 4 10 2 0 12 1 3 0

23 112 2 2 12 1 10 3 4 0

−11 213 1 4 6 0 2 1 7 1

−24 212 0 6 2 0 1 5 0 2

total 8 29 22 1 30 10 17 3

Table 1. Two-dimensional hash table of user types

middle-best and marginal-best fuzzy sets for each user type and attribute taken from
previous users.

If a new user would skip explicit specification of his/her preferences, we can take
his/her personal information from the questionnaire, compute a hash function and
look for the result in our hash table. E.g., if the hash function returns a result 23 112,
we search for the corresponding row in Table 1 and choose the prevailing type of
fuzzy set for every attribute. The new user would receive a universal middle-best
fuzzy set for the attribute EducationLevel and a universal higher-best fuzzy set for
the attribute Salary.

Note that the result of the hash function does not have to be found in the hash
table. In our example, Table 1 contains only 5 user types and it does not contain e.g.,
type 11 110. This would mean that no user of the same type (11 110) ever entered
our system before. In this case, the user would receive fuzzy sets prevailing for all
users, not only for users of the same user type. The new user 11 110 would have
lower-best fuzzy set for EducationLevel and higher-best fuzzy set for Salary. Thus
we can acquire approximate preferences even for those users who do not provide
them explicitly.

Other possibilities of acquiring user preferences are inductive and statistical
learning methods described in the following sections.

3.3 Detecting Local Preferences

To learn local preferences, we have several possibilities. The first one is, we present
to user a representative sample of job offers (see Table 2) with several attributes, e.g.,
salary, education, responsibility, location, traveling. Real job offers seldom specify
the amount of traveling – this is a typical example of attribute with many missing
values. The user classifies jobs into categories unsuitable(U), rather unsuitable(RU),
neutral(N), rather suitable(RS) and suitable(S) according to the relevance of the job
offer to him/her.

We distinguish four basic types of local preferences, according to user’s most
preferable attribute values. We call these basic types higher-best, lower-best, middle-
best and marginal-best.
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Job offer Salary Place Travel Eval

Programmer Analyst (Chicago) 25 812 Sk/W US IL Often U
VP of Application Development 91 778 Sk/W US MD S
Java Developer (Lake Oswego) 42 000 Sk/W US N
Bank Quantitative Developer Sk/W London RU

HMS Associates Of Tri-State Inc. 66 000 Sk/W US RS
Secretarial Support Sk/W FR U
Systems Programmer 48 757 Sk/W US N
VC++ Makefile Generation 36 000 Sk/W US AZ N
PeopleSoft Programmer 64 572 Sk/W US NC RS

Table 2. Representative sample job offers evaluated by the user

The local preferences can be detected by statistical methods, e.g., regression or
QUIN [6]. Using the linear regression we can detect just two basic types (higher-best
and lower-best). In contrast to QUIN, the regression is resistant against statistically
irrelevant values. Thus for the purposes of detecting the aforementioned four basic
types, the polynomial regression is the most appropriate approach. In the case of
Table 2, we checked that the higher the salary (higher-best type of ordering) and
closer to US (lower-best type of ordering) are appropriate for the user. Albeit this
method is not fully integrated in the experimental implementation, it is useful for
the motivation purposes.

In our system, we offer additional possibility, namely, to learn local preferences
explicitly from the user. The user has the possibility to specify his/her preferences
by explicit choice of fuzzy functions. We have used this method in our experiments
(see Section 5).

3.4 Learning Global Preferences

We learn user’s global preferences by the method of ordinal classification with mono-
tonicity constraints [18] based on multiple use of the Inductive Logic Programming
(ILP) system ALEPH [28].

The user’s global preferences are computed by using his/her local preferences
which can be well represented in ILP. For illustration, consider that we have dis-
cretized the values of salary to three classes: small, medium and large. The different
orderings of these classes for different users can be:

small ≤ medium ≤ large
small ≤ large ≤ medium
large ≤ medium ≤ small
large ≤ small ≤ medium

medium ≤ small ≤ large
medium ≤ large ≤ small
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These orderings indicate which values of an attribute are preferable for a given user
(e.g. the medium values of the attribute salary are preferred to the large values,
which are preferred to the small values – as depicted in the last case).

An usual aggregation function can be easily simulated by monotone classification
rules in the sense of many valued logic:

job evaluation = suitable IF salary large AND Place close to US
AND Traveling involved

job evaluation = rather suitable IF salary large AND ...
OR salary medium AND Place close to US

We can see that the ordered meaning of the classification is preserved in our
results (this is proved in [17] as the igap-consistency of our approach): jobs classified
in the grade “suitable” by the user also fulfills the requirements for “rather suitable”
and “neutral” jobs, and “rather suitable” job fulfills the requirements for “neutral”
ones, e.g., the job with large salary and in US with traveling involved is “at least as
appropriate as” the job with medium salary and in Europe according to the local
preferences (higher salary and closer to US is the better).

From our results we can also obtain additional information about crisp attributes
(e.g. traveling involved, area of expertise). The meaning of any classification rule is
as follows: If the attributes of object x fulfill the expressions on the right side of the
rule (body) then the overall value of x is at least the same as on the left side of the rule
(head). We can, of course, assign the explicit values to vague concepts like suitable
or rather suitable. During the simulation of computation of aggregation function
we can simply test the validity of requirements of the rules from the strongest rule
to weaker ones. When we find the rule that holds, we can say that the overall value
of the object is the value on the left side of the rule. Since we test the sorted rules,
we always rank the object with the highest possible value.

It is a well known fact in data mining that the computation of an ILP system
is complex, since it deals with joins of relations (and several substitutions). In
our case, an RDF-triple “(Object-Attribute-Value)” is represented as a predicate
attribute(object,value). Thus, all predicates are joined via an object identifier and
substitutions are considered just for attribute values. All these settings can be
determined in the ALEPH background knowledge. Moreover, the computation is
made on a small dataset (user does not rate more than a few objects), so the learning
process is relatively fast.

Similarly to our approach, in [9] user preferences are learned using an Inductive
Logic Programming system TILDE [5]. In this work, monotonicity is not considered.
However, due to its expressiveness, input and output of ILP systems are readable,
in contrast to sub-symbolic systems like e.g. neural networks.

3.5 Relevant Object Search

Now we have orderings of properties from learning of local preferences and rules
from learning of global preferences. Our last task is to find top k objects which are
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suitable for particular user. We use the extension of middleware search of Ronald
Fagin [10]. The main idea is to browse only the necessary data until the system is
sure that it has the top-k objects already. Thus we do not need to calculate with
whole domain data. Limiting the retrieval to the k best objects is often sufficient
for the user and saves the time. The efficiency grows with the number of objects
stored in domain ontology and also with the number of properties we consider.

The model in [10] works with data stored in possibly distributed lists that are
ordered from the best to the worst in particular property. Fagin considered two kinds
of accesses to lists: sorted and random access. The sorted access gets the next best
object from the list after each access, so we can retrieve data ordered from the best to
the worst. The random access asks for the value of a particular property it includes
for a particular object. We want to minimize the number of accesses to lists and
of course the time of searching. The random access has one large drawback. Each
random access requires searching of the value of specific object. In the case of sorted
access the results are prepared immediately (values can be preordered according to
various criteria). Moreover, data can be sent in blocks. These important differences
are the reason why we prefer the sorted access algorithms to the random access in
our implementation.

Fig. 10. Number of I/Os to disk needed to retrieval of top-k objects

In our application we use 3P-NRA (3 Phased No Random Access) algorithm [13],
which is an improvement of NRA [11] algorithm with the support of various in-
dices.

In Figure 10, we can see the effectiveness of top-k search from the tests with
2 exponential and 2 logarithmic distributions of properties with 10 000 objects and
6 types of aggregation functions. For all experiments, we have considered 3 prop-
erties. Various combinations of properties and aggregation functions were used for
composition of 25 inputs for algorithms. The final results show the averages of
particular results. The techniques of top-k search significantly reduces the number
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of accesses and correspondingly decreases the search time, especially in the case of
a large set of objects.

Indices used by 3P-NRA algorithm [15] allow the simulation of sorted access,
used by 3P-NRA, for different local preferences over various attribute domain types:
ordinal, nominal, metric and hierarchical. Without indices, i.e., with data stored in
lists we have the problem that fuzzy sets and fuzzifications of different users cause
different ordering of attribute domains. Reordering of the lists according to local
preferences is more time consuming than processing of all objects (that we want to
avoid).

For example, when simulating sorted access over the ordinal attribute defined
by local preference of a user we use the B+tree index traversal. First, we identify
the local maxima of the fuzzy function, find the nearest objects to local maxima and
traverse the leaves according to descending fuzzy values of domain values (see [15]).
For example, if the fuzzy function has the “middle-best” type we have to create
two pointers, both starting at single local maximum. The first pointer traverses the
tree in descending direction and the second in ascending direction. Having simple
functions (partially linear) we can very easily find points of extremes to identify the
pointers and directions.

3.6 Fulltext Search

Fulltext search is a usual part of many middleware systems which provide the ability
to retrieve the relevant objects. Its main advantage is the ease of use allowing the use
of natural language queries (in complex use-cases) and the high relevance, provided
that the user supplies the useful terms. Such method is available in our system, too,
in the form of the JDBSearch tool [21].

This tool, based on the vector model, provides both basic functionalities of full-
text search engine: the indexation and the querying processed. The actual indexing
consists of building a special data structure – an inverted list, which can be de-
scribed as a list, where each element contains a term and a list of documents with
occurrences of that term.

Indexed documents can be retrieved from the arbitrary datasource; however, we
can assume that we process plaintext files from filesystem. Each document is at
first tokenized into single terms. Next, each term is processed by various tools, i.e.
lemmatizer or stemmer. Finally, each term is put into the inverted list and the docu-
ment weights are calculated according the inversion document frequency formulae;
we will calculate the weight using the inversion document frequency formula

wij = tfij · log

(

n

dfj

)

.

In this equation, dfj represents the number of documents which contain the term tj ,
and tfij denotes the number of occurrences of term tj in the document Di. The wij

then can be seen as a weight of the term tj in the document Di.
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This inverted list can be stored in a relational database (for example by mapping
terms and documents on separate tables while maintaining the term occurrence and
document weights in the separate table). The actual storage process is, however,
the matter of implementation.

The querying part is somewhat similar. Query terms are also tokenized and
optionally lemmatized or stemmed. We support two modes of operation: the first
with terms separated by AND connective and the second with terms separated by
OR connective. After the query preprocessing part, the whole query is mapped on
the SQL statement, which is executed against a relational database, which calculates
the result document relevances.

This fulltext query method can be integrated in many ways. The obvious as-
sociation is with the Morphonary tool. This linguistic method fulfills the role of
lemmatizer in the term processing. Another integration is available by connecting
this tool with the relevant object search tool Top-k. The results returned from the
JDBSearch tool can be plugged into the top-k search as one of the distributed lists.
This way, we can achieve preferential fulltext search, which can possibly reorder the
results retrieved from JDBSearch according to user’s global preferences.

4 IMPLEMENTATION

Our models and methods were implemented, integrated and experimentally tested in
the NAZOU project, atop the application domain of job offers. Our implementation
is based on the multiple tools corresponding to the aforementioned methods and
algorithms. Each tool can be used as a stand-alone component. However, this is not
our goal, since the fundamental part of our middleware deals with the integration
of these components. We have chosen Spring Framework [27] as the architectural
basis for each component. It glues together and manages the associations between
classes, thus maintaining low coupling and high cohesion. Moreover, the utility
classes provided by this framework (e.g. Spring’s JDBC abstraction) unifies the
access to the relational and RDF databases by various tools. Our implementation is
web accessible at http://x64.ics.upjs.sk:8080/nazou/. Tools are running also
at the site of whole project application.

4.1 Attribute Labels Detection in OMIN

Attribute labels detection can be achieved in three different manners. Currently
we have implemented the first one [22], which is based on the observation that the
attribute labels are explicitly denoted by some kind of separator or delimiter (usually
a colon). An example of attribute label is Salary:, where “:” denotes a separator.
For each element containing a difference spot we can find a nearest left text node
and detect whether it contains the separator. If so, we can match the given value
with the appropriate attribute. If the element does not contain a separator, we can
still consult the ontology, particularly the name annotation property, if it is equal
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with enumerated labels. Moreover, we plan to implement the approach in which we
consult the retrieved labels with either WordNet or a suitable word hierarchy (e.g.,
Google Topic Maps). Besides the implemented methods, we have examined other
approaches to attribute labels detection. Two are based on the visual emphasis of
HTML elements. We can expect that the attribute labels which are in the vicinity
of attribute values are often presented in some kind of accentuated form (typically
in bold text), what is typically achieved via CSS rules. We can possibly calculate
the relative visual weight of each element containing text nodes.

4.2 The Top-k Search

The architecture of our top-k search component allows us to combine various algo-
rithms, heuristics and types of sources in order to achieve the best searching strategy
for particular data sources and data types. The architecture takes into consideration
an analytical aggregation function as well as classification rules.

The overall design comprises four classes: an Algorithm represents the pro-
cedure used to evaluate the object order. We provide multiple implementations,
which use random or sorted accesses to the lists (or their combinations) – genera-
lized Threshold algorithm and NRA algorithm from [11] and 3P-NRA algorithm [15].
A DataSource allows to abstract from the physical location of the input data and
is subclassed for various sources – 4 main types of indices: B+tree (for ordinal at-
tributes), Dis-index (nominal attributes), M-tree (metric attributes) and Hierar-tree
(hierarchical attributes), then various alternative sources like database, files, SOAP
client, ontology and memory list.

A Heuristic is used by an Algorithm to optimize the time and space require-
ments. Their implementations are based on several theoretical researches ([10, 12,
13]. Currently, there are seven available options to choose from.

The last important class, Evaluator, is used in the process of calculation of
the overall value of an object. This is used in the determination of the final order
of the objects. One subclass is based on the concept of the aggregation functions
and the other uses the rules of the monotone graded classification obtained from the
user evaluation.

Each fundamental component is based on the Strategy design pattern. This
allows great flexibility in the methods used in the evaluation of the best objects by
Ordinal Classification with Monotonicity Constraints.

4.3 IGAP

The architecture of IGAP is based on classes which prepare data in the Prolog-
like notation, run the ILP system ALEPH, and parse its results into an object
representation.

1. Gather objects and attributes and map them on the instances of Domain Object

(these are just mappings from attribute names to attribute values).
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2. For each degree (except the lowest) iterate and prepare data for

(a) BackgroundKnowledgeGenerator transforms the object into Prolog facts
and adds monotonicity constraints in the form of Prolog rules.

(b) Classifier distributes the objects into positive and negative examples and
writes them into Prolog facts.

(c) IgapRunner executes the ILP system ALEPH and catches its output.

(d) ResultsInterpreter retrieves the Prolog-rules yielded by the ALEPH and
transforms them back into the object

The architecture is designed so that the ALEPH system could be possibly re-
placed by a customized ILP system. Moreover, we could plug-in additional modules,
for example for the discrete attributes, or for the various regression algorithms on
the attributes.

4.4 UPreA

Tool UPreA (User Preference Acquirer) [29], [30] is responsible for all actions con-
cerning user preferences: explicit specification, storing to ontology, retrieving and
updating, predicting preferences for users who do not specify them explicitly. Thus
UPreA provides a software facade for other tools that work with preferences, namely
IGAP and Top-k.

The most important classes are:

• UserProfileDao is responsible for serializing Java objects to and from RDF
format and provides access to Sesame database with ontology data.

• UPreA contains two-dimensional hash table with user types. This class imple-
ments simplified collaborative filtering to fill missing preferences.

• FuzzyApplet provides a GUI for explicit preference specification. It handles
both global preferences (represented as attribute weights) and local preferences
(represented as fuzzy set membership functions). Screenshots of this GUI can
be seen in Section 3.2.

• UpreaFacade provides high-level access to preference searching. It has a method
getRatedInstances which takes user URI identifier and (optional) list of rated
results as arguments. It calls other methods of Top-k, IGAP and itself as neces-
sary. If the user previously rated some results, UpreaFacade calls IGAP learning
method. Then it updates user preferences in the ontology and calls Top-k that
retrieves new results according to actual preferences. This method enables cyclic
searching for best objects and refining user preferences.

4.5 JDBSearch

JDBSearch consists of two main components. DocumentIndexStorage represents
the class that writes the inverted list into a relational database. Its main task
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is to perform all tasks of the aforementioned indexing process. There are various
available data sources which can retrieve the documents and their metadata, e.g.,
filesystem, ontology, web, etc. The parsing and tokenizing parts comes in the form
of two implementations: the PorterStemmer performs the stemming of the docu-
ment terms. SlovakLemmatizer is an implementation of lemmatizer customized for
inflective Slovak language.

The actual storage process is targeted for the MySQL database (although it is
possible to use another database). It allows to index very large collection of data by
splitting the indexation into the batches which are directly loaded into the database.
These batches can be even indexed independently on the multiple machines, thus
achieving parallel indexation.

The second component deals with the actual querying process and is represented
by the FulltextQuery class. Each query is parsed and tokenized (optionally trans-
formed via stemming or lemmatizing processes) and mapped on a SQL query, which
is executed against the database.

4.6 Tvaroslovńık/Morphonary

The process of searching in text documents should consider an important observation
that one word (usually reflecting one notion) can have different forms. Linguistic
processes are used in the processes of indexation and querying. The original imple-
mentation of our full-text searcher JDBSearch working with English documents uses
Porter’s stemming algorithm ([25]) in both cases. By replacing Porter’s stemming
by the lemmatization provided by our tool Morphonary/Tvaroslovńık we obtain
a version of tool able to work correctly with Slovak language. More information
about Morphonary/Tvaroslovńık can be found in [20] (in this volume).

4.7 Tools Interaction Summary

The aforementioned tools can be separated into two groups: the tools that work
offline and those which work online.

Offline tools acquire information from the web (Omin) and store it into domain
ontology. They are not active during the user’s interaction, but work in a “batch”
mode (gather data in a single run which can be scheduled on particular time). E.g.
Omin is executed whenever new jobs are retrieved from the web. The processed data
are not only stored into the ontology, but also indexed. Other tools do not access
the ontology directly, but only via index, which rapidly speeds-up the query phase.
The reindexation happens on scheduled times or when there is a rapid change in the
domain ontology (a job offer was added, changed or deleted). Indices are maintained
by the Top-k tool and primarily used by the IGAP and UPreA tools.

Online tools (UPreA, IGAP, Top-k, JDBSearch) are in operation as shown in
Figure 11. The user has to provide the data about him/herself through the ques-
tionnaire, adds/removes his/her preferences and their relevances (thus defining fuzzy
sets) and the tool UPreA stores the information into user ontology. This process
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Fig. 11. Sequence diagram of the tools chain

runs just one time and it is shown on the mentioned figure and it is labeled “one-
time process at user registration”. Then it processes user information and sends it
to the Top-k which finds top-10 job offers for the selected preferences. The user has
two choices in this step:

• Evaluate the represented offers and submit them to UPreA which calls the IGAP
to induce the hypotheses (rules). These are used in the Top-k search process,
which produces another 10 job offers.

• Alternatively, the user can use keyword search which means that user preferences
are extended with fulltext attribute. With assistance of fulltext attribute it is
possible to reduce job offers ordered by user preferences to satisfied fulltext
query.

Furthermore, the user has an option to use one of the following activities repeatedly
in arbitrary order (in Figure 11 the part labeled “cycles can be executed arbitrary
number of times”):
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• Object evaluation – new preferences (hypothesis) are inferred by IGAP.

• Searching for the k best offers with regard to user preferences and fulltext query.

5 EVALUATION AND EXPERIMENTS

We use a sample implementation of preference based search system for experiments.
The complete user dependent searching process is illustrated in Figure 12. We used
sample domain ontology in OWL format with 500 instances of job offers.

Explicit user
local preferences

and weights

User ratings
of objects

Learning global
preferences

Relevant
object search

1

2

3

4

User
profile

ontology

Domain
ontology

R0

R , R1 2

U , U0 1

Fig. 12. Flow diagram of user profile dependent part

In our system and experiments, different users can explicitly specify local prefer-
ences. We consider job offer attributes like required education and experience level
of the applicant, offered salary, manager position and the amount of traveling in-
volved in the job (EducationLevel, ExperienceLevel, MinSalary, ManagementLevel,
TravelingInvolved). The testing implementation first asks the user to specify his/her
explicit preferences to these attributes. The user can choose if s/he prefers higher,
lower, middle or marginal values of these attributes and s/he can even define how
much s/he prefers every value. Thus we can recognize higher-best, lower-best, middle-
best and marginal-best preference types. Additionally, a weight assigned to each
attribute can be specified. This is used for combination function being weighted
average. These parameters are used to retrieve (arrow 1) top-k objects to user. We
denote this list of results as R0.
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User preferences can be changed or stated more precisely during several search
cycles. We follow the idea that everybody can easily say how suitable is a concrete
object. Thus we will require the user to evaluate the results in scale from the worst
to the best.

User evaluation uses 5 possible values: worst, bad, neutral, good, best (see
Figure 13). The k-tuple of initially retrieved objects R0 is transformed to new set U0

(a fuzzy set with different order induced by user ratings). This is sent (arrow 2) to
IGAP tool learning global preferences. These are used (sent via arrow 3) to relevant
object search to retrieve top-k objects from the whole set of objects; let us denote
this by R1. After new objects are given to user, s/he can evaluate them (creating U1)
and start the whole process again. We created a database log for user preferences,
result sets and user ratings.

Fig. 13. Screenshot of user interface
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We performed two experiments with different groups of users. There were
62 users in the first group and 136 users in the second group. The basic statis-
tics is shown in Table 3.

Users Text Searches Preference Searches Ratings

62 0 333 3 547

136 77 482 4 402

Table 3. A comparison of the experiments

We have already excluded users who were “just browsing” or testing the system
availability. In the following analysis, we consider only those users who performed at
least one complete cycle, i.e., those who viewed and rated first 10 results and more
precise global preferences were (possibly) found from their ratings. Some users
passed only one cycle and stopped searching, while other users repeated and refined
their search. Most users performed three searching cycles, so we analyze only the
results of the first three cycles.

We find that global preferences were found from user ratings in 71% for the
first experiment, 68% for the second experiment. This means that about one third
of user ratings were inconsistent and the induction tool IGAP failed to find global
preferences for such ratings. Successive cycles usually improve global preferences; the
number of rules was higher or equal in 75% of successive cycles, 68% for the second
experiment. Sometimes the number of rules oscillates from one cycle to another.
This happens for 30% of users. We suppose that these users do not know exactly
what they are looking for or their preferences do not remain the same throughout
the testing.

Fig. 14. Graphical user interface for explicit preference specification

Although user’s ratings are used for finding global preferences, they also provide
us an important feedback. They define some ordering of results. If this ordering is
similar to the ordering returned by top-k searching algorithm, it indicates that our
preference model resembles real preferences well. We compare two orderings (the
ordering Ri given by top-k algorithm and the ordering Ui given by user ratings) with
Kendall tau rank correlation coefficient [19]. This coefficient determines a degree of
correspondence between two orderings of the same objects.
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Kendall tau coefficient is defined as τ = 2P
1

2
·n·(n−1)

− 1 where P is the number

of concordant pairs in both ratings. If two orderings are the same, they have tau
coefficient 1. If one ordering is the reverse of the other, they have tau coefficient −1.

R0 and U0 have average tau coefficient 0.44 (the first experiment) and 0.52 (the
second experiment) representing a strong correlation. If we analyze second cycles
(R1 and U1), we have average tau coefficients 0.60 and 0.62; third cycles (R2 and U2)
have coefficients 0.58 and 0.63. Note that some users stopped after the first or the
second cycle, so the number of results is smaller for the third cycle. The correlation
coefficients show that the inductive methods really improve global preferences, see
Table 4. The numbers of ratings used for tau computations are shown in Table 5.

Experiment 1. cycle 2. cycle 3. cycle

1 0.44 0.60 0.58

2 0.52 0.62 0.63

Table 4. Correlations of result ordering and user evaluation

Experiment 1. cycle 2. cycle 3. cycle

1 85 33 23

2 96 79 60

Table 5. Numbers of rated result sets

We present a complete record of one typical user. Table 6 shows that this user
rated the first 10 results and this ordering by ratings was different from the ordering
given by top-k algorithm (tau correlation of R0 and U0 is only 0.1556). However,
two rules were found from user’s ratings and the global preferences were refined.
The second result set R1 has tau correlation 0.5111 compared to U1. In the third
cycle, the number of rules increased to 3 and tau correlation increased to 0.9111.
The user was content with his results and he stopped searching.

We are also interested in the correlation of k-tuples Ri, Ri+1. If Ri and Ri+1 have
empty intersection, this correlation will be 0. In case of non-empty intersection, we
can compute usual tau correlation coefficient of the common elements and multiply

the result with number of common elements
number of all elements . The results are shown in Table 7.

From the mathematical point of view the Kendall-tau coefficient is (the
[−1, 1]-normalization of) the number of inversions of a permutation. This approach
does not consider relevance of place of a change but it is meaningful to think that
the interchange of the 1st and the 2nd place is more significant than the interchange
of the 8th and the 9th place.

Therefore we propose a modification of this approach which will reflect the place
of potential changes. To be more formal, let p = 〈p1, p2, . . . , pn〉 be the permutation
of positions 〈1, 2, . . . , n〉 and let w = 〈w1, w2, . . . , wn〉 be a vector of position weights
(or importances) which are non-negative reals with property w1 ≥ w2 ≥ . . . ≥ wn.
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Offer ID R0 U0 R1 U1 R2 U2 R3

01096 2.837 1

0f1b9 2.802 1

01004 2.757 4

01082 2.729 5

01059 2.723 2

01011 2.681 4

9fe41 2.588 5 4 3

8bc3a 2.588 4 4 4

01090 2.54 5

01095 2.54 2 3 2

e4464 4 5 5 5 5

4c537 4 5 5 5 4

1d41d 4 1

c56aa 4 5 5 4 4

01007 4 5 5 4 3

8f22d 4 5 5 3 3

01063 4 4 4 2 2

ef534 4 1 2

01069 3 2

01068 3 1

01100 3 1

31a44 2

a8bbc 2

01036 2

τ 0.1556 0.5111 0.9111

Rules 2 3 4

Table 6. Testing records for one user and three cycles

Cycle Result sets Number of result sets Correlation

1, 2 R1, R2 90 0.52

2, 3 R2, R2 80 0.65

Table 7. Correlation of Ri and Ri+1

Then define the function τ ′w by the following formula

τ ′w(p) =
n
∑

i=1

|wpi − wi|.
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For example if the permutation is p = 〈4, 1, 3, 5, 2〉 and the weights are w =
〈10, 7, 4, 2, 1〉, then

τ ′w = |w4 − w1| + |w1 − w2|+ |w3 − w3| + |w5 − w4|+ |w2 − w5|

= |5− 10|+ |10− 7|+ |4− 4|+ |1− 5|+ |7 − 1| = 5 + 3 + 0 + 4 + 6 = 18.

We can see that the minimum of this function is 0 (it is gained for the identity
permutation), and its maximum is

∑n
i=1 |wi−w(n+1)−i| (for bottom-up permutation).

It can be assumed that in our iteration process this number will decrease.
Of course, this function can be normalized to interval [−1, 1], namely,

τ ′w(p) = 2 ·

∑n
i=1 |wpi − wi|

∑n
i=1 |wi − w(n+1)−i|

− 1.

In our example τ ′w(p) = 218
28
− 1 = 0.28, whereas τ(p) = −35

45
. We see that two

sequences which are rather uncorrelated in tau are rather correlated in this new
coefficient. We would like to experiment with this in future.

We can also analyze the local preference types and find which type is the most
common for every attribute (see Table 8). It is easy to see that higher-best is
generally the most common type and marginal-best is the least common. Lower-
best type is the second most frequent for ManagementLevel and TravelingInvolved,
while middle-best is the second most frequent for EducationLevel, MinSalary and
ExperienceLevel. These results reflect some intuitive ideas, e.g., that most people are
not satisfied with low salary, seek a job for some specific required level of education
or experience and that many of them are not willing to travel.

Attribute Higher Lower Middle Marginal

EducationLevel 41 12 23 4

MinSalary 67 1 10 2

ExperienceLevel 50 10 15 5

ManagementLevel 43 24 8 5

TravelingInvolved 42 25 12 1

Table 8. A summary of local preference types

6 TRANSFER TO OTHER DOMAINS AND CONCLUSIONS

As we have mentioned before, the design and implementation of each method should
allow fairly easy migration to other application domain. However, this process
is not fully automatic and requires multiple steps. The most important part is
the creation of the new ontology. Then the configuration file which contains the
attribute definitions, their types and corresponding ontology mapping should be
accommodated to the new domain. Finally, the user interface has to be adapted to
new conditions.
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Our first domain migration experiment is based on the application domain of
mutual funds. The main goal is now slightly different. To find the suitable objects
means to retrieve the best funds which the potential investor can invest in.

According to the migration steps, we created the prototype ontology, which
can be extended with help of prepared subontologies from application domain of
job-offers (e.g., region or classification).

String*
hasISIN

hasDescription
hasMinimumInvestment String*

String*
String*

Fond

hasDateOfIntroduce
hasValueOfFirstShare

hasFees

Date*

Float*
Float*

NAV

Performance

TotalAsset
CrossTradeShare

InvestmentHorizon

FundHasNAV

FundHasPerformance

FundHasAsset
FundHasCrossTrade

FundHasInvestmentHorizon

FundHasCurrency
Currency

FundHasCategory
Category

FundHasManager

Organization

FundHasLocation
Location

FundHasAllocationOfCapital

CapitalAllocation

FundHasDegreeOfRisk
RiskDegree

FundHasTop10

PerformanceForFund

FundHasDepository
FundHasAuditor

FundHasTop10

TimeIntervalhasTimeInterval

hasTimeInterval

 

Fig. 15. Object properties of the Fund class

The class Fund is cardinal class of ontology and its instances present mutual
funds (see Figure 15). Fund has many datatype properties, from which the most
important are:

• general information – hasName, hasISIN, hasMininumInvestment,
hasDescription,

• information about history of the funds – hasDateOfIntroduce, hasValueOfFirst-
Share,

• fees – hasManagementFee, hasPreliminaryFee, hasFinalFee, hasDepositoryFee.

Object properties can be divide into temporal and non-temporal. The temporary
properties are:

• FundHasNAV – net asset value to date (the range is the NAV class),

• FundHasPerformance – performance of the fund to date (calculated from NAV’s;
the range is the Performance class),
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• FundHasAsset – whole asset of the fund to date (the range is the TotalAsset
class),

• FundHasCrossTrade – total sales and purchases of fund shares to date (the range
is the CrossTradeShare class) and

• FundHasInvestmentHorizon – recommended duration (time interval) of invest-
ment (the range is the InvestmentHorizon class).

Except for temporal object properties there are the following properties:

• FundHasCurrency – information about reference currency of the fund (the range
is the Currency class),

• FundHasCategory – category of the mutual fund, e.g., bond fund or equity fund
(the range is the Category class),

• FundHas{Auditor/Depository/Manager} – information about auditor, deposi-
tory and manager of the fund (the range is the Organization class),

• FundHasLocation – describes geographical location of investments of the fund
(the range is the Location class), for now we consider just two locations – Slovakia
and abroad.

• FundHasAllocationOfCapital – is information about composition of shares in
percentage (the range is the CapitalAllocation class),

• FundHasDegreeOfRisk – is instrument to express normalized degree of the risk
(the range is the RiskDegree),

• FundHasTop10 – is list of the 10 biggest organizations or another fund, where
the fund has invested.

There are many cases of similarity between the default domain and this new
domain. However, there is one issue not occurring in the job offers ontology – the
presence of temporal data (such data are not present in our job offers model). This
issue is present in properties such as PerformancePerMonth or PerformancePerYear.
This is not unnatural, since PerformancePerMonth calculated today is obviously
different from PerformancePerMonth calculated yesterday.

Therefore we decided to find out just performance for the whole month (or
half-year and year). If we want to calculate the performance on March 31st 2008,
the PerformancePerMonth is calculated from February 1st to 29th 2008. When the
calculation day is April 1st 2008, then PerformancePerMonth is calculated from
March 1st to 31st 2008. For the same reasons we decided to consider only the
performance per month, half of the year, year and annum.

The next migration step deals with the configuration of domain object attributes.
At first, we have identified the following mutual funds attributes:

• PerformancePer{Month/Half-Year/Year/Annum},

• {Preliminary/Final/Management}Fee

• Manager, Depository, Auditor
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• Currency

• Category

• Allocation

• InvestmentHorizon

• MinimumAmountOfInvestment

• RiskDegree.

Moreover, we have to migrate the user preference ontology. In this case, it is
the same as the ontology of job-offers. Also the semantics of user preference model
is the same as in the default application domain.

6.1 Conclusions

In this paper, we have described a model of system enabling users to search objects
from the same domain and heterogeneous sources. Data are collected from various
sources and are processed to vector index and to a domain ontology. The system
implements personalized search for users with different preferences. Our theoretical
model integrates all parts of the system from collected data in classical RDF form
to user query answering. We do not have a model for web resource downloading and
ontology annotation part. For this we present only methods and a tool.

The model of user dependent search is based on modeling preferences by fuzzy
sets and fuzzy logic. We present the semantics of fuzzy description logic f-EL. User
dependent search integrates both inductive and deductive approach. By induction
we can learn local and global preferences (although currently we have implemented
only global preferences). Results of induction as well as hand-filled orderings can be
easily modeled in user ontology and fuzzy RDF. Deductive part of the system uses
the preferences to find suitable objects for user, who can express his/her preferences
precisely by fuzzy functions and aggregation function. The easiest way is to evaluate
several objects in a scale and to let the system learn preferences. Repeating this
process (evaluating a set of objects and finding new objects) leads to refining the user
profile. The user who is satisfied with his profile and with the presented search results
does not have to evaluate objects again. When the domain ontology is updated, user
can just get the best objects according to his/her profile. Effective identification of
suitable user type for a new user is the aim of our future research. It can be done by
collecting more data from real users. We are collecting some personal information
like age, gender, job position, etc. and the explicit specification of preferences from
each user and then we will analyze the data in search for dependency.

The presented model was experimentally implemented and integration was test-
ed using Spring Framework [27]. Both searching methods (keyword text search and
preference search) consist of tools which can be further improved separately. After
the phase of gathering data about users, it will be possible to compare the efficiency,
speed and complexity of these methods and decide about their practical usage. In
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future we plan to experiment with infrastructure of [34] and [4], which could possibly
replace [27].

Our approach is used also in the Slovak project NAZOU – Tools for acquisition,
organization and maintenance of knowledge in an environment of heterogeneous in-
formation resources [24] to find relevant job offers for the user according to his/her
preferences.

Similar strategy of communication with users (evaluation of sample objects) was
used in [23], where the learning part of the system was covered by a neural network.
This approach does not permit to model user preferences. We did not find any other
similar approach to the whole process.
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University in Košice. The main area of his research is informa-
tion extraction from the web. He participated in the NAZOU
project and contributed to the Omin extraction tool, cooperated
on the Morphonary tool and served as software integrator and
architecture maintainer.

Jana Pribolov�a is recently finishing her Ph.D. study at Pavol
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