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Abstract. Distributed Constraint Satisfaction Problems (DCSPs) involve a vast
number of AI and Multi-Agent problems. Many important efforts have been recently
accomplished for solving these kinds of problems using both backtracking-based and
mediation-based methods. One of the most successful mediation based algorithms
in this field is Asynchronous Partial Overlay (APO) algorithm. By choosing some
agents as mediators, APO tries to centralize portions of the distributed problem, and
then each mediator tries to solve its centralized sub-problem. This work continues

until the whole problem is solved. This paper presents a new strategy to select
mediators. The main idea behind this strategy is that the number of mediators
conflicts (violated constraints) impacts directly on its performance. Experimental
results show that choosing the mediators with the most number of conflicts not
only leads to considerable decrease in APO complexity, but also it can decrease the
complexity of the other extensions of the APO such as IAPO algorithm. MaxCAPO
and MaxCIAPO are two new expansions of APO which introduce this idea and are
presented in this article. The results of using this mediator selection strategy show
a rapid and desirable improvement over various parameters in comparison with
APO and IAPO.

Keywords: Distributed Constraint Satisfaction, APO, cooperative mediation, mul-
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1 INTRODUCTION

A Distributed Constraint Satisfaction problem (DCSP) is a problem of finding suit-
able values to assign to distributed variables. This distributed environment in-
volves multiple autonomous agents, each one holding one or more variables. An au-
tonomous agent can suggest solutions to the other agents by exchanging some mes-
sages, and the receiving agents can accept or refuse the solution according to their
preferences. This model can represent a vast number of real-world and multi-agent
problems, such as distributed meeting scheduling [14], distributed resource alloca-
tion problems [3] and multi-agent truth maintenance [7]. Due to the variety of
problems in this domain, several algorithms have been proposed since 1991 to solve
them. These kinds of algorithms can be divided into two categories. Some of
them, such as Asynchronous Backtracking (ABT) [17] and Asynchronous Weak-
Commitment (AWC) [16] are completely distributed, while others use a hybrid of
distributed and centralized methods. One of the best known algorithms of the sec-
ond group is Asynchronous Partial Overlay (APO) [12] which is represented by
Mailler and Lesser. On the first category algorithms agents cannot reveal infor-
mation that breaks the privacy; it means that the agents dont have sufficient in-
formation about the global effects of making their local decisions. Although the
first category algorithms nearly satisfy privacy, the second group of algorithms out-
performs them by revealing necessary information. The second group of the al-
gorithms and specially APO are inheriting the speed of centralization while using
the advantages of parallelism. This new methodology, which is called cooperative
mediation, is a method between centralized and distributed problem solving me-
thods.

The main part of the APO algorithm is the coordinator selection, in which
the participating agents select the highest priority agent as mediator when they
recognize some conflicts about themselves. The mediator completes its information
about the space of the problem by exchanging some messages with the other agents,
and then, according to the received information, tries to solve the sub-problem
locally by changing its local variable or by starting a mediation session. All the
related agents participate in this session, receive the mediator messages and also send
suitable messages to the coordinator. Then the coordinator computes a solution for
this part of the problem and recommends the new value to the other agents. As
they are autonomous, they can accept or refuse these values. In this way each
coordinator solves a part of the whole problem and at last by putting these parts
next to each other, the whole problem will be solved, just like putting the pieces
of a puzzle next to each other. As it can be seen each coordinator solves its part
of the problem in a centralized manner. Although APO outperforms its previous
algorithms, new researches have been done recently that outperform APO. One of
these researches is proposed by Benicsh and Sadeh [1]. They investigated different
heuristics for mediator selection and found that if you place higher priority on the
agents with the smallest good-list, then you will see a substantial speedup from the
solver.
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As it can be seen, one of the most important parts of the APO algorithm is
the mediator selection part. So it seems to be a key part of the algorithm and
several effective strategies can be proposed in this part. Making a small change in
coordinator selection strategy can lead to a completely different solution. These all
show the importance of choosing the best mediator selection strategy.

In this paper a new and effective strategy is proposed. The chief idea of the
method is developing a heuristic method based on the number of a mediators con-
flicts to select more effective agents as mediators. In fact the agents that have the
most complete information about the conflicts can compute the best solutions. The
use of the agents with the largest number of conflicts will increase the speed of the
algorithm and decrease the number of messages exchanged.

In the rest of this article, first, the DCSP definition is presented formally and
an overview of previous works performed on DCSP is given. Section 3 introduces the
MaxCAPO (Max Conflict APO) algorithm which is an extension of APO and uses
the new strategy described for choosing mediators along with an overview of APO
and an example of execution APO and MaxCAPO. Next, Section 4 introduces the
MaxCIAPO (Max Conflict Inverse APO) algorithm that is an extension of IAPO,
which itself is an extension of APO and is also presented in this paper briefly.
Section 5 presents the experimental setup and results of applying this mediator
selection strategy to the APO and IAPO in addition to comparing APO, MaxCAPO,
IAPO and MaxCIAPO results. Finally, in Section 6, the conclusion of this work is
presented and some possible future tends in this area are introduced.

2 BACKGROUND

In this section, first DCSP is introduced formally, and then the woks which have
been performed to solve these problems until now are presented briefly.

2.1 Distributed Constraint Satisfaction Definition

A DCSP is a distributed form of CSP. This distributed environment involves multiple
autonomous agents each one holding one or more variables. It was first discussed
by Sycaro et al. and Yokoo et al. [15, 17]. The CSP which is the basis of DCSP is
formally defined as follows:

• A set of n variables: V = {x1, . . . , xn}

• A set of finite, discrete domains for each variable: D = {D1, . . . , Dn}

• A set of constraint: R = {R1, . . . , Rm} where each Ri(di1, . . . , dij) is a predicate
that is defined on the Cartesian productDi1×. . .×Dij. If the value assignment of
these variables satisfies this constraint, the predicate returns true and otherwise
false.

The final goal of solving DCSP is finding an assignment of values to all variables
which satisfy all the constraints in R. Each agent tries to reach this goal not only
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by satisfying its local constraints but also by communicating with other agents to
solve external conflicts. As can be seen, agents should have strong communications
with each other because their goals are interrelated. For example, in order to solve
its sub-problem, each agent may create new conflicts for other agents by changing
its or other agents’ value.

In this paper, it is assumed that agents can communicate with each other by
exchanging various messages and that the receiver agent receives messages exactly
in the order they were sent, of course, after a finite delay. And it is also assumed
that just one variable is under the control of each agent for simplicity. So the
name of the agent can be the same with the name of the variable that it holds and
manages. Each agent has the complete information about the constraints on its
variable. The next assumption is that the constraints are defined only between two
variables which are called binary constraints. It is clear that these restrictions are
easily removable. Itemized and numbered lists can be created by help of standard
LATEXenvironments “itemize” and “enumerate”.

2.2 Related Work

Several algorithms with their advantages and disadvantages have been proposed,
since formulizing DCSPs. The most powerful ones have been Asynchronous Back-
tracking (ABT) [17], Asynchronous Weak Commitment (AWC) [16], and the latest
and the most successful one which is called Asynchronous Partial Overlay
(APO) [10]. ABT algorithm is the distributed form of backtracking algorithm. As
the backtracking algorithm tries to solve CSPs, the ABT tries to solve DCSPs. In
the ABT algorithm, each agent assigns a random value of its domain to its variable.
The agents communicate with each other by sending “ok?” and “nogood” messages.
By receiving a message, the receiver agent will save the messages information on its
agent-view, which contains the state of the other agents from its viewpoint. In this
algorithm, each agent has a priority number which is determined according to the
alphabetical order of the agents variables. Since each agent has a priority number, if
an agents current value is not consistent with the value of the higher priority agents,
it will change its assignments. In other words, in such a condition, the agent revises
its assigned values and if no consistent value remains it will backtrack. In the latest
condition, the agent generates a new “nogood” message, and sends it to the higher
priority agent. The higher priority agent, by receiving this message, changes its
value. In this algorithm the “nogood” list is a subset of agent-view, which shows
the list of the agents that cannot find any consistent value with the subset.

Another successful algorithm is AWC which extends ABT but presents a new
min-conflict heuristic. By using this heuristic, the risk of choosing a bad solution is
reduced. The performance of these two algorithms is improved rapidly by presenting
several heuristics.

The next successful algorithm, APO, uses a hybrid of distributed and centralized
methods. The main idea of this algorithm is selecting special agents as mediators to
solve their local sub-problems in a centralized manner. One of the most important
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parts of this algorithm is mediator selection part, in which all the agents that recog-
nize the existence of one or more than one conflicts select the most suitable agent
as the mediator. The mediator agent is responsible for solving the sub-problem by
exchanging various messages. To do this, the mediator tries to gather necessary
information from other agents by starting a mediation session. Although APO out-
performs its previous works in some problem domains, several heuristics have been
proposed recently which try to remove its weaknesses. For example, Roger Mailler
had done some work on expanding APO to operate in dynamic environments [8],
to solve optimization problems [11] and to provide privacy [9]. Also, Benicsh and
Sadeh improved APO by changing the mediator selection strategy. They confirmed
that choosing agents with smallest good-list size can result in substantial speedup
from the solver [1]. Benicsh and Sadeh also presented a different decentralized hy-
brid strategy which works based on ABT [2]. As can be seen, several researches
have been done in this field, but none of them have considered the impact of the
number of conflicts in mediator selection procedure.

3 MAX CONFLICT APO (MAXCAPO)

In this section, in addition to introducing APO algorithm, MaxCAPO, a new ex-
pansion of APO, which uses a new strategy to select mediator agents, is proposed,
and finally an example of executing both of the algorithms is presented to exactly
show the differences between them.

3.1 APO Overview

Since APO is the basic form of the MaxCAPO, it is presented it in a summarized
form in Figure 1. You can find the latest and the most accurate version of this
algorithm in [10]. As can be seen in Figure 1, APO starts by sending out an
“Init!” message from each agent to its neighbors. This message contains the primary
information about the sender, such as its name, priority, value, etc. While receiving
an “Init!” message by each agent, it records the received information in its agent-
view. Agent-view is a list that contains the primary information about linked agents.
In fact, it is the agents view of the problem. Then each agent checks its agent-view
to find any possible conflict with its neighbors. If one or more conflicts are found
and no higher priority agent wants to mediate, the agent itself accepts the mediator
role.

The priority of the agents in APO is determined according to their number
of neighbors, and if two agents have the same size, it is determined according to
the lexicographical ordering of their names. Of course, considering the priority for
agents has several advantages. The most important one is that it guarantees that
the agent which has the most knowledge about the sub-problem (which is the agent
that has the largest number of neighbors) gets the role of the mediator and makes
decisions.
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The mediator first tries to correct the conflict by changing its local variable.
But, if it is impossible, the mediator will start a mediation session by sending out
an “evaluate?” message to the agents in its good-list. Good-list is a list that
contains the information of any agent that connects to the owner directly by a link
or indirectly by several links. The agent-view and the good-list are two main data
structures that each agent defines. The main difference between these two lists is
that agent-view holds just the information of directly linked agents but good-list
holds the information of any agent that is connected to the owner by a direct link
or by a path in the graph.

The receiving agent will reply with a “Wait!” message, if it is participating in
another session or is expecting a request from a higher priority agent; otherwise,
it replies with an “Evaluate!” message. While receiving the response message, the
mediator starts a Branch and Bound search [5] among the agents which responded
by “Evaluate!” message. If the mediator succeeds in finding the solution, it will
inform other agents about their new values by sending “Accept!” messages. It also
sends an “Ok!” message to the agents that were not participating on the session to
update their agent-view.

Sometimes the solution that is found by mediator causes some violations for
the agents outside the session. In such a condition the mediator adds these agents
to its good-list and links with them. Therefore the mediator supposes that it is
somehow related to these agents. This work prevents the mediator from repeating
this mistake in future and in other sessions. This step of the algorithm is called
“linking” step.

APO is a sound and complete algorithm. The soundness and completeness of
this algorithm is shown by Mailler et al. [10].

3.2 MaxCAPO Algorithm

As mentioned in the previous section, APO generates a priority number for each
agent. This number is generated according to the agents good-list size. The pri-
mary idea behind this mediator selection strategy is that the agents which have
the highest amount of information about the problem can choose better solutions
by making better decisions. Therefore the priority ordering in APO is a key point
and is very important because it guarantees that the decisions are made by the
agents which have the highest knowledge about the sub-problem. The second ad-
vantage of considering the priority ordering for agents is that it helps the effec-
tiveness of the mediation process by choosing the higher priority agents as medi-
ators and lets free the lower priority agents to be available for future mediation
requests.

But according to this mediator selection strategy, it frequently occurs that se-
veral agents have the same good-list size. In this situation, APO determines the
priority according to lexicographical ordering of the agents names. For example
the priority of ND5 is more than the priority of ND2 if they have the same good-
list size. In fact it is a random way for breaking the tie that had occurred. In
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Fig. 1. APO algorithm

MaxCAPO this random method is replaced with a heuristic one. We believe that
if several agents have the same number of neighbors, the agent that has the highest
number of conflicts with its neighbors can make better decisions with exchanging
fewer messages than the others. This happens because this particular agent exists
exactly in the middle of the problem and, of course, is the most related agent to the
conflicts. On the other hand, it has the highest information about the sub-problem
restrictions in comparison with the other agents. So, in MaxCAPO, the priority is
determined at the first step according to the agents good-list size, and at the second
step according to the number of conflicts of each agent. Exactly the same reason
that we mentioned before for the importance of considering the priority, is correct
now for the importance of using this heuristic method. In fact, by choosing the
agent with the highest number of conflicts MaxCAPO ensures that the agent with
the highest knowledge gets the role of the mediator, and so makes the fundamental
decisions; and of course it improves the effectiveness of the mediation process because
it inherits APO.

The name of this algorithm, “MaxCAPO”, comes from “Maximum Conflicts
APO”, which means that this algorithm is an expansion of APO that prefers to
choose agents with the maximum number of conflicts instead of choosing them ac-
cording to lexicographical order. It is obvious that the algorithm uses this rule just
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when the good-list sizes of two or more agents are the same. The other parts of the
algorithm are similar to APO.

3.3 An Example

In this section, an example of a solvable Distributed 3-color Graph Coloring (D3GC)
problem is presented to compare the performance of APO and MaxCAPO. In a gene-
ral definition, Distributed Graph Coloring consists of a set of n distributed variables
V = {x1, . . . , xn} in which each element is associated with a set of possible colors
D = {D1, . . . , Dn}. The number of elements of all the domains is equal to k which
is the number of possible colors, and, at last, a set of constraints R = {R1, . . . , Rm}
in which Ri(di, dj) is true if the value of xi is “not equals” to the value of xj . The
goal is assigning special colors to the variables in which all constraints in R return
true. If we set k to 3, the problem will be D3GC. Obviously D3GC is a kind of
DCSP.

Consider the problem in Figure 2 a). There are 8 agents (nodes) in this problem,
each one with exactly one variable, and there are 12 edges between them that show
all satisfied and violated constraints. The domain of each variable is Red, Blue,
Black, because it is a 3-coloring problem. As can be seen there are 5 violated con-
straints at the beginning: (ND0,ND5), (ND2,ND3), (ND2,ND6), (ND3,ND4) and
(ND5,ND7). The purpose of APO and MaxCAPO is to find a suitable assignment
to the variable in which none of the connected nodes have the same color.

When starting in both of the algorithms, each agent sends an “init!” message to
its neighbors and also adds itself to its good-list. By receiving an “init!” message,
receivers add the sender to their good-list. The next step is checking the agent view
in which all the agents except ND1 find one or two conflicts in their agent-views.
In both of the algorithms ND0 (priority = 4), ND3 (priority = 4), ND6 (priority =
3), ND1 (priority = 3) and ND4 (priority = 4) wait for ND5 (priority = 7) to
mediate.

In APO, ND2 (priority = 4) and ND3 (priority = 4) have the same priority but,
according to lexicographical ordering, ND2 waits for ND3. Also in MaxCAPO, as
ND2 and ND3 have the same priority and the same number of conflicts (number of
conflicts = 2), according to lexicographical ordering ND2 waits for ND3. So, in both
of the algorithms, the first mediator is ND5. ND5 first tries to remove the conflict by
simply changing its local variable. Fortunately, the sub-problem is locally solvable,
so ND5 changes its color to Red and sends an “ok?” message to its neighbors. The
result graph is shown in Figure 2 b).

From this point, APO and MaxCAPO choose different ways. In APO, ND3
(priority = 4) waits for ND4 (priority = 4) because of lexicographical ordering;
but in MaxCAPO, ND4 (priority = 4) waits for ND3 (priority = 4), because ND4
has just one conflict and ND3 has two conflicts. Again, in both algorithms, ND6
(priority = 3) waits for ND2 (priority = 4). In APO, ND2 (priority = 4) waits for
ND3 (priority = 4) according to lexicographical ordering and in MaxCAPO, as they
have the same number of conflicts (2 conflicts) again according to lexicographical



The Impact of the Conflict on Solving Distributed Constraint Satisfaction Problems 681

 

ND2 
Black 

Constraint 

Violation 

ND7 
Blue 

ND5 
Blue 

ND6 
Black 

ND4 
Black 

ND3 
Black 

ND1 
Black 

ND0 
Blue 

 

ND2 
Black 

Constraint 

Violation 

ND7 
Blue 

ND5 
Red 

ND6 
Black 

ND4 
Black 

ND3 
Black 

ND1 
Black 

ND0 
Blue 

a) b)

 

ND2 
Black 

Constraint 

Violation 

ND7 
Blue 

ND5 
Red 

ND6 
Black 

ND4 
Black 

ND3 
Blue 

ND1 
Black 

ND0 
Blue 

 

ND2 
Red 

 

Constraint 

Violation 

ND7 
Blue 

ND5 
Red 

ND6 
Black 

ND4 
Black 

ND3 
Blue 

ND1 
Black 

ND0 
Blue 

c) d)

Fig. 2. An Example of a 3-coloring Problem with 8 Nodes and 12 Edges; a) Start, b) After
ND5 mediates, c) After ND4 mediates in APO and ND3 mediates in MaxCAPO,
d) Solved problem

ordering ND2 waits for ND3. So, in APO, ND4 will be the mediator, but in Max-
CAPO ND3 will be the mediator. In MaxCAPO, ND3 finds that it can solve the
sub-problem by changing its local value to Blue. Therefore it changes its value and
sends an “ok?” message to its neighbors. On the other hand, in APO, ND4 can not
solve the problem by changing its local variable, so it starts a mediation session by
sending an “evaluate?” message to each of its neighbors. When each agent receives
this message, it evaluates its domain elements and sends an “evaluate!” message to
ND4 in response.

• ND0 sends: Red conflicts with ND5, Black conflicts with ND4 and ND1, Blue
makes no conflict.

• ND3 sends: Black conflicts with ND4 and ND2, Red conflicts with ND5, Blue
makes no conflict.

• ND5 sends: Black conflicts with ND4, ND3, ND1 and ND6, Blue conflicts with
ND0 and ND7, Red makes no conflict.
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While receiving all the “evaluate!” messages, ND4 chooses a solution that solves
the sub-problem and also minimizes the number of outside conflicts with a branch
and bound search. ND4 finds that the solution is to change ND0s color to Blue, not
to change ND5s color, change ND3s color to Blue, and not to change its own color.
ND4 informs its neighbors about their colors by sending an “accept!” message
to them. By making these changes, the problem state will be what is shown in
Figure 2 c).

Now, again, both APO and MaxCAPO algorithms are in the same step and
follow solving the problem the same way. ND2 and ND6 find one conflict by checking
their agent-views. ND6 (priority = 3) waits for ND2 (priority = 4), so ND2 takes
the mediator role and solves the problem by changing its local value to Red, then
it sends an “ok?” message to its neighbors. Now, all of the agents check their
agent-view and find no conflict, so the problem is solved (Figure 2 d)).

Obviously MaxCAPO reduced the Runtime and the number of exchanged mes-
sages by choosing the best agent as mediator in step 2.

This heuristic mediator selection leads to reducing 15 messages and 3 cycles of
time. This improvement is the result of selecting agents with the highest number of
conflicts as mediators instead of choosing them in a random way.

4 MAX CONFLICT INVERSE APO (MAXCIAPO)

In this section, in addition to introducing IAPO algorithm, MaxCIAPO, a new
expansion of IAPO, which uses a new strategy to select mediator agents, is proposed.

4.1 IAPO Overview

In APO, the mediator selection rule biased toward selecting larger mediation ses-
sions instead of small ones; but according to the mathematical analyses reported
in [1], choosing smaller mediation sessions can improve the performance significantly.
Michael Benicsh et al. believe that the two most important sources of complexity
that impact directly on APO complexity are the complexity of the mediation process
and the complexity of the overlay process.

Mediation complexity refers to the complexity of a branch and bound search,
which is accomplished to solve the centralized version of the sub-problem that in-
volves all the participating agents in the mediation session. The overlay complexity
refers to the complexity of putting the partial solutions next to each other and fitting
them to each other.

By larger mediation sessions the complexity of the branch and bound search
grow rapidly; by selecting smaller mediation sessions the mediation complexity will
decrease. On the other hand, higher number of mediation sessions increases the
overlay complexity. Benicsh et al. proved that according to mediation and overlay
complexities, selecting smaller mediation sessions improves the performance.

IAPO is an extension of APO that follows this theory. Unlike the APO that
assigns priorities proportional to the agents number of constraints, the IAPO assigns



The Impact of the Conflict on Solving Distributed Constraint Satisfaction Problems 683

them inversely proportional to the agents number of constraints. All the parts of
the IAPO algorithm except the mediator selection part are the same as the APO
algorithm.

4.2 MaxCIAPO Algorithm

Both the APO and IAPO algorithms assign the agents priorities according to the
number of constraints, but none of them considers the impact of number of conflicts
in mediator selection strategy. In the previous section the MaxCAPO algorithm
proposed this algorithm changed the mediator selection method in conditions that
agents had the same number of neighbors. In this section we want to use the same
strategy on IAPO algorithm instead of APO. Although IAPO replaced the mediator
selection strategy with a new one, also in this new strategy it frequently occurs that
several agents have the same priority, because it frequently occurs that several agents
have the same number of neighbors and the agents priority is inverse of the number
of its neighbors. Like APO, in such a condition IAPO assigns priorities according
to the lexicographical ordering of the agents names. In fact this is just a random
way. MaxCIAPO replaces this random method with a heuristic one. Just like the
method which was used in MaxCAPO, in MaxCIAPO in the conditions that agents
have the same number of neighbors and of course the same priority numbers, the
agents that have the highest number of conflicts with its neighbors will be selected.
So, in MaxCIAPO, the priority is determined at first step inversely proportional
to the agents number of constraints and at the second step proportional to the
agents number of conflicts. By using this method, if several agents have the same
number of constraints, the agent that has most conflicts and as a result the highest
information of the sub-problem, is selected as the mediator and as the main decision
maker.

The same reason that we mentioned in previous section about the advantages of
MaxCAPO is also true about MaxCIAPO in addition that MaxCIAPO inherits the
goodness of IAPO as well. So MaxCIAPO outperforms all the previously mentioned
algorithms containing APO, MaxCAPO and IAPO.

The name of this algorithm, “MaxCIAPO”, comes from “Maximum Conflicts
Inverse APO (IAPO)”, which means that this algorithm is an extension of IAPO
(which itself is an extension of APO) that prefers to choose agents with the maxi-
mum number of conflicts instead of choosing them according to lexicographical or-
der. It is obvious that the algorithm uses this rule just when the good-list sizes of
two or more agents are the same. The other parts of the algorithm are similar to
IAPO.

Figure 3 summarizes four different mediator selection strategies, which involve
APO and IAPO strategies in addition to two new strategies which were introduced
in this paper.
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5 EXPERIMENTAL EVALUATION

5.1 APO and MaxCAPO

5.1.1 Experimental Environment and Setup

The distributed 3-color graph coloring (D3GC) problem is selected as the test case of
our experiments. The purpose of doing these experiments is comparing MaxCAPO
and APO algorithms under different parameters, such as the number of “cycles”,
the number of “messages” and the number of “links”. The last parameter shows
the number of links generated in the “linking” step of the algorithm. Of course the
least number of generated links is preferred. These parameters are selected because
they can present computational and communicational complexities clearly.

For this purpose, 600 random graphs were generated. These graphs were created
in various sizes: n = 15, 30, 45, 60, 75 and 90. All of these graphs are produced with
medium density (m = 2.3), which means that the average number of constraints per
variable is 2.3. Then, 10 different graphs with 10 different initial variable assignments
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were created for each size. These graphs were generated by random seeds which were
saved in special files and used for both MaxCAPO and APO algorithms. As a result,
all the conditions of running these two algorithms were generated in the same way.

Farm simulator [6], which is a Java simulator, was used for running the algo-
rithms to keep all conditions similar to the previous work conditions for fairness.

5.1.2 Experimental Results

Since exactly the same implementation environment and the same simulator are
used, the results that are achieved of APO are almost the same as those reported
in [10] by Mailler. This confirms that the improvement in MaxCAPO is only caused
by entering the number of conflicts in mediator selection strategy. As can be seen
in Figure 4, MaxCAPO shows considerable improvement in comparison with APO
algorithm, and this improvement covers all numbers of “cycles”, “messages” and
“links” parameters. Another important point is that the results show that by in-
creasing the problem size, the difference between APO and MaxCAPO is increased.
In other words, as the problem becomes larger and harder, the effect of conflicts
becomes more important.

Figure 5 shows the percentage of improvement of MaxCAPO in comparison
with APO in various problem sizes. As can be seen in Fig. 5 a), MaxCAPO has
an improvement of 6% to 47% in decreasing the number of massages sent. The
percentage of Runtime improvement is shown in Figure 5 b), which is from 4%
to 34% improvement in decreasing the number of cycles needed to solve the problem,
and, finally, improvement in decreasing the number of generated links is presented
in Figure 5 c), which is from 1% to 11%.

5.2 IAPO and MaxCIAPO

5.2.1 Experimental Environment and Setup

Again the distributed 3-color graph coloring (D3GC) problem is selected as the
test case of our experiments. The purpose of doing these experiments is comparing
MaxCIAPO and IAPO algorithms under different parameters, such as the number
of “cycles”, the number of “messages” and the number of “links”. For this purpose,
400 random graphs were generated.

These graphs were created in various sizes: n = 15, 30, 45 and 60. All of these
graphs are produced with medium density (m = 2.7), which means that the average
number of constraints per variable is 2.7. The density of 2.7 is selected to adapt
with the reported results about IAPO in previous articles.

5.2.2 Experimental Results

To show the improvement of MaxCIAPO over the APO, it is first necessary to know
the improvement of IAPO over the APO, and next the improvement of MaxCIAPO
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over the IAPO. In fact we should portion the problem into two separate parts. For
the fist step the results which were reported by Benisch and Sadeh [1] are used. This
is shown in Figure 6 [1]. In this research they generated 10 solvable D3GC problems
for each pair of n and m, n = 15, 30, 36, 45, 51, 60 and m = 2.0 (low density) and
m = 2.7 (high density) then for each of these problems they generated 10 different
random strategy assignments.

For the second step, which is the comparison of IAPO and MaxCIAPO, 400 ran-
dom graphs were generated with m = 17 and n = 15, 30, 45, 60. By choosing these
values for m = 17 and n = 15, 30, 45, 60, the results would be comparable with the
previously reported IAPO results.

The results show that IAPO outperforms APO over runtime parameter and
also over the number of messages parameter. It shows favoring smaller mediation
sessions instead of large ones, as IAPO does, helping mediators decrease the Branch
and Bound search complexity by avoiding solving unnecessarily large problems.

Now is the time to show the improvement of MaxCIAPO over IAPO. Fig-
ure 7 shows this reasonable improvement. This improvement covers all numbers
of “Cycles”, “Messages” and “Links” parameters. As this figure shows the per-
centage of improvement of MaxCIAPO over IAPO in decreasing the number of
messages is from 5.5% to 18.4%. The percentage of runtime improvement is shown
in Figure 7 b), which is from 7.1% to 13.9% improvement in decreasing the num-
ber of cycles needed to solve the problem; and, finally, improvement in decreas-
ing the number of generated links is presented in Figure 7 c), which is from 1%
to 4.6%.

Putting the results of these two parts which was shown in Figures 6 and 7 next to
the each other reveals the great improvement of MaxCIAPO over APO. According
to the results that were extracted from [1] and also to the experimental results that
are proposed in this research Figure 8 can be generated.

This figure shows a great decrease in the number of messages and also in the
runtime of the MaxCIAPO. This shows that, by selecting mediators from among the
agents that have the least number of constraints and the most number of conflicts,
the APO performance improves reasonably.

6 CONCLUSIONS AND FUTURE WORK

In this paper, two new extension algorithms of APO called MaxCAPO and MaxCI-
APO have been proposed. The role of conflicts in solving DCSPs is shown by pre-
senting these algorithms. The experimental results confirm that the mediators that
have the highest number of conflicts can solve the problem faster and by a smaller
number of messages and links. To show the completeness of this idea, hundreds of
graphs were generated in a D3GC problem in various problem sizes. The averages of
the results derived from various problem sizes were computed. These results showed
that in all terms MaxCAPO and MaxCIAPO outperform APO, the previously most
successful algorithm in DCSPs.
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Fig. 6. Running time needed to solve D3GC instances as mean percentage improvement

over APO; a) Low Density Problems (m = 2.0), b) High Density Problems (m = 2.7)
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Fig. 8. Running time needed to solve D3GC instances as mean percentage improvement

over APO and IAPO

Since DCSP covers a vast domain of problems and also APO has been the
best known algorithm in this domain until now, MaxCAPO and MaxCIAPO can
help solve many problems in the large domain of mediated cooperative problems by
making considerable improvement in APO.

Employing other measurement units for measuring the computational complex-
ity of MaxCAPO, such as non-concurrent consistent checks, which has recently been
proposed by Meisels et al. [13], may be recommended for future works.

Using the strategy of choosing mediators with the highest number of conflicts
in other examples such as random binary DCSPs and other domains such as Sen-
sorDCSP [4] would expand the domain of the strategy proposed.
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