
Computing and Informatics, Vol. 28, 2009, 811–842

ANALYSIS OF THE ERROR PROPAGATION
PHENOMENON IN NETWORK STRUCTURES

Dariusz Król, Grzegorz Kukla

Institute of Informatics

Wroc law University of Technology

Wyb. Wyspiañskiego 27
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Abstract. The analysis of error propagation is of fundamental importance to assure
safe operation and management of abnormal situations in any distributed informa-
tion system. In this paper, the quantitative and qualitative methods are proposed
to analyze possible error propagation scenarios based on different topologies, error
types and probability distributions. The most interesting from our point of view

is the course of error propagation in simple structures that are contained in more
complex ones. These complex structures, which have attracted the attention of
scientists for many decades, are traditionally analyzed with the use of formalisms
from graph theory. Certain types of graphs are often used to model naturally occur-
ring complex structures, such as social networks. Graph-theoretic approach proved
successful when applied to social networks and other naturally occurring complex
networks. The research was verified based on the experiments conducted on simu-
lation model. The results provide some ideas of robustness – the knowledge how to
design the most error resistant architectures in complex environments.

Keywords: Distributed information systems, dependable computing, web dynam-
ics, semantic network, social network, network topology

1 INTRODUCTION

The study on error propagation belongs to the common area of different software
engineering disciplines. Preventing spreading of faulty behaviour is in the scope
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of interest of data propagation, dependability assurance and safe algorithm design.
Despite its importance, the problem of error propagation prevention, e.g. in social
structures has not been a subject of a separate thorough research. The design
of distributed systems takes the presence of faults into account, but nonetheless
the nature of error propagation phenomenon is not well examined and properly
described. For that reason the study on error propagation can help in implementing
complex dynamical modern structures correctly and in placing them in the proper
place of the system.

There are several research directions for error propagation phenomenon. The
first one is the concept of an error’s scope, defined as the portion of a system that
it invalidates [22]. The second one is enabling a developer to make better use of the
exception propagation paths, which includes the origin of exceptions, handler and
visualization tool [4]. The investigation of the performance metrics to enable quick
evaluation of distributed systems, also error propagation, without reorganization of
the running system can be found in [9]. Nikoletseas and colleagues [15] considered
a model for intrusion and its propagation through various attack schemas. Lin and
Kuo [10] describe a state preservation scheme to find the optimal recovery points
of the processes suffering from error propagation. Another approach to propaga-
tion presented by Martel in his work [14], where the propagation of roundoff errors
throughout a calculation is introduced. In our previous work [8], we addressed the
problem of an automatic framework for efficient propagation of class package and
data. Fault propagation analysis (FPA) is the most popular to assure safe operation
and for the management of abnormal situations in plants. In the paper [6], practical
framework to synthesize and assess all possible fault propagation scenarios based
on robust modeling is proposed. To understand the mechanism for FPA, a detailed
semantic network with process variables, equipment variables and rules is designed.

Our current work differs from previous ones in that the previous works focused
on the benefits of data propagation rather than on analysis of abnormal situations
like faults. Now, we can estimate error propagation probability in complex topology
while others estimate scope and recovery methods rather than the quantitative and
qualitative analysis of faults. Moreover, our method can predict the weakest points
in the system.

The problem of error propagation is present in many domains of computer scien-
ce. However, according to the knowledge of the authors, not much focus has been
spent on the phenomenon itself. Most papers related to reliability or fault toler-
ance just state that errors can spread across the system and this process needs to
be reversed in order to restore its operation. Nevertheless, not much focus is put
on explaining how exactly error propagation proceeds. As stated earlier, studies
on error propagation can provide useful results for designers, developers and soft-
ware engineering researchers. This work tries to fulfill the gap in research on error
propagation phenomenon in network structures.

The rest of this work is organized as follows. Section 2 presents the state of the
art in the domain of real-world structures. Section 3 concerns common topologies
and error types between entities. Section 4 describes the experimental environment
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used for hypothesis verification. It provides the information about the structure
of the utilized model and principles of experiments. Section 5 presents the results
gathered during experiments and their analysis. The last section summarizes the
work and provides conclusions.

2 NETWORK STRUCTURES

Real-world networks are generally very far from random structures [16]. Recent
research has revealed that e.g. social structures have a much richer structure than
regular or random networks, hence we have small-world and scale-free topologies.
The types of networks analyzed in these studies include the Internet and WWW,
scientific collaboration networks, gene interaction networks, various social networks,
and neural networks. Although much research in artificial intelligence has focused
on robustness in distributed systems, little effort has been devoted to understanding
that modern structures behave not the same way when error occurs.

Recent findings highlight the importance of social structure on organizational
performance for various types of artificial societies. Such studies have shown that
clustered organizations, where objects have few connections but are tightly con-
nected, are more stable than organizations with high connectivity [7]. In the context
of virtual team formation, networks that exhibit short average path length allow for
greater diversity in teams as well as efficiency in forming teams. Sakata [18] re-
ported topological features in social networks and topological similarities between
mammalian cortical networks and social friendship networks. Milo et al. [13] found
motifs, patterns of interconnections occurring in complex networks at numbers that
are significantly higher than those in randomized networks, from biochemistry, neu-
robiology, ecology, and engineering.

Real networks, which have attracted the attention of scientists for many decades,
are traditionally analyzed with the tools of graph theory using more often the aver-
age node degree, the average path length, and the clustering coefficient. Networks
constructed from real-world data share common global properties [2]. First, they
are typically sparse. The vast majority of nodes are connected only to a small per-
centage of other nodes, and the number of edges is closer to the number of nodes
than to the square of the number of nodes. Second, they have a short average path
length and strong local clustering. The neighbors of a given node are more likely to
be connected to one another than to be alone. Random graphs, by contrast, have
a short average path length but a low clustering coefficient. Third, the distribution
in node degree is characterized by a power law. This means that there are a small
number of nodes which have many neighbors and a large number of nodes that have
only a few neighbors. The second and third properties are of special note, because
they are the signatures of small-world and scale-free characteristics, respectively.

In this section, several network models are briefly surveyed with an emphasis
on models that attempt to reproduce the properties of networks found in the real
world.
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Regular Structures. Regular graphs are best characterized as having a homoge-
neous connectivity pattern for all of the nodes in the graph. In these graphs, the
degree distribution is trivial: all nodes have exactly the same degree. Examples
of regular graphs include lattices, hyper-cubes and fully connected networks (i.e.,
all nodes are connected to all other nodes). In lattice graph topologies, nodes
are given a logical ordering and connections among nodes are limited to nodes
that are within close logical proximity. The dimension of a lattice determines
the number of coordinates required to specify the node positions. In order to
prevent boundary conditions (i.e., different node degrees for the nodes on the
boundaries of a given lattice), a lattice can be wrapped upon itself. In one
dimension, wrapping a lattice results in a ring topology.

Random Structures. Recent evidence suggests that random graphs are not rep-
resentative of real networks. They do possess short average path lengths. On
the other hand, random graphs do not exhibit clustering or a power-law degree
distribution (the degree distribution follows a Gaussian distribution).

Small-World Structures. These are highly clustered graphs, like regular lattices,
with small characteristic path lengths, like random graphs. This is called the
small-world property. A key observation is that small-world networks have pro-
perties that lie between those of regular networks and random graphs. Lattices
are the basic building block of small-world networks. In graphs with small world
properties, there are highly clustered neighborhoods and it is possible to move
from one node to another in a relatively small number of steps (often just two
or three, on average.) As a small-world graph grows, the average path length
increases slowly, as a function of the logarithm of the size of the graph. This is
in opposition to the longer path lengths of a regular grid-like network in which
hundreds or thousands of steps may be required. Watts [23] and Strogatz [21]
presented that two properties, short paths and high clustering, would hold also
for many natural and technological networks. The intuition is that the short
paths could provide high-speed communication channels between distant parts
of the system, thereby facilitating any dynamical process, like synchronization
or computation, that requires global coordination and information flow.

Scale-Free Structures. Scale-free networks [1], which include the web-like net-
works [3], peer-to-peer networks [11], some social networks and cells have not
the small-world property. The scale-free graph model is motivated by the empi-
rically measured degree distributions of the Internet and the WWW. The model
is a highly intuitive model based on how networks are believed to evolve and
grow in the real world. The generation of scale-free graphs has two simple
rules: a) growth – at each time step, a new node is added to the graph, and
b) preferential attachment – when a new node is added to the graph, it attaches
preferentially to existing nodes with high degree. Scale-free networks have no
characteristic scale of node degree; instead, they exhibit all scales of connecti-
vity simultaneously. As a result, they tend to have a similar appearance when
examined at varying scales. They are also generally robust against random dis-
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ruptions; if any node is removed at random, the statistical likelihood that the
node will be a hub is low. It is far more likely instead that the node selected for
removal will have a small number of neighbors. Therefore, a random change is
not likely to have a significant effect on the structural form. By contrast, if hubs
are selected for removal, the topology of the network will undergo a significant
change, since the hubs are connected to a large number of neighbors.

This set of models was chosen because they are widely studied, highly intuitive,
and model either the structure of real networks, or have been traditionally used to
model the interconnectivity of network systems.

According to the literature discussing network structures the connectivity of the
system’s topology defines the boundaries of the number of possible errors that can
be tolerated by the system. This indicates that the system’s physical construction
affects its behaviour under its element’s failure circumstances. However, the usage
of the connectivity measure is not sufficient to define the exact influence of topology
on error propagation’s course. This measure oversimplifies the reasoning, because it
reduces completely different constructions into one class. The available literature,
like [19], claims that the higher connectivity of the system’s communication graph,
the higher error tolerance of the system. On the other hand, one cannot disregard the
connections structure of the system, because the scope of the error is strictly bounded
to it. The hypothesis that needs to be verified by this work states as follows: the
topology of the network system has the influence on the error propagation problem
occurring within it and different topologies having the same connectivity can behave
differently.

3 STRUCTURES APPLIED IN RESEARCH

3.1 Topologies in Information Systems

The way the elements of a distributed information system are organized is called
a topology. The topology of a system determines the communication patterns uti-
lized within it. It must be emphasized that topology has the influence on the lo-
gical connections between system’s elements. Not every physical link between the
elements of the system is utilized during messages interchange. Therefore, the to-
pology must not be confused with the physical organization of the system, such as
its network structure. Further information about topologies and their metrics can
be found in [9].

For example, the work [24] presents an overview of four basic multi-agent topo-
logic models:

1. a Web-like topology,

2. a Star-like topology,

3. a Grid-like topology, and

4. a Hierarchical Collective topology,
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assesses their advantages and disadvantages in terms of agent autonomy, adaptation,
scalability, and efficiency of cooperation.

The rest of this section will characterize the basic topologies utilized in all net-
work structures: full topology, star topology, ring topology, tree topology and ran-
dom topology.

Fig. 1. Full topology

Fig. 2. Star topology

Figure 1 presents a distributed information system having a full topology. In
this topology all entities communicate with each other directly. Thus there are no
selected entities. Full topology is characterized by maximal level of redundancy;
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but the direct communication between entities gives also the maximum reliability of
system’s operation, because the more entities a message has to cross on its way from
sender to receiver, the more probable a failure. On the other hand, the redundancy
present in fully connected topology introduces a huge overhead in entities’ operation.
The overhead is caused by excessive communication done by each entity. Full topo-
logy can be used in distributed systems built on networks offering high bandwidth,
such as local area networks. The application of this topology in an environment
with lower communication capacity can seriously harm system’s performance.

Figure 2 presents a distributed information system having a star topology. In
this topology there are two kinds of entities: one central entity and many peripheral
entities. Peripheral entities connect only to the central one. Thus the central entity
is connected to every other entity in the system. There is no redundancy in star
topology. Therefore a failure of any of the links causes the system to be not con-
nected. If one peripheral entity fails, the rest of the system can operate normally.
The worst case scenario is when the central entity fails. In this case the system
cannot operate at all. One can notice that the central element is the bottleneck of
the system, because it is responsible for maintaining whole communication inside
the system. The communication load on the central entity is also very burdening
to it. It is worth noticing that the load of the central entity in this topology is the
same as the load of every entity of a full topology.

Fig. 3. Ring topology

Figure 3 presents a distributed information system having a ring topology. In
this topology every entity has exactly two neighbors. Thus, the system is orga-
nized in one cycle containing all elements. Obviously, the redundancy is present
in this topology. Between every two entities there are always two possible paths.
The advantage of this topology is the increased reliability with a minimal cost. The
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Fig. 4. Tree topology

Fig. 5. Random topology

disadvantage of it is the long average distance between entities. It indicates that
a message passed from one entity to another has to cross many indirect entities.
Therefore, a probability of a failure is significant. On the other hand, the communi-
cation overhead introduced at each entity is minimal. Ring topology can be utilized
in distributed systems not requiring fast data broadcasting inside a structure.

Figure 4 presents a distributed information system having a tree topology. In
this topology there are no cycles. The redundancy is also not present as each pair of
entities is connected by exactly one path. The advantage of this topology is that the
communication overhead is balanced between all entities. The disadvantage is that
the entities are equally important in the system’s operation. This indicates that
failure of any entity can seriously damage the whole system, because every entity
is indispensable for communication. Tree topology can be utilized in distributed
systems where a natural hierarchy is present. For example, when several academic
centers build a common distributed system the tree topology would be a natural
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choice.

Figure 5 presents a distributed information system having a random topology.
This topology is built in a random manner. There is no regularity or hierarchy in
connections. The presence of a redundancy is therefore random. Also, the con-
nections are not evenly distributed. There can be parts of the system which are
highly interconnected and parts loosely interconnected. The general properties of
such structures are difficult to assess. This topology can be utilized in a peer-to-peer
system, where entities connect to each other spontaneously.

Apart from hardware configuration (i.e. computers and network) a special con-
trolling software is needed to construct a distributed system. The main role of the
controlling software is the coordination of the computers. The coordination consists
of enabling communication, tasks dispensing and resources sharing. The commu-
nication is realized using a special protocol. The protocol must take into account
the heterogeneity of the distributed system elements. Therefore the XML (eXten-
sible Markup Language) is often utilized. Furthermore, the design of the protocol
must be fault tolerant to enable reliable communication. Tasks dispensing consists
in distributing the elementary pieces of structure’s goal among its elements. Task
dispensing is vital to the distributed system’s performance. It must take into ac-
count many factors, such as computers’ parameters, their reliability, availability and
current load. Resource sharing is designed for making the resources of one machine
available to another. A resource can be both hardware and software. A hardware
resource might be a special device or sufficient disk space. By the software resource
usually a specific service is defined.

3.2 Errors in Information Systems

Exact examination of the sources of errors in distributed information systems is
beyond the scope of this work. An error is considered as an improper state of one or
more elements of a distributed system. This definition does not say anything about
the nature of the error or its genesis. For the needs of studying error propagation
phenomenon classification of the symptoms denoting the presence of the error seems
to be more useful than classification of the errors themselves.

After Santoro [19], one can specify the following types of error symptoms occur-
ring in distributed information systems: contamination, commission, omission, and
crash.

The contamination error symptommanifests itself by invalid (not consistent with
specification) data sent from one processor to another. The source of this symptom
might be a fault application installed on the processor sending a contaminated data.

The commission error symptom is manifested by invalid communication be-
haviour consisting in sending a message not meant to be sent according to the
protocol. It can be a result of a deliberate attack or of a software fault.

The omission error symptom manifests itself by not sending a message which
should have been sent according to protocol. It can be a result of connection error.
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The crash error symptom is caused by failure of the processor and consists in
stopping its activity both connected to processing and communication.

The error propagation in this depiction is the series of error → symptom →
error → . . . → error events. The error occurring in one element of the system causes
the specific symptom to emerge and can cause another error in the other part of
the system. It is important to notice that the error propagates itself along with the
communication. The exception is the error causing the processor to crash. In this
case the propagation consists in disability of system’s operation. The processors
depending on the crashed one cannot operate properly without it.

4 EXPERIMENTS

4.1 Model

The model of network system utilized in experiments on error propagation phe-
nomenon consists of logical processes communicating with each other using the spe-
cified protocol. Each process models an operation of a single entity of a distributed
system. Communication between processes takes place by means of messages ex-
change. The schema of the example model is presented in Figure 6.

Fig. 6. Distributed system’s model schema

The model assumes that distributed system is asynchronous. In practice this as-
sumption means that the entities do not synchronize their actions with each other.
Every entity works in real time with the native speed of its internal clock. The
synchrony assumption makes implementing designing distribute algorithms much
easier but in practice it is difficult to achieve. The second assumption states that
the entities of the system are connected by bidirectional links. It is the common
case in real-world systems. However, one must take into account that communi-
cation in TCP/IP network is bidirectional indeed but sometimes the establishment
of connection can be initiated only by one of the entities involved. The simulation
assumes that the communication channel can be initiated by both ends. The third
assumption states that the entities are homogeneous – there is no selected entity
fulfilling a special role. In reality there often exist one or more selected entities
providing special services to the other entities. The best example is the Broker node
of grid computing systems. The fourth assumption states that the entities know
their neighbors and each entity is distinguishable (has unique id). In practice, the
knowledge of the neighbors is not necessary for the entity to operate. Usually the
elements of distributed systems know only one selected entity, which can provide
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information about the rest of the structure. The distinguish ability assumption is
generally true in real-world systems. For instance, the IP number can be used as the
ID of the entity. The last assumption states that the connection graph of the dis-
tributed system is connected. In practice it means that there is always a possibility
of exchanging messages between any two entities being parts of the system.

Basically, the utilized model consists of entities e ∈ E , where E is the set of all
entities. The topology is defined by the binary neighborhood relation N ⊂ E × E
having the following properties:

Symmetry – (ei, ej) ∈ N ⇐⇒ (ej, ei) ∈ N

Aliorelativity (Irreflexivity) – (ei, ei) /∈ N .

The first property states that if the entity ei is the neighbor of the entity ej then the
entity ej must be a neighbor of ei also. This is the formal notation of the fact that
bidirectional links are utilized in the model. The second property states that the
entity cannot be a neighbor of itself. Using the neighborhood relation provided the
set of neighbors of a specified entity can be defined as n(ei) = {ej ∈ E : (ei, ej) ∈ N}.

4.2 Algorithm

The error propagation can be observed as a progressing disturbance in designed
system’s operation. Thus modeling the system’s operation is necessary to model
the effects of this phenomenon and to trace its course. Therefore a simple dis-
tributed algorithm was designed and implemented. The algorithm was executed by
the processes during the simulation.

To model distributed system’s operation a distributed sum algorithm was im-
plemented. The considered distributed sum problem is stated as follows: Every
entity ei is given an initial random value k(ei) known only to this entity. During
the execution of the algorithm, entities communicate with themselves exchanging
information. After finite execution time each of the entities should know the exact
sum of all initial values S =

∑
e∈E k(ei).

The foregoing problem has some interesting features from the perspective of
error research. Firstly, it requires intensive communication. The input information
from one entity needs to be propagated to every other entity. Secondly the state
of every entity depends on the state of the rest. The internal sum held by entity
contains the cumulative information about the whole system. Thus, the distributed
system solving this problem is sensitive to possible errors.

The solution involves spreading the knowledge across the distributed system
and adjusting entities’ internal states. The analysis of these problems provides very
important information about the designed model. According to [19] it is impossible
to design the protocol solving the distributed consensus problem in asynchronous
systems in presence of faults without additional assumptions. The difficulty lies
in the possible nontermination of every protocol for this problem. The distributed
sum problem is the extended version of the consensus problem, because it requires
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the autonomic decision of every entity based on a common knowledge. Therefore
constructing a model of asynchronous distributed system solving it in presence of
faults is also impossible. Utilizing such model in simulation of error propagation
phenomenon requires additional termination assumptions.

Fig. 7. Distributed sum algorithm

The algorithm solving distributed sum problem is executed in the same way on
every entity of the distributed system. The course of the algorithm on a single entity
is presented in Figure 7 and Algorithm 1. The algorithm consists of a few steps.
In the first step (line 1) the entity ei broadcasts its input value k(ei) to all of its
neighbors. Then it waits for messages from the other entities (line 3). Incoming
message is processed only if previously there were no other messages coming from
this sender (line 4). It means that only the first message which was sent from given
entity is taken into account. Message processing consists in increasing internal sum
o(ei) by the value received and broadcasting the received value (lines 5 and 6). The
process of receiving and broadcasting messages never terminates because the entity
without knowledge of the system’s structure cannot tell if it received messages from
all of the other entities. However, the algorithm is designed in such way that when
the entity does not change its internal sum when it receives a message from the
entity from which it has received a message before. Thus, the state of the entity
after receiving messages from all possible senders cannot change. Knowing that, the
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simulation system is able to terminate the algorithm execution after all entities have
fixed their states.

broadcast input to all neighbours;
while not finished do

receive message;
if no previous messages from sender then

update internal preference;
forward message to all neighbors;

else
discard message;

end

end
Algorithm 1: Distributed sum algorithm

The basic functioning of the distributed sum algorithm is the same as Flood-
ing algorithm. There are four basic assumptions that need to be fulfilled so that
Flooding works correctly. Connectivity requirement ensures that there exists a path
between every two entities of the system. Without this assumption broadcasting
would be impossible. Bidirectional links requirement states that the connection
graph of the system should be undirected. This assumption prevents the situation
when the source of the information cannot pass it to any other entity because it is
only the destination of connection links. Unique initiator requirement states that
the initiator of the broadcasting has to exist and it is the only entity that has the
information before the algorithm starts. Finally the Total Reliability requirement
states that the system’s operation has to be failure-free. This assumption ensures
that the broadcasting is not disturbed by failure of any entity.

As mentioned before, the distributed sum algorithm is based on Flooding al-
gorithm, thus the requirements of the former are the superset of the requirements
of the latter. The established model meets all of the Flooding algorithm’s require-
ments explicitly, except the Total Reliability. In fact, the algorithm was designed to
operate in a failure-free environment and the experiments examined its behaviour
in case of different failures occurring in the system.

4.3 Introduced Errors

In order to examine the error propagation phenomenon in the described distributed
system, fake error sources were introduced. The modified version of the distributed
sum algorithm, with error sources introduced, is presented in Figure 8. The basic
four types of errors were inserted into the model: Omission, Commission, Conta-
mination and Crash. In the considered model, the Omission error consisted in the
faulty entity not sending a message it should send. Conversely, the Commission
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error consisted in the faulty entity sending a message of a random content that
should never been sent. The Contamination error resulted in random modification
of the content of one of the sent messages. Finally, the Crash error caused the faulty
entity to stop operating at all.

A single experiment consisted in inserting one of the error types specified above
during the execution of the distributed sum algorithm. The error is introduced
only once in the algorithm’s operation on the exactly one selected entity of the
system. Different errors occur in different algorithm steps. Algorithm 2 presents
the distributed sum algorithm with error sources introduced. The Crash error can
occur before the faulty entity receives a message (lines 3–5). If this happens, the
entity immediately finishes all of its activities. The Omission error happens during
the message broadcasting phase (lines 10–12). If it occurs, the entity does not send
the message to one of its neighbors. The Commission error takes place after all of
the messages have been sent (lines 21–23). If it occurs, the faulty entity creates
a random message and sends it to one of its neighbors. The Contamination error
causes the faulty entity to randomly modify one message sent to one of its neighbors
during the broadcasting step (lines 13–15).

broadcast input to all neighbours;
while not finished do

if crash error occurred then
stop;

end
receive message;
if no previous messages from sender then

update internal preference;
foreach neighbor in neighbors set do

if omission error occurred then
continue without sending message;

end
if contamination error occurred then

change message randomly;
end
send message to neighbor;

end

else
discard message;

end
if commission error occurred then

send random message to randomly chosen neighbor;
end

end
Algorithm 2: Distributed sum algorithm with error sources
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Fig. 8. Distributed sum algorithm with error sources
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In order to check the influence of each error on the system at different points
of time, the errors occur with come probability pe. Introducing uncertainty in the
model is necessary to verify, if the damage caused by the error is dependent on the
moment of time when the error occurs.

The damage assessment was done by using the fraction of the entities’ number
affected by the error (having the internal state at the end of execution different

than the S value). The Error Percentage value can be defined as Ep = |F |
|E|
, where

F = {e ∈ E : o(e) 6= S} is the set of error-affected entities. Also the algorithm
operation time was used as a measure, because some errors did not directly affect
the system’s state but they did lengthened the execution time.

The Error Percentage value is the quantitative measure of the fault propagation
phenomenon. It says nothing about the course of the propagation process but al-
lows measuring its effects. Using this measure makes the statistical analysis of the
experiment results possible.

4.4 Testbed and Implementation Details

The simulation environment was constructed using Python [17] programming lan-
guage. The most recent, stable version (2.5) of Python was used. This language
is being developed by Python Software Foundation. The choice of this program-
ming tool is justified by several reasons. Python programming language is mature
and commonly used technology. Its usage is free even in commercial applications.
Furthermore, Python community offers outspreaded support for the programmers.
Another advantage of this language is the great number of professional third party
libraries extending its capabilities. Many of the libraries are designed for scientific
applications. This work utilized the SimPy library.

“SimPy (Simulation in Python) is an object-oriented, process-based discrete-
event simulation language based on standard Python” [20]. It is being continuously
developed since 2004 by SimPy Developer Team. SimPy provides powerful modeling
features and provides a simple and elegant interface. Moreover, it supplies program-
mers with advanced data collection and visualization tools. It has been successfully
applied in such domains as epidemics simulation, traffic simulation, industrial engi-
neering and more.

The conducted experiments were the source of large amounts of data. Em-
ploying the database system was necessary for the analysis of the results. The
Postgre SQL 8.1 database was utilized in order to complete this task. Postgre SQL

is one of the most advanced open-source database systems. It stands up to com-
mercial solutions in the domain of performance and tools available. In order to
utilize this database system with the Python language the PyGreSQL library was
used.

For statistical analysis the R programming language was used. This language is
an open-source version of the S language developed at Bell Laboratories. Initially
the R language project was developed at the Statistic Department of the Univer-
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sity of Auckland. The R language offers a wide range of statistical and graphical
techniques. It was utilized for data processing and visualization.

Another tool utilized in this work was the Graphviz graph visualization tool.
Most parts of this application is being developed by AT&T Research. This tool
was used for the visual analysis of the fault propagation phenomenon.

Fig. 9. Class diagram of the simulation system

Figure 9 presents the UML class diagram of the implemented simulation system.
The most important element of the application is the Entity class. It models the
state and behaviour of a single entity of distributed information system. It is inhe-
rited from the SimPy’s Process class. The state variables include the messages list,
the id variable, the input variable, the preference variable, the processed messages

set and the two fault controlling variables – fault type and fault committed. The
messages list is a buffer of messages that were received by the entity but not yet
processed. They are ordered by the time they came in. The id variable contains
the unique identifier of the entity. No two entities have the same id value. The
input variable contains the value of input of the entity. It is generated randomly at
the Entity object initialization. The preference variable contains the value of the
distributed sum computed at the entity. Initially it is set to the value of the input

variable and is modified by the course to the algorithm. The processed messages

variable stores a set of the messages that have been already processed by the entity.
Its main purpose is to keep track of the information that the entity has. The
processed messages set is utilized for filtering incoming messages – those coming
from the already known entities are not processed again.The fault type variable can
adopt one of the five values: None, Omission, Commission, Contamination and
Crash. It controls the faulty behaviour of the entity. The fault committed variable
contains a logical value indicating whether the entity had already committed a fault
or not. Holding this value is necessary, because according to the model’s assumptions
the fault should occur only once during the simulation.

The operation of the entity is modeled inside the go method. This method im-
plements the behaviour presented in Figure 8. Some language specific modifications
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to the algorithm have been made in order to optimize the method’s operation. Ad-
ditionally, after every operation performed by the entity, delaying instructions have
been inserted to emulate the execution time of this operation.

The receive helper method is used when the entity receives a message. It simply
appends the incoming message to the entity’s messages queue.

The Message holds the information about a single message exchanged by the
pair of entities. It has three fields: sender, receiver and data.

Conducting experiment consists in creating the set of entities, assigning input
values to them, connecting them into the specified topology, choosing a faulty entity
and a fault type and starting the simulation. These activities are executed by the
experiment global method. The method accepts the following parameters: inputs,
seed, topology builder, fault type, fault prob. The inputs parameter contains the ar-
ray of the input values to be assigned to the entities. The seed parameter is the
random seed, which is set before each simulation. Random seed is utilized by the
pseudorandom number generator to construct the random values. The seed needs
to be assigned, because the simulation bases on some random events (such as error
occurrence or entities actions’ duration). The topology builder parameter stores the
function which accepts the array of entities and connects them into the specified
topology. The fault type and fault prob parameters store the information about the
type of the error that will occur in the simulation and its probability accordingly.

For the results of the experiments to be statistically significant, it is necessary
to execute multiple simulations with varying parameters. The xperiment package
has been designed and implemented to complete this task. Basically, the tools in-
cluded in this package allow executing the experiments automatically and collecting
the results. The main method of the package is the xperiment.experiment method.
In order to conduct the set of experiments, one should pass the method under
examination and its parameters space to the xperiment.experiment method. The
xperiment.experiment method executes the method passed to it with every combi-
nation of the input parameters specified. The xperiment package defines a set of
logging classes. These classes allow writing the results of the experiments to the
console, file or database table.

Fig. 10. Results processing schema

Figure 10 presents the schema for results processing. The results collected during
simulation consist of the simulation parameters and the measures calculated based
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on the experiment progression. Simulation parameters include: utilized topology,
the number of entities, error probability and error type. The measures are error
percentage, the graph representing system’s state at the end of simulation and si-
mulation time. Every simulation generates one set of results which is saved to the
database. The results are preliminarily checked for consistency and sanity inside
the database environment using SQL queries. Then data is exported to a file and
loaded into the R language environment. The statistical analysis and visualization
is performed there. Additionally the state graphs of the selected cases are extracted
from the database to files. Then they can be visualized using the Graphviz tool and
analyzed.

5 RESULTS ANALYSIS

As the results of the experiments 6 000 observations were saved in the database.
Each observation described a single simulation. The simulation is described by the
number of entities of the simulated system (10, 20, 30, 40 50 and 100), the topology of
the system (star, ring, full, tree and random), the probability of the error occurrence
(0.1, 0.3, 0.5, 0.8, 0.9) and the type of the error (none, contamination, commission,
omission and crash). The parameters mentioned above create the four-dimensional
discrete experiment space. At each point of this space, the output values like error
percentage or simulation time were measured. In order to get statistically significant
results, each point of the experiment space was examined ten times. It was necessary
to repeat the simulation many times, because the course of a simulation was not
determined in advance. Each time the simulation was ran, the faulty entity was
drawn. Furthermore, the exact moment of error occurrence was also drawn.

5.1 Quantitative Analysis

Error Type

Topology None Omission Commission Contam. Crash Avg.

Full 0 0 0 0.04 0.51 0.11

Random 0 0.05 0.16 0.28 0.55 0.21

Ring 0 0 0.39 0.44 0.51 0.27

Star 0 0.49 0.31 0.46 0.58 0.37

Tree 0 0.52 0.31 0.52 0.69 0.41

Avg. 0 0.21 0.23 0.35 0.57 0.27

Table 1. Average error percentage relationship to topology and error type

Table 1 presents the average error percentage relationship to the topology and er-
ror type. A single row contains the average error percentage in the selected topology
with different error types occurred. The last column is the average error percentage
of the topology in all experiments. A single column contains the average error per-
centage caused by the selected error type in different topologies. The last row is the
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average error percentage in all topologies. The rows are ordered from the topology
least susceptible to errors to the most susceptible one. The columns are ordered
from the least malicious error type to the most malicious one.

The quantitative analysis is not very accurate, because it simplifies the results.
Nevertheless, it leads to some important conclusions. Firstly, the model’s imple-
mentation is correct, because all simulations ran without error introduced (error
type is None) completed with zero error percentage. It implies that the errors
occurred during simulation are the result of an intendant error introduction. Se-
condly, topologies containing cycles (Full, Random and Ring) seem to be much
more immune to errors than the ones without cycles (Star and Tree). A cycle in
a topology is a form of redundancy. As mentioned before, the redundancy is the
basic mean of implementing fault-tolerant systems. The designed models did not
follow the fault-tolerance guidelines explicitly. Nevertheless, the algorithm of calcu-
lating a distributed sum (see Section 4.2) appears to be designed in a way taking
advantage of the topology redundancy. Further analysis of this phenomenon will be
conducted in the Visual analysis (Section 5.2). Thirdly, topologies behave differently
in case of different error types. The general harmfulness ordering of error types is
almost the same in all topologies. The exceptions are the Tree and Star topologies,
where the Commission errors seem to be less harmful than Omission errors. The
exact values of error percentage of each error type differ depending on the type
of topology. Fourthly, the topologies containing cycles are much less susceptible
to omission errors than the ones not containing cycles. The reason for that fact
could be that the redundancy present in these topologies cancels the information
omission.

Topology

Entities Count Full Random Ring Central Tree Avg.

10 0.13 0.21 0.23 0.31 0.4 0.26

20 0.09 0.2 0.26 0.35 0.39 0.26

30 0.13 0.2 0.27 0.34 0.44 0.28

40 0.11 0.18 0.27 0.43 0.41 0.28

50 0.09 0.24 0.28 0.39 0.44 0.29

100 0.11 0.22 0.29 0.39 0.39 0.28

Avg. 0.11 0.21 0.27 0.37 0.41 0.27

Standard Deviation 0.02 0.02 0.02 0.04 0.02 0.01

Table 2. Average error percentage relationship to topology and entities count

Table 2 presents the relationship between the average error percentage and topo-
logy and entities count. The columns of the table contain different topologies types.
The rows of the table contains the different number of entities of the simulated
distributed system. The study of Table 2 provides one important conclusion. The
error percentage measured for the same topology but for different number of entities
seem to be constant. The conclusion might be that the number of entities does not
influence the error percentage. The reason for that could be the error percentage
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measure is the fraction of the number of entities. Nevertheless, this measure should
reveal the possible effect of scale of error propagation phenomenon.

Topology

Error probability Full Random Ring Central Tree Avg.

0.1 0.03 0.07 0.12 0.07 0.15 0.09

0.3 0.06 0.15 0.21 0.23 0.33 0.2

0.5 0.11 0.23 0.28 0.38 0.42 0.28

0.8 0.17 0.28 0.34 0.53 0.53 0.37

0.9 0.17 0.3 0.36 0.61 0.58 0.4

Table 3. Average error percentage relationship to topology and error probability

Table 3 presents the relationship between the average error percentage and to-
pology and error probability. The columns of the table contain different topology
types. The rows of the table contain different error probabilities utilized in simu-
lations. As mentioned in Section 4.3, the role of error probability parameter is to
differentiate the error occurrences in time. In the model of distributed systems,
the error probability parameter is used by the function determining the moment
of entity’s error. From the statistical point of view, the higher the probability the
sooner an error occurs. The analysis of Table 3 leads to the following conclusion:
there seems to be a directly proportional relation between the error probability and
error percentage. This regularity can be observed in every topology. One of the
possible explanations for that fact could be that the distributed sum algorithm is
much more susceptible to errors occurring in the early phase of its execution. As
mentioned before, the higher the probability the sooner the error.

Topology

Error Type Full Random Ring Star Tree

None 7924.93 2863.42 782.53 7798.76 1442.9

Omission 11924.21 91546.69 900.44 1256760.08 1684114.09

Commission 7921.92 2859.37 784.3 7793.62 1446.45

Contamination 7922.33 2853.87 781.79 7797.24 1445.67

Crash 1168883.85 1335311.8 1204626.81 1421463.51 2054520.83

Table 4. Average simulation time relationship to topology and error probability

Table 4 presents the relationship between the average simulation time and the
topology and error probability. The columns of the table contain different topology
types. The rows of the table contain different error types occurred during simula-
tions. The analysis of the average simulation time seems to confirm the hypothesis.
The occurrence of errors consisting in data loss (Omission, Crash) indeed length-
ened the simulation time significantly. Even the topologies perfectly immune to
omission error (ring, full) operated slower in presence of this kind of error. Separate
explanation needs to be made in case of crash error. The simulation was recognized
as complete in the event of fixed structure’s state affirmation or the exceedence of
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simulation timeout limit arbitrarily set to 100 000 time units. The latter condition
ensured that the simulation would eventually finish. The timeout limit was set to
a value hardly probable in normal algorithm execution. So, when the simulation
execution time is equal to the timeout value it means that the structure’s operation
was disturbed in a way making the fixed state stop condition impossible to meet.
Thus, the average simulation time a few times longer than the normal indicates that
there was at least one simulation exceeding the timeout. This happens when the
faulty entity did not manage to broadcast its initial value before it has crashed. So
the value of average simulation time is not reliable in this case. Another observation
is that the other kinds of errors (commission and contamination) do not influence
the average simulation time significantly.

5.2 Qualitative Analysis

The error percentage measure is a purely quantitive observation. It says nothing
about the course of the error propagation phenomenon. Visual analysis was con-
ducted in order to fill this gap. The source of data utilized in this section is the
snapshot of the model’s state at the end of simulation. This snapshot takes the form
of graph in the dot file format saved in the database along with the other simulation
results. The dot file format can be visualized using the Graphviz software and then
analyzed.

The qualitative analysis consisted of examining the snapshot of the final state
of the model at the end of simulation and trying to determine the error propagation
pattern. This method was meant to provide the quantitive observations to explain
the process of error propagation. The disadvantage of visual analysis is the lack
of automation and thereby the inability of processing the whole range of results.
Additionally, analysis of the larger structures consisting of tens of entities is very
laborious. Therefore only some of the simulations were chosen for the analysis.
Nevertheless, visual analysis is a very important part of the results processing.

The snapshots of the systems were visualized and presented as figures. The
following conventions were used during the visualizations:

• the snapshot is visualized as the undirected graph,

• each entity is presented as a vertex and each connection is represented by the
edge,

• the numbers inside the vertexes indicate their id,

• the faulty entity is marked with dark grey color,

• the entities affected by the error (having the invalid state at the end of simula-
tion) are marked with the light grey color,

• the entities unaffected by the error are marked with the white color.

In order to compare the error propagation in different topologies one might want
to group the results of the analysis by the error type; but in a single topology the
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error propagation phenomenon proceeds similarly in spite of the error type. Thus,
the results are grouped by the topology to show the differences in the topology
behaviour in case of different errors.

Fig. 11. Visualization of contamination error propagation in full topology

Fig. 12. Visualization of crash error propagation in full topology

Figure 11 presents the visualization of the contamination error propagation in
full topology. Entity 1 is the source of the error. Entity 0 is affected by the
error. The propagation path in this case is simple. Entity 1 probably contaminated
a message to Entity 0 during the broadcasting phase. The other scenario that the
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contaminated message came from another entity is hardly probable because the
error could only occur after Entity 1 had finished broadcasting its initial value and
by this time Entity 0 would probably get the proper value from the original source
of the message. It is important to notice that even though Entity 0 is affected by
the contamination, the error does not propagate any further. The other entities
(including Entity 1 ) hold the valid sum at the end of algorithm’s execution. This
is because of the redundancy present in full topology. Entity 0 cannot contaminate
other entities, because they already received the original value from its source.

Figure 12 presents the visualization of the crash error propagation in full topo-
logy. One of two possible scenarios is presented. In the presented case, Entity 1

crashed before it managed to pass its input value to any other entity. This resulted
in the invalid final state of the whole system. It is worth noticing that if Entity 1

had sent a message containing its initial value to even one entity, the receiver would
successfully broadcast it to others. This is the second possible scenario, when the
only entity affected by the crash is Entity 1 itself. The situation when the crashed
entity still has the correct state at the end of the simulation is also probable. In
this case, the crash should occur after the faulty entity had broadcasted its initial
value and collected the values from the other entities. The described scenario did
not occur in experiments.

The other error types (commission and omission) are not analysed, because the
full topology seems to be immune to these kind of errors. The commission error does
not influence the full topology, because by the time the false message is delivered to
the receiver, the receiver already has the real one. The omission error is cancelled
because even if one of the entities does not receive the message directly from its
source it still receives a copy from the other entity. It is clear that the redundancy
of the full topology makes it almost completely fault-tolerant.

Fig. 13. Visualization of commission error propagation in random topology

Figure 13 presents the visualization of the commission error propagation in ran-
dom topology. Entity 5 is the source of the error and Entities 6, 3, 7, 9 are affected
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Fig. 14. Visualization of omission error propagation in random topology

Fig. 15. Visualization of contamination error propagation in random topology

by the error. The error propagation phenomenon in this case proceeded in the follow-
ing way: Entity 5 sent a false message to Entity 6. As a sender of this message one
of the entities unaffected by error was drawn. A false message had to be received at
Entity 6 before the real message from sender was received. Therefore Entities 0, 1,

2, 4 are the most probable senders as they are not directly connected with Entity 6.
Entity 6 propagates the false value to Entity 3, Entity 7 and finally to Entity 9.
Entity 1 is not affected by error, because it had received the real message before
Entity 3 sent the false one to it. The important conclusion coming from the analysis
of this case is that error propagation in utilized model depends highly on time.

Figure 14 presents the visualization of the omission error propagation in random
topology. Entity 0 is the source of the error and Entities 5, 6 are affected by the
error. Entity 0 connects the affected entities with the rest of the structure. Therefore
every message coming from the unaffected entities must pass through Entity 0 to
reach Entities 5, 6. In this case, Entity 0 omitted a message which was meant to
be sent to Entity 5. The lack of redundant connections to Entities 5, 6 caused that
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they could not get the message from the other source and eventually resulted in
their invalid final state.

Figure 15 presents visualization of the contamination error propagation in ran-
dom topology. Entity 1 is the source of the error and Entities 0, 5, 9 are affected
by the error. The course of the error propagation seems to be obvious. Entity 1

contaminated a message to Entity 0, and this message was then passed further, to
Entity 9 and Entity 5. Again, the time factor seems to be deciding in this case.
It is worth noticing that Entity 2 received the proper value because it holds the
right state at the end of simulation. Furthermore, it had to receive it before En-

tity 0 passed the contaminated message to it. But still, the error propagation path
(Entity 0-¿Entity 9-¿Entity 5 ) had to be shorter (in the time dimension) than the
path from Entity 2 to Entity 5. It could be caused by the fact that Entity 2 has
6 neighbors and therefore processing and broadcasting each message takes much
more time than with Entity 9 having just 2 neighbors.

The course of the crash error propagation in random topology is in most cases
the same as in full topology. However, there are rare situations, when the crashed
entity cuts off some part of the structure. In this case, the separated group of entities
holds the improper value at the end of simulation. In the other cases only the faulty
entity is affected by the error or the whole structure fails. The exact scenario of the
crash error propagation depends on the time when the error occurs.

Fig. 16. Visualization of commission and contamination errors propagation in ring topo-
logy

Figure 16 presents the visualization of the commission and contamination errors
propagation in ring topology. Entity 0 is the source of the error and Entities 6, 7,

8, 9 are affected by the error. The course of the propagation is obvious. Entity 0

generates the error (contamination or commission) and then the error is propagated
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Fig. 17. Visualization of commission error propagation in star topology

Fig. 18. Visualization of commission error propagation in tree topology

to the affected entities. The propagation finishes at Entity 6, because Entity 5 had
received the proper value before the invalid one has been passed to it.

Ring topology is immune to omission errors, because the loss of one message
is always compensated by the alternative message delivery path. The course of
the crash error propagation is similar to the ones in the two previously presented
topologies.

Figure 17 presents the visualization of the commission error propagation in the
star topology. Entity 3 is the source of the error and all entities except for Entity 4

are affected by the error. Entity 3 committed a false message to the central entity
Entity 0. Entity 0 propagated the message to the rest of the entities. The only
entity unaffected by the error is Entity 4. It was not influenced by error, because
the false message had the sender field set to this entity, and therefore the false value
was not taken into account.
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The course of the error propagation phenomenon in star topology depends highly
on the place of the error occurrence. Paradoxically, when the central entity fails the
damage caused by the error is not large. The reason for that is the error occurred
at the central entity propagates only to the one entity, because the peripheral entity
being the receiver of the false message cannot propagate it any further. The other
ones are not affected. The exception for this rule is the crash error of the central
entity, because it results in impossibility of any communication between the other
entities. In this case the whole structure is damaged. On the other hand, when
the peripheral entity is faulty the error passed to the central entity is passed to the
rest of the structure. Thus the whole structure becomes affected. This situation is
presented in Figure 17. Once again, the exception is the case, when the peripheral
entity crashes. In this case, the rest of the structure is operating normally.

Figure 18 presents the visualization of the commission error propagation in the
topology. Entity 5 is the source of the error and Entities 1, 4, 8, 9 are affected by
the error. The error is propagated from Entity 5 to Entity 1 and then down the
hierarchy to Entities 4, 8, 9. Propagation up the hierarchy is stopped at Entity 1

because the Entity 0 received a proper value before.
The other kinds of errors propagate in similar way in tree topology. The lack

of redundancy in tree topology causes the error can propagate freely across the
structure. The damage caused by the error depends highly on the place of its
occurrence. The higher in hierarchy the faulty node is the more damage the error
causes.

6 CONCLUSIONS

It can be concluded from the experimental results and analysis that the course
and range of the error propagation phenomenon are influenced by topology of the
distributed information system.

The examination of the error propagation phenomenon by means of quantitative
and qualitative analyses leads to the following conclusions. Firstly, the topologies
utilized in network systems can be ordered from the most to the least immune to
error propagation as follows:

1. full topology,

2. random topology,

3. ring topology,

4. star topology and

5. tree topology.

According to [5] findings that scale-free graphs make the system as efficient as fully
connected graphs we understand how scale-free networks are particularly well im-
mune to error propagation. Scale-free networks have a structure, which makes their
performance less robust to agent breakdowns or network failures [7]. Studying me-
thods for developing strategies, and responding to failures in the network, could
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potentially lead to mitigating the negative effects of certain interaction topologies
and might allow to overcome deficits in individual connectivity. One possibility is
to allow the entities to adapt network connectivity by adding and removing local
connections. Other possibilities include collaboration. All of these organizational
paradigms are subjects of our ongoing research. Another interesting finding is that
the viruses and other threats can spread rapidly in small-world networks, for exam-
ple the social network formed by SMS users [12], where the most common are star
and tree topology.

Qualitative analysis provides detailed explanations for this state of affairs. Full
topology is the most immune one, because it contains the most highly connected
topology. It is the most redundant structure of the examined. Random topology
performs slightly better than ring topology, probably because of the average distance
between entities. Both topologies contain redundancy, but an error propagating
in ring topology affects more entities, because the invalid message traverses the
bigger part of the structure before it gets detected and corrected. The weakest
immunity to error have the topologies not employing redundancy – the tree and
star topology. And again the topology having lower average inter-entities distance
(the star topology) performs slightly better.

Other observations concern error propagation of different error types. The error
types can be ordered form the least to the most harmful:

1. omission error,

2. commission error,

3. contamination error,

4. crash error.

The omission error can be easily cancelled by the redundancy. The results
presented in Table 1 indicate that the topologies employing redundancy (the full,
random and ring topologies) are almost completely immune to this kind of error.
Visual analysis pointed out that the information lost due to the omission error is
cancelled by the presence of the replicated data in the other entities. On the other
hand, when the redundancy is not present (like in star and tree topologies), the
information is ultimately lost. The commission error is slightly less harmful than
the contamination error. The nature of these kind of errors seems similar – the
damage is propagated along with the modified message. The difference is that in
commission error the message is created by one of the entities and in contamination
error the existing message is modified. The modification is more harmful, because
when the real message is affected, the situation when its receiver does not have the
proper value already is more probable. Crash error is the most harmful error type,
because it often leads to disconnection of the topology and irreparable information
lost.

Examination of the influence of error probability on error propagation phe-
nomenon leads to the conclusion that the sooner an error occurs the more damage
it causes. It is illustrated in Table 3. This relationship can be explained by using
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visual analysis. When the error occurs in the early stage of distributed sum algo-
rithm execution, the structure is in an empty state. Every value emerging within
the system is received by entities and passed further. In later stages, the refusal
of the improper message is more probable, because the entities mostly contain the
right value already.

The main obstacle of this work was the complexity of the topic of analysis.
In order to conduct experiments the simplified model of a distributed system was
designed and implemented. But still, the calculations connected to simulations
took a week of computing time to complete. This is the main reason, why the
experiments concerned relatively small distributed systems – up to 100 entities. It
might be a counter-argument challenging the hypothesis, but the obtained results
have shown that the number of entities has little or no influence on the course of
error propagation.

The study of error propagation phenomenon in distributed information systems
has shown this issue is complex and worth further research. This work concerns
only a small part of this area. Future works in this subject should analyse deeply
the factors having the influence on the error propagation. The results presented
denied the connectivity to be the factor influencing the course of error propagation,
but other metrics of the topology can be specified and examined. In order to verify
the hypothesis the error percentage measure was applied. As stated in Section 4
this measure is oversimplified. It is quantitative description of the effects of the
phenomenon. It says nothing about the course of the propagation. Future work
should introduce the qualitative measure of error propagation allowing analyzing
its course. The presented results can be also analysed in a different way than
in this work. For instance, the correlation between the different parameters of
social systems and the error propagation measures could be calculated. Data mining
techniques could also be utilized in order to discover the associations in the domain
of error propagation not examined yet. Finally, the real-world system experiment
should be conducted in order to verify the given hypothesis in practice.
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