
Computing and Informatics, Vol. 28, 2009, 795–809

ENHANCED SEARCH METHOD FOR ONTOLOGY
CLASSIFICATION

Je-Min Kim, Soon-Hyen Kwon, Young-Tack Park

School of Computing, Soongsil University
1-1, Sangdo-dong, Dongjak-Gu, Seoul, 156-743, Korea
e-mail: kimjemins@hotmail.com, kwonshzzang@naver.com, park@ssu.ac.kr

Revised manuscript received 19 January 2009

Abstract. The web ontology language (OWL) has become a W3C recommendation
to publish and share ontologies on the semantic web. In order to infer implicit infor-
mation (classification, satisfiability and realization) of OWL ontology, a number of
OWL reasoners have been introduced. Ontology classification is to compute a par-
tial ordering or hierarchy of named concepts in the ontology using the subsumption
testing. Most of the reasoners use both top-down and bottom-up searches using
subsumption testing for ontology classification. As subsumption testing is costly, it
is important to ensure that the classification process uses the smallest number of
tests. In this paper, we propose an enhanced method of optimizing the ontology
classification process of ontology reasoning. Our work focuses on two key aspects:

The first and foremost, we describe classical methods for ontology classification.
Next, we present description of the enhanced method of optimizing the ontology
classification and the detailed algorithm. We evaluate the effect of the enhanced
method on four different types of test ontology. The enhanced search method shows
30% performance improvement as compared with the classical method according
to the result of the experiment.

Keywords: Ontolgy, DL reasoning, tableaux algorithm, classification, subsumption
test, top search, bottom search

1 INTRODUCTION

The web ontology language (OWL) has become a W3C recommendation to publish
and share ontologies on the semantic web. Ontology is a formal, explicit specification

796 J.-M. Kim, S.-H. Kwon, Y.-T. Park

of a shared conceptualization of a domain of interest [1]. Therefore, many ontology
building and reasoning systems can be used to represent taxonomic and conceptual
knowledge of a problem domain in a structured and well formed way. These systems
must also be able to reason about this knowledge. An important inference capability
of an ontology reasoning system is classification. Ontology reasoners are used to
classify concepts in ontology, that is to compute a partial ordering or hierarchy of
named concepts in the ontology base on the subsumption testing. As subsumption
testing is costly, it is important to ensure that the classification process uses the
smallest number of tests. Algorithms based on traversal of the concept hierarchy can
be used to minimize the number of tests required in order to add a new concept [2].
Most of the reasoners use both top-down and bottom-up searches using subsumption
testing for ontology classification. The idea is to compute a concept’s subsumers by
searching down the hierarchy from the top node (top-down search) and its subsumees
by searching up the hierarchy from the bottom node (bottom-up search).

Although this idea has a big advantage, it still does not exploit all possible
information. Therefore we propose an enhanced method to optimize the ontology
classification process of ontology reasoning. First, during the top-down search, we
can take results of subsumption tests that have already been performed and the
advantage of the transitivity of the subsumption relation by propagating failed re-
sults down the hierarchy or propagating successful results up the hierarchy. Second,
in the bottom-up search, we can use the information gained during the top-down
search as well. This technique is very effective when used on the kinds of legacy
ontology as it avoids performing large numbers of subsumption tests. It also turns
out to produce improvement in classification times for some more complex ontology.
First and foremost, we aim to describe classical methods for ontology classification.
Next, we present description of the enhanced method of optimizing the ontology
classification and the detailed algorithm. We evaluate the effect of the enhanced
method on four different types of test ontology.

Building the optimization method that came off best into ontology reasoning
system greatly enhanced its efficiency. One goal of this paper is to provide such
an available algorithm for future implementers of ontology reasoning system.

In the next section we will present the classical ontology classification technique,
a description of the enhanced method of optimizing the ontology classification, the
detailed algorithm, and the results of running the algorithm on the cases.

2 PRELIMINARIES

2.1 Description Logic

Description Logics (DL) [2] are a family of logic-based knowledge representation
formalism. DLs are usually a (decidable) subset of First Order Predicate Logic
(FOL), and thus have a well-defined, formal semantics.

The basic building blocks in DL are atomic concepts which correspond to 1-place
(unary) predicates in FOL and denote a set or a class of objects, atomic roles

Enhanced Search Method for Ontology Classification 797

which correspond to 2-place (binary) predicates in FOL and denote relations between
objects, individuals which correspond to constants in FOL. A DL provides a set
of operators, called constructors, which allow the formation of complex concepts
and roles from atomic ones. For example, by applying the concept conjunction
constructor (⊓) on the atomic concepts Person and Male, the set of all “Male People”
can be represented as follows: Person ⊓ Male.

Description Logic knowledge bases (KB) typically consist of a TBox containing
concept inclusion axioms of the form C1 ⊑ C2 where both C1, C2 are concepts,
an RBox containing role inclusion axioms of the form R1 ⊑ R2 with R1, R2 roles,
an ABox containing axioms of the form C(a), called concept assertions and R(a, b),
called role assertions where a, b are object names. In its simplest form, a TBox
consists of a restricted form of concept inclusion axioms called concept definitions:
sentences of the form A ⊑ C or A ≡ C.

2.2 OWL and Ontology Reasoning

The Web Ontology Language (OWL) [3] is an integral component of the semantic
web, as it can be used to write ontologies or formal vocabularies which form the basis
for semantic web data markup and exchange. From a modeling and semantic point
of view, OWL shares a strong correspondence with Description Logics borrowing
many logical constructs. OWL comes in three increasingly expressive sub-languages
or “species”, OWL-Lite, OWL-DL and OWL-Full. Among these, OWL-DL corres-
ponds to the description logic SHOIN (D).

Reasoning services for OWL are typically the same as those for DLs, and in-
clude consistency check; whether an OWL ontology O is logically consistent, class
subsumption (Ontology Classification), given a pair of classes C, D in the onto-
logy O, check whether O |= C ⊑ D (also related is the notion of class satisfiability:
C ⊑⊥ and class equivalence: C, D which implies C ⊑ D and D ⊑ C), when given
an individual a and a class C in the ontology O, check(instantiation) whether a is
an instance of C.

3 ONTOLOGY CLASSIFICATION

Ontology classification is the process of establishing partial order on the set of named
concepts in ontology using the subsumption tests. Beside answering specific sub-
sumption and satisfiability queries, it is often useful to compute and store the sub-
sumption relation of all the concept names in the ontology.

In practice, many ontology reasoners use subsumption test algorithm that are
not capable of determining subsumption relations with respect to an arbitrary on-
tology. In the past years, sound and complete subsumption test algorithms for large
concepts of ontology have been developed [4]. Most of these algorithms are designed
based on satisfiable checking algorithms. These algorithms use model generation
procedures, and are similar to first-order tableaux calculus. Since a concept A sub-
sumes a concept B if, and only if, ¬A ⊓ B is not satisfiable, i.e., there does not

798 J.-M. Kim, S.-H. Kwon, Y.-T. Park

exist an interpretation which interprets ¬A ⊓ B as a non-empty set, a satisfiability
algorithm in fact can be used to solve the subsumption problem. In order to check
whether a given concept C is satisfiable, the tableaux-based algorithm tries to ge-
nerate a finite interpretation in which C is interpreted as a non-empty set. This
generation process is complete in the sense that if it fails, i.e., an obvious contradic-
tion occurs, it can conclude that C is not satisfiable; otherwise C is satisfiable.

3.1 Definition Order

The number of subsumption tests required for classification can be affected by the
order in which concepts are added to the taxonomy. A well-known optimization is
to add ontology concepts in definition order. Definition order is the data structure
that reveals obvious subsumption relations and controls the order in which concepts
are added to the hierarchy.

Definition order is used in order to minimize the number of subsumption tests
needed in classification. For example, when adding concept C to the hierarchy,
a top-down search is used that only checks ifD subsumes C when it has already been
determined that C is subsumed by all the concepts in the hierarchy that subsume D.
The structure of TBox axioms is also used to compute a set of told subsumers of C.
Told subsumers are a set of trivially obvious subsumers. For example, if the TBox
contains an axiom C ⊑ D1 ⊓ D2, then both D1 and D2, as well as all their told
subsumers, are told subsumers of C. As subsumption is told subsumers, no test need
to be performed with respect to these concepts. The told subsumer optimization
can be used to approximate the position of C in the hierarchy.

To maximize the effect of told subsumer optimization, concepts should be clas-
sified in definition order. This means that a concept A is not classified until all
of its told subsumers are classified. Therefore, as concepts are classified definition
order, a primitive concept will always be classified before any of the concepts that
it subsumes. In this procedure, all concept names are sorted into definition order.

4 TOP-DOWN AND BOTTOM-UP SEARCHES

Traditionally, ontology hierarchy is built iteratively. The order is initialized with the
trivial relation ⊥ ≺ ⊤, and on every iteration one new concept name C is added.
For each concept name C added to the taxonomy, the set of parents and the set
of children are determined. These two sets uniquely identify the place of C in the
current taxonomy. The set of parents is defined by a procedure called a top-down
search, and the set of children is defined by a bottom-up search.

The top-down search starts at the top of the already computed hierarchy. For
each concept x ∈ Xi under consideration it determines whether x has an immediate
successor y satisfying c � y. If there are such successors, they are considered as
well; otherwise, x is added to the result list of the top-down search.

In order to avoid multiple visits of elements of Xi and multiple comparisons
of the same element with c, the top-down search algorithm described in Figure 1

Enhanced Search Method for Ontology Classification 799

top-search(c, x)
 mark(x, “visited”)
 for all y with y ≺ x do
 if simple-top-subs?(y, c)
 then Pos-Succ ← Pos-Succ ∪{ y}
 fi
 od
 if Pos-Succ is empty then
 Result ← {x}
 else
 for all y ∈ Pos-Succ do
 if not marked?(y, “visited”)
 Result ← Result ∪ top-search(c, y)
 fi
 od
 fi

simple-top-subs?(y, c)
if marked(y, “positive”) then
 Result ← true
elseif marked(y, “negative”)
 then
Result ← false
elseif subs?(y, c)
 then
 mark(y, “positive”)
 Result ← true
else
 mark(y, “negative”)
 Result ← false
fi

Fig. 1. Top-down search algorithm

employs one label to indicate whether a concept has been “visited” or not and an-
other label to indicate whether the subsumption test was “positive”, “negative” or
has not yet been made. The top-down search procedure gets two concepts as in-
put: the concept c, which has to be inserted, and an element x of XI , which is
currently under consideration. For this concept x we already know that c � x, and
the top-down search looks at its direct successors with respect to ≺i. Initially, the
procedure is called with x = ⊤. For each direct successor y of x, it has to check
whether it subsumes c. This is done in the procedure simple-top-subs?. Since our
hierarchy need not be a tree, y may already have been checked before, in which
case it has memorized the result of the subsumption test, and thus need not invoke
the expensive subsumption test procedure sub?. The direct successors for which
the test was positive are collected in a list Pos-Succ. If this list remains empty,
x is added to the result list; otherwise the top-down search is called for each pos-
itive successor, but only if this concept has not been visited before along another
path.

The bottom-search can be done again in a dual way. The bottom-up search starts
at the bottom of the already computed hierarchy. For each concept x ∈ Xi under
consideration it determines whether x has an immediate predecessor y satisfying
y � c. If there are such predecessors, they are considered as well; otherwise, x is
added to the result list of the bottom search.

800 J.-M. Kim, S.-H. Kwon, Y.-T. Park

bottom-search(c, x)
 mark(x, “visited”)
 for all y with x ≺ y do
 if simple-bottom-subs?(y, c)
 then Pos-Succ ← Pos-Succ ∪{ y}
 fi
 od
 if Pos-Succ is empty then
 Result ← {x}
 else
 for all y ∈ Pos-Succ do
 if not marked?(y, “visited”)
 then Result ← Result
∪ bottom-search(c, y)
 fi
 od
 fi

simple-bottom-subs?(y, c)
if marked(y, “positive”)
 then Result ← true
elseif marked(y, “negative”)
 then Result ← false
elseif subs?(c, y)
 then mark(y, “positive”)
 Result ← true
else
 mark(y, “negative”)
 Result ← false
fi

Fig. 2. Bottom-up search algorithm

5 ENHANCED TOP-DOWN AND BOTTOM-UP SEARCHES

As subsumption testing is expensive, it is important to ensure that the classification
process uses the smallest number of tests. One goal of this paper is to optimize
top-down and bottom-up searches for minimizing subsumption test. In order to
perform this study, we adapt the following eight methods.

5.1 Optimizing Methods

We propose an enhanced method to optimize the ontology classification process
of ontology reasoning. First, during the top-down search, we can take results of
subsumption tests that have already been performed and the advantage of the tran-
sitivity of the subsumption relation by propagating failed results down the hierarchy
or propagating successful results up the hierarchy. Second, in the bottom-up search,
we can use the information gained during the top-down search as well.

Negative Information Down Propagation: When classifying a concept A, the
top-down search takes advantage of the transitivity of the subsumption relation
by propagating failed results down the hierarchy.

A 6⊑ B and C ⊑ B implies A 6⊑ C

Enhanced Search Method for Ontology Classification 801

Positive Information Up Propagation: When classifying a concept A, the top-
down search takes advantage of the transitivity of the subsumption relation by
propagating successful results up the hierarchy.

A ⊑ B and B ⊑ C implies A ⊑ C

Negative Information Up Propagation: When finding children of a concept A,
the bottom-up search takes advantage of the transitivity of the subsumption
relation by propagating failed results down the hierarchy.

B 6⊑ A and B ⊑ C implies C 6⊑ A

Positive Information Down Propagation: When finding children of a concept
A, the bottom-up search takes advantage of the transitivity of the subsumption
relation by propagating successful results down the hierarchy.

B ⊑ A and C ⊑ B implies C ⊑ A

Positive information gain for top-down search: It concludes, without per-
forming a subsumption test, that if A is subsumed by B, then it can be subsumed
by any other concept that is subsuming B.

A ⊑ B and B ⊑ C implies no top-search(A,C)

Negative information gain for top-down search: It concludes, without per-
forming a subsumption test, that if A cannot be subsumed by B, then it cannot
be subsumed by any other concept that is subsumed by B.

A 6⊑ B and C ⊑ B implies no top-search(A,C)

Positive information gain for bottom-up search: It concludes, without per-
forming a subsumption test, that if A subsumes B, then it can subsume any
other concept that is subsumed by B.

B ⊑ A and C ⊑ B implies no bottom-search(A,C)

Negative information gain for bottom-up search: It concludes, without per-
forming a subsumption test, that if A cannot subsume B, then it cannot subsume
any other concept that is subsuming B.

B 6⊑ A and B ⊑ C implies no bottom-search(A,C)

802 J.-M. Kim, S.-H. Kwon, Y.-T. Park

5.2 Enhanced Top-Down and Bottom-Up Search Algorithm

When trying to take advantage of subsumption tests that have already been per-
formed during the top-down search, one can either concentrate on negative infor-
mation (Negative information gain for top-downs earch) or on positive information
(Positive information gain for top-down search).

In order to use negative information during processing the top-down search, the
enhanced algorithm checks whether for some predecessor z of y the test c ≺ z has
failed. In this case, we can conclude that c 6≺ y without performing the expensive
subsumption test [5]. In order to gain maximum advantage, all predecessors of y
should have been tested before the test is performed on y. To use positive informa-
tion during processing the top-down search, we check whether for some successor z
of y the test c ≺ z has succeeded. In this case, we can conclude that c ≺ y without
performing expensive subsumption tests. In order to gain maximum advantage, all
successors of y should have been tested before the test is performed on y.

top-search(c, x)
 mark(x, “visited”)
 for all y with y ≺ x do
 if enhanced-top-subs?(y, c)
 then Pos-Succ ← Pos-Succ ∪ {y}
 propagate-information(“Positive”, y)
 else
 propagate-information(“Negative”, y)
 fi
 od
 if Pos-Succ is empty then
 Result ← {x}
 else
 for all y ∈ Pos-Succ do
 if not marked?(y, “visited”)
 Result ← Result ∪ top-search(c, y)
 fi
 od
 fi

Fig. 3. Enhanced top-down search algorithm

We are only interested in minimizing the number of comparison operations.
Therefore, it is more efficient to propagate positive information up (Positive In-
formation Up Propagation) and to propagate negative information down (Negative
Information Down Propagation) through the subsumption hierarchy. This can be
achieved by an easy modification of the procedure top-search? in Figure 1. When
the call “enhanced-top-subs?(y,c)” yields true, not only y is marked “positive”, but

Enhanced Search Method for Ontology Classification 803

also all of y’s predecessors are marked “positive”. When the call “enhanced-top-
subs?(y,c)” yields false, not only y is marked “negative”, but also all of y’s succes-
sors are marked “negative”. Obviously, this technique can be combined with the
enhanced top-down search described in Figure 3. Figure 4 shows the procedure
enhanced-top-subs? which adapts Positive information gain for top-down search
and Negative information gain for top-down search.

enhanced-top-subs?(y, c)
if marked(y, “positive”)
 then Result ← true
elseif marked(y, “negative”)
 then Result ← false
elseif exists z with z ≺ y, marked?(z, “positive”)
 then mark(y, “positive”), Result ← true
elseif exists z with y ≺ z, marked?(z, “negative”)
 then mark(y, “negative”), Result ← false
elseif subs?(y, c)
 then mark(y, “positive”), Result ← true
else mark(y, “negative”), Result ← false
fi

Fig. 4. Enhanced top-subs? algorithm

In Figure 5, the comparison of classical top-down search with the enhanced
top-down search is shown. The classical top-down search calls “subs” eight times;
on the other hand, the enhanced top-down search calls “subs” six times. Because
concept C cannot be subsumed by X3, the successors Y1, Y3, Y4, Z1, Z3, Z4 and B
of the concepts X3 have “negative” information. Therefore, it does not need to call
subs?(Y1,C) and subs?(Y3,C).

Now we turn to the enhanced bottom-up search. Of course, optimizations dual
to the ones described for the enhanced top-down search can be employed here. In
order to use negative information during the enhanced bottom-up search, we check
whether for some successor z of y the subsumption test z ≺ c has failed. In this
case, we can conclude that y 6≺ c without performing the expensive subsumption
test. In order to gain maximum advantage, all successors of y should have been
tested before the test is performed on y. To use positive information during the
enhanced bottom-up search, we check whether for some predecessor z of y the test
z ≺ c has succeeded. In this case, we can conclude that y ≺ c without performing the
expensive subsumption test. In order to gain maximum advantage, all predecessors
of y should have been tested before the test is performed on y.

It is more efficient to propagate positive information down (Positive Information
Down Propagation) and to propagate negative information up (Negative Informa-
tion Up Propagation) through the subsumption hierarchy. This can be achieved by
an easy modification of the procedure bottom-search? in Figure 2. When the call

804 J.-M. Kim, S.-H. Kwon, Y.-T. Park

T

B

X1 X2 X3

Y1 Y2 Y3 Y4

Z1 Z2 Z3 Z4

1

2 3 4

5 6 8

7

C

Top-down search

T

B

X1 X2 X3

Y1 Y2 Y3 Y4

Z1 Z2 Z3 Z4

1

2 3 4

5

6

C

Enhanced top-down search

Example: The concept C subsumed by the concept Y2

Subsumption test count: 8 Subsumption test count: 6

Fig. 5. Example 1 – enhanced top-down search processing

“subs?(c,y)” yields true, not only y is marked “positive”, but also all of y’s successors
are marked “positive”. When the call “subs?(c,y)” yields false, not only y is marked
“negative”, but also all of y’s predecessors are marked “negative”. Obviously, this
technique can be combined with the enhanced bottom-down search described in Fi-
gure 6. Figure 7 shows the procedure enhanced-bottom-subs? which adapts Positive
information gain for bottom-up search and Negative information gain for bottom-up
search.

Figure 8 shows a comparison of the classical bottom-up search with the enhanced
bottom-up search. The classical bottom-up search calls “subs?” nine times; on
the other hand, the enhanced bottom-up search calls “subs?” six times. Because
concept C cannot subsume Z4, the predecessors X1, X2, X3, Y2, Y3, Y4 and ⊤
of the concepts Z4 have “negative” information. Therefore, it does not need to call
subs?(C,Y2), subs?(C,Y3) and subs?(C,X1).

6 EVALUATION

We have tested our implementation using several TBoxes derived from application
ontologies. All experiments used Windows XP on a Pentium 4, 1.73GHz machine
with 512MB of memory. Figure 9 shows results to compare a number of subsumption
tests of the enhanced search with the classical search. We decide the optimization
level of the algorithm based on a number of subsumption test.

Koala ontology has 21 concepts. The proposed enhanced search performs the
subsumption test 124 times. On the other hand, the classical search performs the
subsumption test 131 times. The enhanced search performs not only the subsump-

Enhanced Search Method for Ontology Classification 805

bottom-search(c, x)
 mark(x, “visited”)
 for all y with x ≺ y do
 if enhanced-bottom-subs?(y, c)
 then positive-down-propagate(y)
Pos-Succ ← Pos-Succ ∪{ y}
 else negative-up-propagate(y)
 fi
 od
 if Pos-Succ is empty
 then Result ← {x}
 else
 for all y ∈ Pos-Succ do
 if not marked?(y, “visited”)
 then Result ← Result ∪ bottom-search(c, y)
 fi
 od
 fi

Fig. 6. Enhanced bottom-up search algorithm

enhanced-bottom-subs?(y, c)
if marked(y, “positive”)
 then Result ← true
elseif marked(y, “negative”)
 then Result ← false
elseif exists z with z ≺ y and marked?(z, “negative”)
 then mark(y, “negative”), Result ← false
elseif exists x with y ≺ x and marked?(x, “positive”)
 then mark(y, “positive”), Result ← true
elseif subs?(c, y)
 then mark(y, “positive”), Result ← true
else mark(y, “negative”), Result ← false
fi

Fig. 7. Enhanced bottom-subs? algorithm

Ontology Concept number Enhanced search Classical search

koala.owl 21 124 131

Pizza.owl 76 782 1 220

miniEconomy.owl 337 15 931 20 978

miniTransport.owl 444 31 967 33 386

Table 1. The result to compare a number of subsumption test

806 J.-M. Kim, S.-H. Kwon, Y.-T. Park

T

B

X1 X2 X3

Y1 Y2 Y3 Y4

Z1 Z2 Z3 Z4

9

2 3 4 5

6 8

7

C

Bottom-up search

1

T

B

X1 X2 X3

Y1 Y2 Y3 Y4

Z1 Z2 Z3 Z4 2 3 4 5

6

C

Enhanced bottom-up search

1

Subsumption test count: 9 Subsumption test count: 6

Example: The concept C subsumes Y1, Z2 and Z3

Fig. 8. Example 2 – enhanced bottom-up search processing

tion test but also confirmation about the subsumption relation between predecessors
and successors in the concept hierarchy. As we said earlier, the enhanced search
applies eight optimization methods. When the enhanced search performs the sub-
sumption test, these methods get data and are able to omit some of the subsumption
tests.

The enhanced search method shows a 30% performance improvement as com-
pared with the classical method according to the result of the experiment. These
results lead to the fact that decrement of the subsumption test is not related to
ontology size, but is related to the complexity concept hierarchy.

7 CONCLUSION

In this paper, we propose an enhanced method for optimizing the ontology clas-
sification process in ontology reasoning. Ontology reasoners are used to classify
concepts in ontology, that is to compute a partial ordering or hierarchy of named
concepts in the ontology based on subsumption testing. As subsumption testing
is costly, it is important to ensure that the classification process uses the small-
est number of tests. Most of the reasoners use both top-down and bottom-up
searches for ontology classification. One goal of this paper is to optimize top-down
searches and bottom-up searches for minimizing subsumption tests. In order to
perform this study, we adapted eight methods. First, during the top-down search,
we can take results of tests that have already been performed and the advantage
of the transitivity of the subsumption relation by propagating failed results down
the hierarchy or propagating successful results up the hierarchy. Second, in the

Enhanced Search Method for Ontology Classification 807

Fig. 9. The result of performance test

bottom-up search, we can use the information gained during the top-down search
as well.

As a result of this optimization, a number of necessary comparison operations
can be cut down to a fraction compared with the classical top-down search and the
classical bottom-up search. The enhanced search method shows a 30% performance
improvement as compared with the classical method according to the result of the
experiment.

Acknowledgment

This research has been supported by Soongsil University.

REFERENCES

[1] Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. Presented at the Padua Workshop on Formal Ontology, Vol. 43, November
1995, pp. 907–928.

[2] Baader, F.—Hollunder, B.—Nebel, B.—Profitlich, H.-J.: An Empirical
Analysis of Optimization Techniques for Terminological Representation System: Prin-
ciples of Knowledge Representation and rRasoning. Proceedings of the 3th Interna-
tional Conference, Cambridge (MA). October 1992.

808 J.-M. Kim, S.-H. Kwon, Y.-T. Park

[3] Dean, M.—Schreiber, G.: OWL Web Ontology Language Reference W3C Re-

commendation. http://www.w3.org/tr/owl-ref/. February 2004.

[4] Schmidt-Schauss, M.—Smolka, G.: Attribute Concept Descriptions with Com-
plements. Artificial Intelligence, Vol. 48, pp. 1–26.

[5] MacGregor, R.: A Deductive Pattern Matcher. In Proceedings of the 7th National
Conference of the American Association for Artificial Intelligence, Saint Paul (MI),
pp. 403–408.

[6] Aigner, M.: Combinatorical Search. Teubner, Stuttgart, Germany, 1988.

[7] Baader, F.—Nutt, W.: The Description Logic Handbook: Theory, Implementa-
tion, and Applications. Cambridge University Press 2003, pp. 43–95.

[8] McGuinness, D.—Borgida, A.: Explaining Subsumption in Description Logics.
Proceedings of the Fourteenth International Joint Conference on Artificial Intelli-
gence.

[9] Schlobach, S.—Cornet, R.: Non-Standard Reasoning Services for the Debugging

of Description Logic Terminologies. Proceedings of IJCAI, 2003.

[10] Sirin, E.—Parsia, B.—Cuenca Grau, B.—Kalyanpur, A.—Katz, Y.: Pellet:
A Practical OWL-DL Reasoner. Journal of Web Semantics, Vol. 5, 2007.

[11] Tsarkov, D.—Horrocks, I.: FaCT++ Description Logic Reasoner: System De-
scription. In Proc. of the Int. Joint Conf. on Automated Reasoning, IJCAR, 2006.

[12] Horrocks, I.: Optimizing Tableaux Decision Procedures for Description Logics.
Ph.D. thesis, University of Manchester, 1997.

[13] Grant, J.: Classifications for Inconsistent Theories. Notre Dame Journal of Formal
Logic, Vol. 19, 1978, pp. 435–444.

Je-Min Kim is a Ph.D. student at School of computing, Soong-
sil University. In 2004 he received his M. Sc. degree in computer
science. He worked previously at the Kangnam University as
a teacher in the field of computer science. He is the author and
co-author of several scientific papers, and participates in seman-
tic web, ubiquitous computing and mobile computing project.
He has strong scientific and development expertise in ontology
modeling, ontology reasoning and machine learning.

Soon-Hyen Kwon is a Ph.D. student at School of computing,
Soongsil University. In 2000 he received his M. Sc. degree in
computer science. He participates in semantic web and multi
agent project. He has strong scientific and development expertise
in agent and semantic reasoning.

Enhanced Search Method for Ontology Classification 809

Young-Tack Park is a Professor at School of computing,

Soongsil University. He received his M. Sc. degree in computer
science in 1980. In 1992, he received his Ph.D. degree in arti-
ficial intelligence; with thesis focused on blackboard scheduler
control knowledge for heuristic classification. He teaches AI at
the Faculty of Computer Science. He is also a supervisor and
consultant for Ph.D., master and bachelor studies. He has au-
thored and co-authored multiple research papers and partici-
pated in national research projects. His research interest is in
semantic web, ontology reasoning and machine learning. He has

strong scientific and development expertise in ontology reasoning, agent system and mobile
computing.

