
Computing and Informatics, Vol. 28, 2009, 895–912

USING ASSEMBLER ENCODING TO SOLVE
INVERTED PENDULUM PROBLEM

Tomasz Praczyk

Naval University

Śmidowicza 69

Gdynia, Poland

e-mail: T.Praczyk@amw.gdynia.pl

Manuscript received 22 October 2008; revised 7 May 2009

Communicated by Vladimı́r Kvasnička

Abstract. Assembler Encoding is Artificial Neural Network encoding method. To
date, Assembler Encoding has been tested in two problems, i.e. in an optimization
problem in which a solution is in the form of a matrix and in the so-called predator-
prey problem in which the task of ANN is to control agent-predators whose common
goal is to capture a fast moving agent-prey. The next problem in which Assembler

Encoding was tested is the inverted pendulum problem. In the experiments As-
sembler Encoding was compared to several evolutionary and reinforcement learning
methods. The results of the tests are presented at the end of the paper.

Keywords: Evolutionary neural networks, reinforcement learning

1 INTRODUCTION

Assembler Encoding (AE) is Artificial Neural Network (ANN) encoding method. To
test AE several experiments were carried out. The experiments involved two testing
problems. The first of them was the optimization problem. In the experiments
the task of AE was to generate matrices being a solution of several optimization
problems [15, 16, 18]. The main goal of the experiments in this field was to define the
initial version of AE. The second test-bed for AE was the predator-prey problem [15,
20]. In the experiments AE was responsible for creating neural controllers for a team
of agent-predators. The task of the predators was to capture a single fast-moving

896 T. Praczyk

agent-prey behaving by a simple deterministic or stochastic strategy. The tests in
the predator-prey problem were necessary to determine the final version of AE.

The next problem in which AE was tested is the inverted pendulum problem.
It is a well known testing problem which is very often used to test reinforcement
learning (RL) or evolutionary RL methods. Generally, the problem mentioned has
many versions. In the experiments the simplest version of the problem, i.e. the
version with a single pole and with complete information about the card-and-pole
system available to the controller, was tested. To compare AE with other methods
the experiments were carried out in the same conditions as the experiments reported
in [10].

The paper is organized as follows: Section 2 is a short presentation of AE;
Section 3 is a description of the inverted pendulum problem; Section 4 is a short
presentation of compared methods; Section 5 is the report on the experiments; and
Section 6 is the summary.

2 FUNDAMENTALS OF AE

In AE [15–17] ANN is represented in the form of a program called AEP. AEP is
composed of two parts, i.e. a part including operations and a part including data.
The task of AEP is to create NDM and to fill it with values. To this end, AEP
uses the operations. The operations are run in turn. When working the operations
can use data located at the end of AEP (Figure 1). Once the last operation finishes
its work the process of creating NDM is completed. NDM is then transformed into
ANN.

2.1 Operations

AEPs can use various operations. The main task of most of operations is to modify
NDM. The modification can involve a single element of NDM or group of elements.
Figures 2 and 3 present two example operations that can be used in AEPs.

The task of CHG (Figure 2) is to change a single element of NDM. The new value
of the element, stored in parameter p0, is scaled to 〈−1, 1〉. An address of the element
being changed depends on both parameters p1, p2 and registers R1, R2. A role of the
registers is detailed in the following part of the paper. CHGC0 (Figure 3) modifies
elements of NDM located in a column indicated by parameter p0 and the register R2.
The number of elements being updated is stored in a parameter p2. An index of
the first element being updated is located in the register R1. To update elements of
NDM CHGC0 uses data from AEP. An index to a memory cell including the first
data used by CHGC0 is stored in p1.

In addition to the operations whose task is to modify the content of NDM AE
also uses the jump operation denoted as JMP. This operation makes it possible to
repeatedly use the same code of AEP in different places of NDM. The above is
possible, owing to changing values of the registers once jump is performed. Figure 4

Using Assembler Encoding to Solve Inverted Pendulum Problem 897

ro
w
=
(1
+
0
)
m
o
d
 4

Fig. 1. Diagram of AE (AEP presented on the right includes four operations and four
memory cells. Operation 0 changes a single element of NDM. To this end, it uses

three consecutive memory cells. The first two cells store an address to the element of
NDM being updated. To determine the final address of the element mentioned the
values of registers are also used. The third memory cell used by the Operation 0 stores
a new value of the element. The value is scaled before NDM is updated. A pointer
to the memory part of AEP where three cells used by the Operation 0 are located is
included in the Operation itself.)

CHG(p0, p1, p2, ∗)

{

row = (abs(p1) +R1)modNDM.width

column = (abs(p2) +R2)modNDM.height

NDM[row, column] = p0/Max value;

}

Fig. 2. CHG operation

presents an example of performing AEP including the jump operation. The program
mentioned proceeds as follows. First, the registers are initiated. Both of them are set
to 0. Then, the first of the two operations are performed. The result of performing
the operations is shown in the left top corner of NDM. The next operation of AEP
is the jump denoted in Figure 4 as JMP(0, 2, 0, ∗). It first updates the values of the
registers and then the control goes back to the first operation of AEP. AEP reads the
new values for the registers from the memory part. R1 is set to 0 (Memory cell 0)
whereas R2 to 2 (Memory cell 1). Once values of the registers are updated, the

898 T. Praczyk

CHGC0(p0, p1, p2, ∗)

{

column = (abs(p0) +R2)modNDM.height;

numberOfIterations = abs(p2)modNDM.width;

for(i = 0; i <= numberOfIterations; i++)

{

row = (i+R1)modNDM.width;

NDM[row, column] = D[(abs(p1) + i)modD.length]/Max value;

}

}

Fig. 3. CHGC0 operation changing a part of column of NDM (D[i] is ith data in AEP,
D.length is the number of data in the data part of AEP)

Fig. 4. JMP operation

two operations preceding the jump are performed once again. This time, however,
working of both operations involves a different fragment of NDM. Since the jump is
run overall two times, each time with different values of the registers, the two first
operations of AEP are executed in three different areas of NDM.

Using Assembler Encoding to Solve Inverted Pendulum Problem 899

0 0.2 0.3 0 -0.7 0.1

-0.9 0 1 -0.5 -1 0.9

0.5 0 0 -0.5 0.3 0.2

0 0.3 0 0.6 0.1 0.5

input neuron

input neuron

output neuron

in
p
u
t
n
e
u
ro
n

in
p
u
t
n
e
u
ro
n

o
u
tp
u
t
n
e
u
ro
n

b
ia
s

ty
p
e
 o
f
n
e
u
ro
n

IN

IN

IN
0.2

0.3

-0.9

in

in

out

1

-0.5

0.5

-0.5

0.3

0.6

-1

-0.7

0.3 0.1

if(abs(type_of_neuron)<=0.5)

then

sigmoid

else

linear

Fig. 5. NDM and ANN created based on the matrix

2.2 Network Definition Matrix

Once AEP finishes its work the process of transforming NDM into ANN is started.
To enable construction of ANN based on NDM the latter has to include the whole
information necessary to create ANN. When we wish to create the same skeleton of
ANN, i.e. ANN without determined weights of interneuron connections, NDM can
take the form of the classical connectivity matrix (CM) [9], i.e. a square, binary
matrix of a number of rows and columns equal to a number of neurons. The value
“1” in the ith column and jth row of such a matrix means a connection between
the ith neuron and jth neuron. In turn, the value “0” means lack of the connection
between these neurons. When the purpose is to create complete ANN with deter-
mined values of weights, types of neurons, parameters of neurons then NDM should
take the form of a real valued variety of CM with extra columns or rows contain-
ing definitions of individual neurons. The example of such a matrix is presented in
Figure 5.

900 T. Praczyk

2.3 Evolution in AE

In AE, evolution of AEPs and in consequence ANNs proceeds according to the
scheme proposed by Potter and De Jong [11–14]. The scheme assumes a division of
evolutionarily created solution into parts. Each part evolves in a separate popula-
tion. The complete solution is formed from selected representatives of each popu-
lation. To use the scheme above in relation to AEPs it is necessary to divide them
into parts. In the case of AEPs the division is natural. The operations and data
make up natural parts of AEPs. Since the evolutionary scheme chosen assumes
evolution of each part in a separate population, AEP consisting of n operations and
a sequence of data evolves in n populations with operations and one population
with data. During the evolution AEPs expand gradually. Initially, all AEPs include
one operation and a sequence of data. The operations and the data come from
two different populations. When the evolution stagnates, i.e. lack of progress in
fitness of generated solutions is observed over some period, a set of the populations
containing the operations is enlarged by one population. This procedure extends
all AEPs created by one operation. During the evolution each population can also
be replaced with newly created population. Such situation takes place when the
influence of all individuals from a given population on fitness of generated solutions
is definitely lower than the influence of individuals from the remaining populations
(a population can be replaced when, for example, fitness of a population measured
as the average fitness of all individuals from the population is definitely lower than
the fitness of the remaining populations).

To evaluate individuals from different populations the following solution is used.
First, AEP including an individual evaluated is created. To this end, the individ-
ual is combined with selected individuals from the remaining populations (in the
experiments reported in the further part of the paper each individual evaluated
was combined with the best individuals from the previous generation (Figure 6)).
AEP creates and fills in NDM which is then transformed into ANN. ANN is tested
and evaluated. The result of the test determines fitness of the individual evalu-
ated.

In AE, the operations and data are usually encoded in the form of binary strings
(in AE, two classes of operations are used, i.e. four-parameter operations encoded
as binary strings and three-parameter operations encoded as strings including zeros,
ones and the so-called don’t cares – “#” [3, 5, 6]. In the experiments reported in
the paper only four-parameter operations are used). Each chromosome operation
includes five blocks of genes. The first block determines a code of the operation,
while the remaining blocks contain a binary representation of four parameters of
the operation (e.g. 01000|11000|01000|00000|00100 represents the following opera-
tion: CHGC0|−1|1|0|2). Chromosome data are vectors including binary encoded
integers. Each integer encodes a single element of data. In AE, all chromosome
operations have the same length. Chromosome data can change the length during
the evolutionary process.

Using Assembler Encoding to Solve Inverted Pendulum Problem 901

Fig. 6. Evolution of AEPs

3 THE INVERTED PENDULUM PROBLEM

The task of a controller in the inverted pendulum problem is to protect a pole
(inverted pendulum), installed on a card, from falling down (it is assumed that the
pole is up when an angle of the pole does not exceed an acceptable angle). To do so,
the controller has to push the card left or right with some fixed force. An additional
requirement for the controller is not to exceed the limit of a track on which the card
moves. To accomplish the task the controller uses the following state information:
the position of the card (σ), the velocity of the card (σ̇), the angle of the pole (θ),
and the angular velocity of the pole (θ̇). At each time step, the controller has to
decide about direction of movement: right or left. The behavior of the card-and-pole
system under the influence of the controller (the force F) can be presented by means
of the following equations:

θ̈t =
mg sin θt − cos θt

(

Ft +mplθ̇
2
t sin θt

)

(4/3)ml −mpl cos2 θt
(1)

σ̈t =
Ft +mpl

(

θ̇2t sin θt − θ̈t cos θt
)

m
. (2)

In the experiments reported below the following parameters of the card-and-pole
system were used:

• l – the length of the pole = 0.5m

• mp – the mass of the pole = 0.1 kg

• m – the mass of the card-and-pole system = 1.1 kg

902 T. Praczyk

• F – the magnitude of the force = 10N

• g – gravity = 9.8m/s2

• the limit of the track = 4.8m

• the acceptable angle of the pole = ±12◦.

The parameters above are the same as these used in the experiments reported
in [10]. This allows to compare AE with the methods analyzed in [10].

12° 12°

0.5m, 0.1kg

4.8m

10N
1kg

Fig. 7. The card-and-pole system

4 COMPARED SOLUTIONS

Generally, AE was compared to six methods, i.e. Q-learning, 1-layer AHC, 2-layer
AHC, GENITOR, SANE and Canonical GA. The first five methods were tested by
Moriarty within the confines of the experiments reported in [10]. The last six method
was tested together with AE during current experiments. A short description of all
the compared methods is presented in the following part of the paper.

4.1 Q-Learning

Many different approaches for solving the RL problem have been proposed so far.
One of them is the temporal difference (TD) method [1, 2, 8]. In TD we deal with
the so-called value function which is the expected value of a discounted sum of future

Using Assembler Encoding to Solve Inverted Pendulum Problem 903

rewards that the agent can receive from an environment given that it starts in time
t from a state s and uses policy π. The value function is defined as follows [2]:

V π(s) = Eπ

{

∞
∑

k=0

γkrt+k+1 | st = s

}

(3)

where 0 ≤ γ ≤ 1 is a discount factor which determines whether immediate rewards
are more important for the agent (for γ = 0 the agent behaves so as to maximize only
immediate reward) or whether it is more interested in maximizing rewards received
over longer period of time (for γ = 1 the agent behaves so as to maximize infinite
sum of rewards) . The main task of TD is to estimate the optimal value function
defined as follows [2]:

V ∗(s) = max
π

V π(s) (4)

for all s ∈ S. To do this the following update rule is applied [2]:

V π
k+1(st)← V π

k (st) + α ⌊r+1 + γV π
k (st+1)− V p

k i(st)⌋ (5)

where α is a learning rate. The most known implementation of TD is the algorithm
called Q-learning [1, 2, 8]. Instead of estimating the optimal value function, it
strives to estimate optimal Q-function. Both Q-function and optimal Q-function
are defined below [2]:

Qπ(s, a) = Eπ

{

∞
∑

k=0

γkrt+k+1 | st = s, at = a

}

(6)

Q∗(s, a) = max
π

Qπ(s, a), for all s ∈ S and a ∈ A. (7)

In Q-learning, initially random Q-function is updated in each step of the agent. Each
update refines Q-function and makes it closer and closer to the optimal Q-function.
The algorithm stops working once Q-function is appropriately close to the optimal
one. When we know the optimal Q-function the following optimal policy is used [2]:

π∗(s) = argmax
a∈A

Q∗(s, a) (8)

i.e. in each step the action is selected which returns the maximal value of the optimal
Q-function.

In experiments reported in [10] Q-function was in the form of a lookup table.
However, in order for the lookup table to be able to represent Q-function, S and A
have to be discrete. In the inverted pendulum problem described in Section 2 the
set of actions is discrete. Two actions are available to the agent in each state of
the card-and-pole system, i.e. to move left or right (the magnitude of the force is
constant, 10N). The problem is with the set S. Each parameter describing a state
of the card-and-pole system, i.e. position of the card, velocity of the card, angle
of the pole, and angular velocity of the pole, are continuous. To make S discrete
the whole state space was divided into 162 non-overlapping regions, called “boxes”.

904 T. Praczyk

Each box represented a single state of the card-and-pole system. This allowed to
represent Q-function in the form of the lookup table including 2 rows (2 actions)
and 162 columns (162 states).

4.2 AHC (Adaptive Heuristic Critic)

Moriarty used two implementations of AHC, i.e. 1-layer AHC and 2-layer AHC.
Both AHC implementations consisted of two ANNs, i.e. value ANN (ANN critic)
and action ANN. Regardless of the implementation, the task of the value ANN was
to approximate the optimal value function by means of (5), whereas the task of the
action ANN was to make decisions. To learn to make optimal decisions the action
ANN used the information received from the value ANN.

In the case of 1-layer AHC both ANNs were single layer ANNs, i.e. they consisted
of input neurons and a single output neuron. The number of input neurons in both
1-layer AHC ANNs was equal to 162. As before, the whole original input space was
divided into 162 non-overlapping “boxes”. Each box corresponded to a single input
neuron. Activation of the ith neuron meant that the card-and pole system was in
the ith box.

ANNs in 2-layer AHC implementation consisted of 5 input neurons (4 input
variables describing a state of the card-and-pole system and one bias unit set at 0.5),
5 hidden neurons and an output neuron. Each input neuron was connected to each
hidden neuron and to the output neuron. The signal from the output neuron in both
AHC implementations was interpreted as the probability of selecting an action.

4.3 GENITOR

GENITOR [21, 22] is a genetic algorithm with a steady state replacement strategy
and with a mechanism of adapting a mutation rate to the degree of diversity of
individuals in a population. It was used by Moriarty to encode ANNs of the same
architecture as ANNs in 2-layer AHC implementation. In the case of GENITOR
each ANN was encoded in the form of a single binary chromosome.

4.4 SANE

SANE [10] assumes that information necessary to create ANN is included in two
types of individuals, i.e. in blueprints and in encoded neurons. Both types of indi-
viduals evolve in separate populations. The task of the blueprints is to record the
most effective combinations of neurons. Each blueprint defines a single ANN, i.e.
it specifies a set of neurons that cooperate well together. All the encoded neurons
evolving in the neuron population represent hidden neurons of two-layered feed-
forward ANN. Each individual from this population includes information about
neuron’s connections with input and output neurons and strength of every connec-
tion.

Using Assembler Encoding to Solve Inverted Pendulum Problem 905

 lab lab

lab lab

lab lab

lab lab

w w

w w

w w

w w

Fig. 8. Example assignment of neurons to blueprints (SANE) [10]

1 3

2 3

1 3

0,3 -0,4

0,7 0,1

-0,2 0,3

1 2

3

Fig. 9. Creating example ANN based on three encoded neurons (SANE) [10]

Moriarty used SANE to encode 2-layer ANNs consisting of 5 input neurons
(4 input variables and bias), 8 hidden neurons and two output neurons. In this
case output signal from ANN was not interpreted as the probability of selecting
an action. This time, to select an action output signals from output neurons were
compared. A neuron whose signal was stronger decided about an action that had
to be taken.

4.5 Canonical GA

CGA is a classical GA. It was used to create fully connected feed-forward ANNs
of different number of hidden neurons. To obtain ANNs with different number of
hidden neurons chromosomes encoding ANNs (each chromosome encoded one ANN)
were of varied length. Each chromosome encoded weights of interneuron connections
and additionally parameters of neurons. The number of input and output neurons
in ANNs created by means of Canonical GA was identical as in SANE, i.e. 5 input
neurons and 2 output neurons.

906 T. Praczyk

4.6 CoEvolutionary GA

CEGA is a variant of CGA. In CGA ANNs evolve in a single population. Each
chromosome from the population represents a single ANN. In CEGA we deal with
a different situation. Each ANN created by means of CEGA evolves in three dif-
ferent populations. The populations include chromosomes which define different
elements of ANN (Figure 10). The evolution in each population proceeds according
to CGA. In the experiments with CEGA, all ANNs had 5 inputs, 2 outputs and
3 hidden neurons. Chromosomes in each population encoded weights of interneuron
connections and additionally parameters of neurons.

Population no. 3

0.6 0.2 -0.5 0.6

Population no. 2

0.3 -0.5 -0.5 0.9

Population no. 1

-0.1 -0.4 -0.5 0.7

-0.1 -0.4 -0.5 0.7 0.3 -0.5 -0.5 0.9 0.6 0.2 -0.5 0.6

I

N

I

NI

N

I

N

I

N

I

N

I

N

Fig. 10. Evolution of ANNs in CEGA

4.7 The Version of AE Compared to the Methods Above

In AE the only parameter that can be determined in advance is the number of input
and output neurons. For the inverted pendulum problem, it was 5 input neurons
and 2 output neurons. The interpretation of input and output signals was identical
as in SANE. In AE both the number of hidden neurons and connectivity within
ANNs created is fixed through the evolution. Thus, ANNs generated during the
tests had different architecture.

In the experiments AEPs consisting of 2 operations and a sequence of data were
used. The data were of varied length. The minimum length of data amounted
to 10. Their maximum length was set to 60. AEPs created in the experiments used
two operations, i.e. CHGM and CHGFF. CHGM changes a block of elements in
NDM. The elements are updated in columns, in turn, one after another, starting

Using Assembler Encoding to Solve Inverted Pendulum Problem 907

0 0 -0.111111 -0.47619 -0.0793651 -0.206349 -0.111111 0 0 0
0 0 0.920635 -0.269841 -0.460317 0.857143 0.650794 -0.761905 0 0
0 0 -0.47619 -0.492063 0.730159 0.84127 -0.0952381 0 0 0
0 0 -0.746032 0.619048 0.349206 0.52381 -0.825397 0 0 0
0 0 -0.793651 0.380952 0.492063 -0.619048 -0.539683 0 0 0
0 0 0.698413 0.365079 0.68254 -0.015873 -0.238095 0 0 0
0 0 -1 -0.952381 -0.777778 0.015873 -0.936508 0 0 0

a)

0 0.68254 0.142857 0.730159 0.809524 -0.714286 0.047619 -0.84127 0.269841 0.539683 0.0952381
0 0 0.174603 -0.571429 -0.47619 -0.380952 -0.0793651 -0.777778 -0.603175 0.619048 -0.206349
0 0 0 0.698413 0.111111 -0.142857 0.142857 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.714286 -0.222222 -0.126984
0 0 0 0 0 0 0 0.634921 0.555556 0.111111 0.31746
0 0 0 0 0 0 0 0 -0.619048 0.698413 -0.920635

 b)

Fig. 11. Example use of a) CHGM and b) CHGFF

from an element pointed by parameters of the operation. New values for elements
are located in the data part of AEP. CHGFF updates the part of NDM above the
diagonal, i.e. the part defining feed-forward ANNs. As before, new values for the
elements of NDM are located in the data part of AEP. Examples of using both
operations are presented in Figure 11.

The remaining parameters for AE and for all the methods compared to AE are
presented in Tables 1 and 2.

1-layer AHC 2-layer AHC Q-learning

Action Learning Rate (α) 1.0 1.0

Critic Learning Rate (β) 0.5 0.2 0.2

TD Discount Factor (γ) 0.95 0.9 0.95

Decay Rate (λ) 0.9 0

Table 1. Parameters for RL methods (all the parameters taken from [10])

5 EXPERIMENTAL RESULTS

In the experiments, the learning speed of AE and Canonical GA was tested. Both
evolutionary methods were used to create ANNs whose task was to solve the inverted
pendulum problem. Fifty ANNs were generated for each method. Conditions of the
experiments were the same as in the tests reported in [10]. Each ANN was eval-
uated one time, i.e. a single balance attempt was performed for each ANN. The
fitness for each ANN was determined by the number of steps the pole remained
balanced. When the pole remained balanced for 120 000 time steps the test was in-
terrupted. All ANNs created in the experiments had 5 inputs and 2 outputs. Each

908 T. Praczyk

GENITOR SANE Canonical

GA

AE

Population Size 100 100,50 100 60, 20, 20
(totally 100)

Chromosome Length 35 (floats) 120 (bits) maximum
75
(floats)

maximum 60
floats (data),
40 bits (oper)

Mutation Probability Adaptive 0.001 0.01 0.005 (data),
0.05 (oper)

Crossover Probability not included in [10] 0.7 0.7 (oper and
data)

Size of Tournament
(tournament selec-
tion)

2 1 (data), 2
(oper)

Table 2. Parameters for the evolutionary methods (parameters of GENITOR and SANE

taken from [10])

output was connected with a single action. Input values for each tested ANN were se-
lected at random from the following ranges σ–(−2.4, 2.4); σ̇–(−1.5, 1.5); θ–(−12, 12);
θ̇–(−60, 60) and then were normalized to the range 〈0, 1〉. The results of the experi-
ments are presented in Table 3. Each cell in the table includes the number of ANNs
created up to the point when a successful ANN was formed (in the case of RL
methods each cell includes the number of balance attempts necessary to generate
successful ANN). A successful ANN is the ANN which could balance the pole for
120 000 time steps. In the table, for the comparison purposes, results of the tests
reported in [10] are also included.

Table 3 shows that on the average AE needs more ANN evaluations to generate
successful ANN than SANE, Canonical GA and 1-layer AHC. In the case of AHC
better performance can result from the fact that both AHC ANNs work in simpler,
discrete, prepared in advance input space. With regard to SANE and Canonical
GA, it seems that the main reason why they are better than AE is that they encode
ANNs in a direct way. In both methods above, chromosomes are collections of
parameters of their ANNs. Each gene in a chromosome is a value of a concrete
parameter of ANN. In AE we deal with a different situation. Chromosomes in AE
are elements of simple programs, i.e. AEPs. Genes in operations are not connected
with specific parameters of ANNs. Combining the same operation with different
data can cause a different effect in NDM and in consequence in ANN. The same
genes in data chromosomes can determine values of different parameters of ANNs.
It depends on operations which use data. Generally, it is necessary to state that such
problems as the inverted pendulum problem, i.e. the problems that can be solved by
means of simple ANNs, rather do not require indirect encodings like AE. Indirect
methods can be useful to create larger neural architectures. In the case of larger
ANNs direct encodings require long chromosomes to be used (each parameter has to

Using Assembler Encoding to Solve Inverted Pendulum Problem 909

be encoded separately in a chromosome) whereas numerous experiments conducted
in the field of evolution showed that applying long chromosomes may hamper or
even prevent generating optimal solutions. An additional advantageous feature of
AE in relation to direct methods presented in the paper is its capability to encode
not only parameters of ANNs but also other aspects of functioning of ANNs. The
example is the possibility to encode a learning process of ANN. AEPs can include
not only operations updating NDM but also operations which can organize learning
of ANN [19]. Another example is control of the process of growth of ANN. ANNs,
like humans, can grow from childhood to maturity [4, 7]. In the meantime they can
undergo the procedure of learning. All the process mentioned can be organized by
AEPs.

Mean Best Worst SD

1-layer AHC 430 80 7 373 1 071

2-layer AHC 12 513 3 458 45 922 9 338

Q-learning 2 402 426 10 056 1 903

GENITOR 2578 415 12 964 2 092

SANE 900 101 2 502 598

Canonical GA 1150 115 3 356 918

AE 1421 54 7 130 1 398

Table 3. Comparison of the learning speed (results of the first five methods taken
from [10])

0

20000

40000

60000

80000

100000

120000

140000

0 2 4 6 8 10 12 14 18 21 24 29

Generation

Fi
tn

es
s

AE

Canonical GA

Fig. 12. Learning speed of AE and CGA

910 T. Praczyk

a)

b)

Operations:
1010010 1110100 1100010 0100100 1100111
1011010 0001111 1010101 0011000 1011001
Data:
01010010 10111000 11111001 10111110 10001011 11100101 00101001
01010011 01100010 01010111 01001101 11110010 00101101 10110001
10001010 00011000 01100010 00110101 11000010 10101101 11100010
01101011 10011011 01101100 11101111 10010110 00011010 01001111

0 0.84127 0.396825 -0.619048 0.412698 -0.0952381 -0.634921 0.190476 0.555556 0.349206 -0.52381 -0.412698
0 0 -0.555556 0.68254 -0.698413 0.428571 -0.936508 -0.825397 0.698413 0.904762 0.587302 -0.222222
0 0 0 -0.238095 -0.984127 -0.634921 -0.301587 0.15873 0.587302 0.555556 0.84127 0.396825
0 0 0 0 -0.619048 0.412698 -0.0952381 -0.634921 0.190476 0.555556 0.349206 -0.52381
0 0 0 0 0 -0.412698 -0.555556 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.15873 0.587302 0.555556

CHGM_FORWARD1|-11|-17|9|-57
CHGM_FORWARD1|60|-42|6|-38
Data:|37|-14|-79|-62|-104|-
83|74|101|35|117|89|-39|90|-70|-40|12|35|86|-
33|-90|-35|107|-108|27|-123|-52|44|121

c)

Fig. 13. a) Example AEP which created sucessful ANN b) encoded form of AEP presented
in point a), c) NDM generated by AEP presented in points a) and b)

6 SUMMARY

The paper compares AE with RL and evolutionary RL methods on the inverted
pendulum problem. To compare the methods the results of the experiments reported
by Moriarty in [10] and the results of tests performed by the author were used. The
experiments showed that AE is effective tool to solve the inverted pendulum problem.
Even though AE is indirect method which seems to be rather suited to solve more
complex problems it achieved only somewhat worse results than the best methods
presented in the paper. To test AE in more difficult problem the experiments in
the variant of the inverted pendulum problem with two poles installed on the card
are planned. In the future experiments, to balance the poles only the information
about pole angle and cart position will be used.

REFERENCES

[1] Baird III, L.: Reinforcement Learning Through Gradient Descent. Ph.D. thesis,

Carnegie Mellon University, Pittsburgh, 1999.

[2] Cichosz, P.: Learning Systems. WNT, Warsaw, 2000.

[3] Butz, M.V.: Rule-Based Evolutionary Online Learning Systems: Learning Bounds,
Classification, and Prediction. University of Illinois, IlliGAL Report No. 2004034,
2004.

Using Assembler Encoding to Solve Inverted Pendulum Problem 911

[4] Elman, J. L.: Learning and Development in Neural Networks: The Importance of

Starting Small. Cognition 48, 1993, pp. 71–99.

[5] Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison Wesley, Reading, Massachusetts, 1989.

[6] Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michi-
gan Press, Ann Arbor, Michigan, 1975.

[7] Lang, R. I.W.: A Future for Dynamic Neural Networks. Technical Report
No. CYB/1/PG/RIWL/V1.0, University of Reading, UK, 2000.

[8] Littman, M. L.—Szepesvari, C.: A Generalized Reinforcement-Learning Model:
Convergence and Applications. In Proceedings of the Thirteenth International Con-
ference on Machine Learning, pp. 310–318, 1996.

[9] Miller, G. F.—Todd, P.M.—Hegde, S.U.: Designing Neural Networks Using
Genetic Algorithms. Proceedings of the Third International Conference on Genetic
Algorithms 1989, pp. 379–384.

[10] Moriarty, D.E.: Symbiotic Evolution of Neural Networks in Sequential Decision
Tasks. Ph.D. thesis, The University of Texas at Austin, TR UT-AI97-257, 1997.

[11] Potter, M.: 1997. The Design and Analysis of a Computational Model of Cooper-
ative Co-evolution. Ph.D. thesis, George Mason University, Fairfax, Virginia, 1997.

[12] Potter, M.—de Jong, K.A.: Evolving Neural Networks With Collaborative
Species. In T. I. Oren, L.G. Birta (Eds.), Proceedings of the 1995 Summer Computer
Simulation Conference, pp. 340–345. The Society of Computer Simulation, 1995.

[13] Potter, M.A.—de Jong, K.A.: A Cooperative Co-Evolutionary Approach to
Function Optimization. The Third Parallel Problem Solving From Nature, Jerusalem,
Israel, Springer Verlag, 1994, pp. 249–257.

[14] Potter, M.A.—de Jong, K.A.: Cooperative Co-Evolution: An Architecture
for Evolving Co-Adapted Subcomponents. Evolutionary Computation, Vol. 8, 2000,
No. 1, pp. 1–29.

[15] Praczyk, T.: Evolving Co-Adapted Subcomponents in Assembler Encoding. In-
ternational Journal of Applied Mathematics and Computer Science, Vol. 17, 2007,
No. 4.

[16] Praczyk, T.: Procedure Application in Assembler Encoding. Archives of Control
Science, Vol. 17 (LIII), 2007, No. 1, pp. 71–91.

[17] Praczyk, T.: Adaptation of Symbiotic Adaptive Neuro-Evolution in Assembler
Encoding. Theoretical and Applied Informatics, Vol. 20, 2008, No. 1, pp. 49–68.

[18] Praczyk, T.: Concepts of Learning in Assembler Encoding. Archives of Control
Science, Vol. 18 (LIV), 2008, No. 3, pp. 323–337.

[19] Praczyk, T.: Modular Neural Networks in Assembler Encoding. Computational
Methods in Science and Technology, Vol. 14, No. 1, pp. 27–38.

[20] Whitley, D.—Kauth, J.: GENITOR: A Different Genetic Algorithm. In Proceed-
ings of The Rocky Mountain Conference on Artificial Intelligence, 1988, pp. 118–130.

[21] Whitley, D.: The GENITOR Algorithm and Selective Pressure. In Proceedings of
the Third International Conference on Genetic Algorithms, 1989, pp. 116–121.

912 T. Praczyk

Tomasz Prazyk is a senior lecturer at the Institute of Naval

Weapons of Polish Naval Academy in Gdynia. He received his
M. Sc. degree in computer science in 1996. In 2001, he received
his Ph.D. degree; with thesis focused on using artificial neural
networks to identify ships. His research interest is in neuro-
evolution, artificial immune systems, and reinforcement learning.

