
Computing and Informatics, Vol. 29, 2010, 27–44

BUILDING BENCHMARKS FOR USE CASES

Bartosz Alchimowicz, Jakub Jurkiewicz
Miros law Ochodek, Jerzy Nawrocki

Institute of Computing Science
Poznan University of Technology
ul. Piotrowo 2
60-965 Poznan, Poland
e-mail: {balchimowicz,jjurkiewicz,mochodek,jnawrocki}@cs.put.poznan.pl

Revised manuscript received 16 October 2009

Abstract. This paper presents how the use-cases benchmark has been built and
how it can be applied by researchers. Set of 16 industrial projects (with 524 use cases
in total) has been analysed in order to obtain quantitative and qualitative profile
of a typical use-case-based requirements specification. Based on the analysis, two
types of referential use-case-based requirements specifications have been created,
one taking only quantitative data into account and second considering qualitative
data. Researchers who analyse use cases can utilise these specifications in order to

validate their methods and tools before applying them to real projects. Moreover,
such referential specification can be used as a benchmark and allows comparing
accuracy and efficiency of tools for use-case analysis.

Keywords: Use cases, requirements, metrics, benchmark, quality

Mathematics Subject Classification 2000: 68N01, 68N30

1 INTRODUCTION

Functional requirements are very important in software development. They impact
not only the product itself but also test cases, cost estimates, delivery date, and user
manual. One of the forms of functional requirements are use cases introduced by Ivar
Jacobson about 20 years ago. They are getting more and more popular in software

28 B. Alchimowicz, J. Jurkiewicz, M. Ochodek, J. Nawrocki

industry and they are also a subject of intensive research (see e.g. [4, 5, 10, 11, 22]).
Ideas presented by researches must be empirically verified (in the best case, using
industrial data) and it should be possible to replicate a given experiment by any
other researcher [21]. In case of use cases research it means that one should be able
to publish not only his/her results but also the functional requirements (use cases)
that have been used during the experiment. Unfortunately, that is very seldom
done because it is very difficult. If a given requirements specification has a real
commercial value, it is hard to convince its owner (company) to publish it. Thus,
to make experiments concerning use cases replicable, one needs a benchmark that
would represent use cases used in real software projects.

In the paper an approach to construct use-cases benchmark is presented. The
benchmark itself is a set of use-cases-based requirements specifications, which have
a typical profile observed in requirements coming from real projects. It includes
both quantitative and qualitative aspects of use cases. To derive such a profile
an extensive analysis of 524 use cases was performed.

The paper is organised as follows. In Section 2 a model of use-cases-based re-
quirements specification is presented. This model is further used in Sections 3 and 4,
which present the analysis of the use cases, coming from 16 projects. Based on the
analysis quantitative and qualitative profile of the typical use-case-based specifi-
cation is derived, which is used to create a benchmark specification in Section 5.
Finally, a case study is presented in Section 6, which demonstrates a typical usage
of the benchmark specification to compare tools for the use-case analysis.

2 BENCHMARK-ORIENTED MODEL OF USE-CASE-BASED

SPECIFICATION

Although use cases have been successfully used in many industrial projects (Neil et
al. [18] reported that 50 % of projects have their functional requirements presented
in that form), they have never been a subject of any recognisable standardisation.
Moreover, since their introduction by Ivar Jacobson [15] many approaches for their
development were proposed. For example, Russell R. Hurlbut [13] gathered fifty
seven contributions concerning use cases modeling. Although, all approaches share
the same idea of presenting actor’s interaction with the system in order to obtain
his goal, they vary in level of formalism and in presentation form. Thus, it is very
important to state what is understood by the term use-cases-based requirements
specification.

To mitigate this problem a semi-formal model of use-cases-based requirements
specification has been proposed and presented in Figure 1. It incorporates most of
the best-practices presented by Adolph et al. [2] and Cockburn [7].

However, it still allows to create specification that contains only scenario (or non-
structured story) and actors, which is enough to compose a small but valuable use-
case. This specification can be further extended with other elements like extensions
(using steps or stories), pre- and post-conditions, notes or triggers.

Building Benchmarks For Use Cases 29

Requirements Specification

+ Name

+ Description

Business Object

+ Name

+ Description

Actor

Referenced Element

Scenario

+ Text

Step

+ Text

Story

+ Event_Text

Extension

+ Title

Use Case

Goal Level

+ Description

Conditon

+ Description

Trigger

Business User Sub-function

*

1

*

1

*

1

*
*

*
1

1..*

1

*

1

0..1

1

1

1

1

*

*

*

*

*+sub-scenario

+pre-conditions

+main-scenario
+post-conditions

+main-actors

+secondary-actors

Business

Rule
*

1
*

*

*

1..*

*

1

0..1

1

Fig. 1. Use-cases-based functional requirements specification model

Unfortunately, understanding the structure of specification is still not enough to
construct a typical use-cases-based specification. What is missing is the quantifiable
data concerning the number of model-elements and proportions between them1. In
other words, one meta-question has to be asked for each element of the model –
“how many?”

Another aspect is the content of use cases. In this case what is required is
knowledge about the language structures that people use to author use cases. This
includes also a list of typically made mistakes.

3 ANALYSIS OF UC-BASED SPECIFICATIONS STRUCTURE

In order to discover the profile of a typical specification, data from various projects
was collected and analysed. As a result a database called UCDB (Use Cases
Database) [8] has been created. At this stage it stores data from 16 projects with the

1 A number/proportion of any element of the model will be further addressed as a prop-

erty of the specification

30 B. Alchimowicz, J. Jurkiewicz, M. Ochodek, J. Nawrocki

total number of 524 use cases (basic characteristics of requirements specifications as
well as short description of projects are presented in Table 1).

A
ll

B
u

si
n

es
s

U
se

r

S
u

b
-

fu
n

ct
io

n

Project A English S2B 17 0% 76% 24%
Web & standalone application for

managing members of organization

Project B English S2B 37 19% 46% 35%
Web-based Customer Relationship

Management (CRM) system

Project C English External 39 18% 44% 33%
UK Collaboration for a Digital Repository

(UKCDR)

Project D Polish Industry 77 0% 96% 4%
Web-based e-government Content

Management System (CMS)

Project E Polish S2B 41 0% 100% 0%
Web-based Document Management

System (DMS)

Project F Polish Industry 10 0% 100% 0%
Web-based invoices repository for remote

accounting

Project G English External 90 0% 81% 19%
Protein Information Management System

(PIMS)

Project H Polish Industry 16 19% 56% 25%
Integration of two sub-system s in ERP

scale system

Project I Polish Industry 21 38% 57% 5% Banking system

Project J Polish Industry 9 0% 67% 33%
Single functional module for the web-

based e-commerce solution

Project K Polish Industry 75 0% 97% 3%
Web-based workflow system with Content

Management System (CMS)

Project L English External 16 0% 31% 69%
Polaris - Mission Data System (MDS)

process demonstration

Project M English External 26 0% 23% 77%
Vesmark Smartware™ - Financial

decission system

Project M English External 18 0% 0% 100%Photo Mofo - Digital images management

Project O English External 16 0% 31% 69%iConf - Java based conference application

Project P English External 16 0% 25% 75%
One Laptop Per Child - Web-based

Content Management

DescriptionID

S
p

ec
ifi

ca
tio

n
 la

n
g

u
ag

e
Origin

Number of use cases

Table 1. Overview of the projects and their requirements specifications (origin: industry –
project developed by software development company; s2b – project developed by
students for external organisation; external – specification obtained from external
source which is freely accessible through the Internet; projects D and K come from

the same organisation)

Specifications have been analysed in order to populate the model with the infor-
mation concerning average number of its elements and additional qualitative aspects
of use cases (see Section 4).

One of the most interesting findings is that 65.8 % of the main scenarios in use
cases consist of 3–9 steps, which means that they fulfil the guidelines proposed by
Cockburn [7]. Moreover, 72.1 % of the analysed use cases have alternative scenarios
(extensions). There are projects in which use cases have extensions attached to all
steps in main scenarios; however, on the average a use case contains 1 to 2 extensions
(mean 1.57). Detailed information regarding the number and distributions of steps
in main scenarios and extensions, is presented in Figure 2.

Building Benchmarks For Use Cases 31

Number of steps in main scenario

D
en

si
ty

1 2 3 4 5 6 7 8 9 11 13 15

0.
00

0.
10

0.
20

a)

Number of steps in extension

D
en

si
ty

1 2 3 4 5 6 7 8 9 11 13 15

0.
0

0.
1

0.
2

0.
3

0.
4

c)

A C E F G I J K L N P

5
10

15

Project

N
um

be
r

of
 s

te
ps

 in
 m

ai
n

sc
en

ar
io

b)

A B C D F G H I J K N O P

2
4

6
8

Project

N
um

be
r

of
 s

te
ps

 in
 e

xt
en

si
on

d)

Fig. 2. Scenarios lengths in analysed use cases: a) histogram presents the number of steps
in main scenario (data aggregated from all projects), b) box plot presents the number
of steps in main scenario (in each project), c) histogram presents the number of steps
in extension (data aggregated from all projects), d) box plot presents the number of
steps in extension (in each project, note that project E was excluded because it has
all alternative scenarios written as stories)

Another interesting observation, concerning the structure of use cases is that
the sequences of steps performed by the same actor are frequently longer than one.
What is more interesting this tendency is more visible in case of main actor steps
(38.4 % of main actor steps sequences are longer than one step, and only 25.5 % in
case of secondary actor – in most cases system being developed). One of potential
reasons is that the actions performed by main actor are more important, from the
business point of view. This contradicts the concept of transaction presented by
Ivar Jacobson [14]. Jacobson enumerated four types of actions which together form
the use-case transaction. Only one of them belongs to a main actor (user request
action). The rest of them are system actions: validation, internal state change, and
response. It might seem that those actions should frequently form longer sequences.
However, 74.6 % of steps sequences performed by system consisted of a single step.
The distributions and number of steps in main actor sequences are presented in
Figure 3.

If we look deeper into the textual representation of the use cases, some interesting
observation concerning their structure might be made. One of them regards the way
how authors of use cases describe validation actions. Two different approaches are

32 B. Alchimowicz, J. Jurkiewicz, M. Ochodek, J. Nawrocki

2.8%3.8%10.2%

61.6%

21.6%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 >4

Main actor's steps sequence length

D
e

n
si

ty

0.8%1.6%

18.8%

4.3%

74.6%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 >4
Secondary actor's steps

sequence length

D
e

n
si

ty

a) b)

Fig. 3. Distributions of actors steps-sequences lengths in analysed use cases, a) histogram
presents the length of the steps sequences performed by main actor, b) histogram
presents length of the steps sequences performed by secondary actor – e.g. System

observed. The most common one is to use extensions to represent alternative system
behaviour in case of failure of the verification process (41.3 % of extensions have this
kind of nature). The second one, and less frequent, is to incorporate validation
actions into steps (e.g. System verifies data). This kind of actions are observed only
in 3.4 % of steps.

Analysed properties can be classified into two separate classes. The first one
contains properties which are observed in nearly all of the projects, with comparable
intensity. Those properties seem to be independent from the specification they
belong to (from its author’s writing style). The second class is an opposite one,
and includes properties which are either characteristic for a certain set of use cases
only, or their occurrence in different specifications is between two extremes – full
presence or marginal/none. Such properties are project-dependent. More detailed
description of analysed requirements specifications is presented in Table 2.

4 ANALYSIS OF USE-CASES-BASED SPECIFICATIONS DEFECTS

Use cases seem simple in their structure, and easy to understand; however, it is
easy to introduce defects, which might influence the communiation between ana-
lyst, customer and project stakeholders. Different research [1, 19] indicated that
vague, inconsistent or incomplete requirements are the main reasons for project fail-
ures. Defects make specification cumbersome, tedious and hard to read, analyse
and change, hence they can lead to misunderstandings and finally to higher costs
of software projects. Based on patterns and guidelines presented by Adolph et al.
and Cockburn [2, 7] a set of defect types has been distinguished. Projects stored in
UCDB have been analysed in order to collect statistical data about defects found in
the requirements specification. Table 3 presents the results of this analysis.

B
u
ild

in
g
B
e
n
c
h
m
a
rk
s
F
o
r
U
se

C
a
se
s

33

A B C D E F G H I J K L M N O P

524 17 37 39 77 41 10 90 16 21 9 75 16 26 18 16 16

Mean 4.82 4.76 4.92 2.95 4.34 5.78 3.90 5.10 3.38 4.33 3.67 6.36 3.44 6.58 5.22 2.88 3.63

SD 2.41 0.97 1.46 2.69 2.25 1.26 1.20 2.41 0.50 2.01 1.32 3.25 1.67 1.50 1.40 1.20 1.50

72.1% 94.1% 51.4% 41.0% 55.8% 92.7% 100% 68.9% 81.3% 90.5% 55.6% 98.7% 75.0% 100% 38.9% 50.0% 62.5%

Mean 1.57 1.29 0.57 0.95 0.92 1.63 1.00 1.28 2.94 2.33 1.00 2.69 1.75 4.46 0.39 0.63 0.88

SD 1.88 0.77 0.60 1.72 1.12 0.62 0.00 1.30 2.98 1.58 1.58 2.91 1.57 1.61 0.50 0.81 0.81

Mean 2.46 1.80 2.52 1.00 1.45 N/A 1.10 2.77 2.30 1.64 1.44 3.09 N/A N/A 2.67 1.30 1.36

SD 1.61 0.84 0.87 0.00 0.59 N/A 0.32 1.87 0.65 0.67 0.53 1.80 N/A N/A 2.89 0.48 0.50

3.4% 3.7% 5.5% 11.3% 1.8% 0.0% 0.0% 0.0% 27.8% 17.6% 3.0% 0.0% 0.0% 15.2% 0.0% 2.2% 3.4%

41.3% 9.1% 76.2% 64.9% 63.4% 40.3% 100% 50.4% 78.7% 89.8% 100% 15.3% 60.7% 21.6% 0.0% 33% 50.0%
1 61.6% 42.3% 93.1% 88.6% 37.0% 61.9% 87.5% 91.7% 47.4% 52.4% 50.0% 52.6% 45.5% 67.4% 52.8% 71.4% 45.0%

2 21.6% 23.1% 3.5% 6.8% 34.8% 36.1% 12.5% 0.0% 0.0% 19.1% 42.9% 16.4% 27.3% 32.7% 33.3% 14.3% 10.0%

3 10.2% 26.9% 3.5% 4.6% 16.3% 0.0% 0.0% 8.3% 31.6% 23.8% 7.1% 12.9% 22.7% 0.0% 11.1% 14.3% 30.0%

4 3.8% 7.7% 0.0% 0.0% 6.5% 0.0% 0.0% 0.0% 21.1% 0.0% 0.0% 8.6% 4.6% 0.0% 2.8% 0.0% 15.0%

>4 2.8% 0.0% 0.0% 0.0% 5.4% 2.1% 0.0% 0.0% 0.0% 4.8% 0.0% 9.5% 0.0% 0.0% 0.0% 0.0% 0.0%

1 74.6% 82.6% 96.3% 72.2% 67.9% 100% 100% 90.0% 50.0% 12.5% 62.5% 72.1% 100.0% 0.0% 0.0% 60.0% 10.0%

2 18.8% 17.4% 3.7% 22.2% 29.6% 0.0% 0.0% 8.0% 16.7% 43.8% 37.5% 14.8% 0.0% 83.3% 68.4% 40.0% 0.0%

3 4.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.0% 33.3% 25.0% 0.0% 7.4% 0.0% 16.7% 26.3% 0.0% 0.0%

4 1.6% 0.0% 0.0% 5.6% 2.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 4.1% 0.0% 0.0% 5.3% 0.0% 0.0%

>4 0.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 18.8% 0.0% 1.6% 0.0% 0.0% 0.0% 0.0% 0.0%

38.4% 0.0% 0.0% 100% 0.0% 0.0% 0.0% 100% 56.3% 100% 0.0% 6.7% 100% 96.3% 0.0% 0.0% 6.3%

12.4% 0.0% 0.0% 0.0% 32.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 44.2% 0.0% 0.0% 33.3% 0.0% 0.0%

Mean 1.92 0.00 0.00 0.00 3.20 0.00 0.00 0.00 0.00 0.00 0.00 1.09 0.00 0.00 1.33 0.00 0.00

SD 1.62 N/A N/A N/A 2.02 N/A N/A N/A N/A N/A N/A 0.29 N/A N/A 0.52 N/A N/A

37.4% 82.4% 100% 0.0% 0.0% 97.6% 0.0% 0.0% 0.0% 23.8% 77.8% 0.0% 81.3% 38.5% 0.0% 0.0% 56.3%

14.3% 0.0% 0.0% 97.4% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100% 100% 0.0% 0.0% 12.5%

33.0% 100% 100% 100% 0.0% 100% 0.0% 0.0% 68.8% 57.1% 0.0% 0.0% 0.0% 0.0% 0.0% 100% 0.0%

6.4% 0.0% 0.5% 0.0% 0.0% 0.0% 25.6% 14.2% 0.0% 0.0% 6.1% 33.3% 0.0% 0.6% 0.0% 0.0% 0.0%

66.8% 27.3% 100% 8.1% 87.3% 0.0% 100% 100% 100% 100% 100% 100% 0.0% 0.0% 42.9% 100.0% 100%
33.2% 72.7% 0.0% 91.9% 12.7% 100% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 100% 100% 57.1% 0.0% 0.0%
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Number of steps with reference to use cases

Number of extensions with scenario
Number of extensions with stories

Explicitly defined business rules

Extensions which are validations

Main actor's steps sequence length
in main scenario

Secondary actor's steps sequence
length in main scenario

R
e

q
u

ire
m

e
n

ts sp
e

cifica
tio

n

dependent

Use cases with additional description

Number of use cases with sub-scenario

Number of steps in sub-scenario

Use cases with pre-conditions

Use cases with post-conditions

Use cases with triggers

Property Overall
Project

R
e

q
u

ire
m

e
n

ts sp
e

cifica
tio

n

independent

Number of use cases

Number of steps in main scenario

Use cases with extensions

Number of extensions in use case

Number of steps in extension

Steps with validation actions

T
a
b
le

2
.
R
esu

lts
o
f
th
e
stru

ctu
re

a
n
a
ly
sis

o
f
th
e
u
se

ca
ses

sto
red

in
U
C
D
B

34
B
.
A
lc
h
im

o
w
ic
z,

J
.
J
u
rk
ie
w
ic
z,

M
.
O
c
h
o
d
e
k
,
J
.
N
a
w
ro
c
k
i

A B C D E F G H I J K L M N O P

2.55% 0.00% 0.00% 0.00% 0.00% 26.83% 0.00% 2.22% 0.00% 0.00% 0.00% 0.00% 6.25% 0.00% 0.00% 0.00% 0.00%

56.25% Y Y Y N Y N N Y Y N N N N Y Y Y

4.76% 11.76% 0.00% 51.28% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 31.25% 6.25%

4.25% 4.55% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 8.51% 0.00% 0.00% 14.85% 0.00% 0.00% 0.00% 0.00% 0.00%

35.80% 77.27% 0.00% 86.49% 6.49% 100% 0.00% 5.22% 14.89% 8.16% 0.00% 0.00% 100% 100% 0.00% 100% 0.00%

4.13% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 8.51% 8.16% 0.00% 12.87% 0.00% 0.00% 0.00% 0.00% 0.00%

11.39% 0.00% 0.00% 51.28% 11.69% 0.00% 20.00% 15.56% 0.00% 9.52% 22.22% 0.00% 37.50% 7.69% 0.00% 37.50% 25.00%

6.80% 0.00% 0.00% 5.13% 7.79% 0.00% 0.00% 5.56% 0.00% 0.00% 0.00% 36.00% 0.00% 0.00% 0.00% 0.00% 0.00%

22.11% 11.76% 10.81% 56.41% 48.05% 9.76% 0.00% 0.00% 50.00% 28.57% 0.00% 12.00% 37.50% 3.85% 44.44% 87.50% 56.25%

1.53% 0.00% 0.00% 0.00% 10.39% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.33% 0.00% 19.23% 0.00% 0.00% 0.00%

0.80% 1.11% 0.85% 5.08% 0.00% 0.00% 0.00% 0.00% 0.00% 5.95% 0.00% 0.18% 0.00% 0.00% 6.86% 0.00% 5.17%

4.56% 0.00% 0.42% 0.00% 0.00% 0.00% 0.00% 12.87% 0.00% 0.00% 2.17% 0.36% 1.82% 0.00% 47.06% 16.67% 1.30%

0.29% 0.00% 0.00% 0.85% 0.24% 0.00% 0.00% 0.00% 0.00% 1.19% 0.00% 0.09% 0.00% 0.00% 5.88% 0.00% 0.00%

19.37% 0.00% 1.69% 38.14% 0.94% 0.84% 0.00% 45.05% 0.68% 0.60% 0.00% 0.54% 0.00% 0.58% 13.73% 51.67% 20.78%

3.63% 1.11% 0.00% 55.93% 0.24% 0.84% 0.00% 2.70% 0.00% 0.00% 0.00% 0.27% 0.00% 0.00% 13.73% 31.67% 16.88%

2.51% 0.00% 5.08% 27.12% 0.71% 0.00% 0.00% 1.16% 0.68% 2.38% 2.17% 1.45% 1.82% 2.92% 9.80% 1.67% 2.60%

3.79% 0.00% 16.95% 11.02% 0.00% 0.00% 4.00% 0.77% 0.00% 0.00% 4.35% 4.09% 1.82% 12.28% 6.86% 11.67% 2.60%

3.71% 4.44% 0.85% 3.39% 3.30% 0.00% 0.00% 11.45% 0.00% 0.00% 8.70% 0.91% 0.00% 7.60% 0.98% 3.33% 0.00%

1.22% 0.00% 0.00% 4.24% 0.71% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.00% 0.00% 0.58% 3.92% 1.67% 0.00%

3.16% 0.00% 47.03% 0.00% 0.00% 0.00% 0.00% 0.00% 2.05% 0.60% 0.00% 0.00% 0.00% 0.00% 2.94% 0.00% 5.19%
Number of steps with language

mistakes

S
te

p
 le

ve
l (ste

p
s fro

m
 m

a
in

 sce
n

a
rio

 a
n

d
 fro

m
 e

xte
n

sio
n

s)

Number of steps with different tenses
used

Number of steps in which user interface
terms are used

Number of steps in which technical
terms are used

Number of steps in which no actor is
specified

Number of steps in which passive voice
for the action is used

Number of steps with complex sentence
structure or with more than one

sentence
Number of steps with possibility of

different interpretations
Number of steps with details of
elements of business objects

Property Overall
Project

Number of steps with conditional
clauses

Number of use cases, in which name
doesn't describe the goal

Number of non-detectable condition in
extensions

Number of extensions without scenarios

Number of extensons with nested
scenarios

Number of use cases with less than 3
steps in main scenario

Number of use cases with more than 9
steps in main scenario

U
se

-ca
se

se

t le
ve

l

Use case duplicates (the same actions
operating on different business objects)

Lack of hierarchical structure (Y/N)

Number of use cases with at least
double nested sub-scenarios

U
se

-ca
se

 le
ve

l
S

ce
n

a
rio

 le
ve

l

Lack of interactions between actors

T
a
b
le

3
.
R
esu

lts
o
f
th
e
q
u
a
lity

a
n
a
ly
sis

o
f
th
e
u
se

ca
ses

sto
red

in
U
C
D
B

Building Benchmarks For Use Cases 35

One of the main observations is that almost 86 % of the analysed use cases
contain at least one defect, which proves that it is not easy to provide requirements
specification of good quality. For researchers who try to analyse use case quality the
knowledge of average defects density can be used to tune their methods and tools
in order to make them more effective and efficient.

Large number of different defects can be found in most of the projects. For exam-
ple steps without explicitly specified actor can be found in 13 projects, 11 projects
have some extensions missing alternative scenarios, the same number of projects
have use cases with less than 3 steps. Some of the defects are unique only to some
specifications. For instance langauge mistakes were found mainly in project B (over
47 % of steps have language mistakes), while most of the projects did not have such
problems. Scenarios longer than 9 steps is another example of a project-specific
defect (it mainly relates to Project K, which has over 30 % of use cases with this de-
fect). The simple explanation for this is that different authors have different writing
styles and probably they are not aware of some problems and defects.

Another interesting finding is that one defect can lead to another defect. The
analysis shows that steps without actor tend to use passive voice (projects C, N,
O, P). A similar situation can be observed in case of language mistakes and complex-
steps structure which often lead to different possible interpretations (projects B, C
and N).

5 BUILDING REFERENTIAL SPECIFICATION

Combining use-cases model and average values coming from the analysis, a profile
of the typical use-cases-based requirements specification can be derived. In such
specification all properties would appear with the typical intensity. In other words,
analysis performed on such document could be perceived as an every-day task for
use-cases analysis tools.

There might be at least two approaches to acquire instance of such specification.
The first one would be to search for the industrial set of use cases, which would
fulfil given criteria. Unfortunately, most of industrial documents are confidential,
therefore they could not be used at large scale. The second, obvious approach would
be to develop such specification from scratch. If it is built according to the obtained
typical specification profile, it might be used instead of industrial specification. Since
it would describe some abstract system it can be freely distributed and used by
anyone.

Therefore we would like to propose the approach to develop an instance of the
referential specification for the benchmarking purpose. The document is available
at the web site [8] and might be freely used for further research.

5.1 Specification Domain and Structure

It seems that large number of tools for the use-cases analysis have their roots in the
research community. Therefore the domain of the developed specification should be

36 B. Alchimowicz, J. Jurkiewicz, M. Ochodek, J. Nawrocki

easy to understand, especially for the academia staff. One of the well-recognised
processes at university is the students admission process. Although the developed
specification will describe hypothetical process and tools, it should be easy to un-
derstand for anyone who has ever participated in a similar process.

Another important decision concerns the structure of the specification (number
of actors, use cases and business objects). Unfortunately the decision is rather arbi-
trary, because the number of use cases, actors and business objects may depend on
the size of the system and on the level of details incorporated into its description.
In this case a median number of use cases and actors from the UCDB set has been
used as the number of use cases and actors in the constructed specification. The
first version of specification consisted of 7 actors (Administrator, Candidate, Bank,
Selection Committee, Students Management System, System, User), 37 use cases
(3 business, 33 user, and 1 sub-function level), and 10 business objects. After ex-
tending UCDB with data from additional 5 projects the median number of use cases
decreased to 20. Therefore we decided to prepare two versions of the specification.
The larger one has 37 use cases and is labeled as FULL, while in case of smaller
specification (SMALL) the number of use cases was reduced to 20.

5.2 Use Cases Structure

A breadth-first rule has been followed in order to construct referential specification.
Firstly, all use cases were titled and augmented with descriptions. Secondly, all
of them were filled with main scenarios and corresponding extensions. During that
process all changes made in specification were recorded in order to check conformance
with the typical profile. This iterative approach was used until the final versions of
both SMALL and FULL quantitative specifications were constructed. Their profiles
are presented in Table 4, in comparison to the corresponding average values from
the UCDB projects analysis The most important properties are those which are
observed in all of the specifications (specification independent). In case of those
metrics most values in the referential document are very close to those derived from
the analysis. This situation differs in case of properties which were characteristic
only for certain projects (or variability between projects were very high). If the
constructed specification is supposed to be a typical one, it should not be biased by
features observed only in some of the industrial specifications. Therefore, dependent
properties were also incorporated into the referential use cases; however, they were
not a subject of the tuning process.

In addition, based on each of the quantitative specifications, a corresponding
qualitative specification was proposed. In this case we focused on introducing chan-
ges which led to obtaining a qualitative profile close to the typical profile.

6 BENCHMARKING USE CASES – CASE STUDY

Having the example of the typical requirements specification, one can wonder how
it could be used. Firstly, researchers who construct methods and tools in order

Building Benchmarks For Use Cases 37

Quantitative
referential

specification
admission
system 2.0
SMALL

Quantitative
referential

specification
admission
system 2.0

FULL

Observed
in use-
cases

database

Qualitative
referential

specification
admission
system 2.0
SMALL

Qualitative
referential

specification
admission
system 2.0

FULL

Mean 4.80 4.81 4.8206 - -
SD 1.21 1.50 2.4114 - -

75.0% 70.3% 72.1% - -
Mean 1.60 1.50 1.5744 - -
SD 0.71 0.69 1.8798 - -

Mean 2.29 2.49 2.4584 - -
SD 1.81 2.12 1.6138 - -

4.2% 2.3% 3.4% - -
62.5% 46.2% 41.3% - -

1 64.5% 61.7% 61.6% - -
2 19.4% 21.7% 21.6% - -
3 12.9% 10.0% 10.2% - -
4 3.2% 3.3% 3.8% - -

>4 0.0% 3.3% 2.8% - -
1 73.5% 79.7% 74.6% - -
2 23.5% 15.3% 18.8% - -
3 2.9% 3.4% 4.3% - -
4 0.0% 1.7% 1.6% - -

>4 0.0% 0.0% 0.8% - -

- - 2.55% 5.00% 2.70%

- - 4.76% 5.00% 5.41%

- - 4.25% 4.17% 5.13%
- - 35.80% 33.33% 33.33%
- - 4.13% 4,17%% 5.13%

- - 11.39% 10.00% 10.81%

- - 6.80% 5.00% 5.41%

- - 22.11% 25.00% 24.32%

- - 1.53% 0.00% 2.70%

- - 0.80% 0.78% 0.80%

- - 4.56% 4.59% 4.78%

- - 0.29% 0.00% 0.40%
- - 19.37% 19.53% 19.12%

- - 3.63% 3.91% 3.59%

- - 2.51% 2.34% 2.39%

- - 3.79% 3.91% 3.98%

- - 3.71% 3.91% 3.59%

- - 1.22% 1.56% 1.59%
3.16% 3.13% 3.19%

Number of steps with possibility of different
interpretations

Number of steps with details of elements of
business objects

Number of steps with conditional clauses
Number of steps with language mistakes

Number of steps with different tenses used
Number of steps in which user interface terms are

used
Number of steps in which technical terms are used

Number of steps in which no actor is specified

Secondary actor's steps sequence length in
main scenario

Use case duplicates (the same actions operating on
different business objects)

Number of steps in which passive voice for the
action is used

Number of steps with complex sentence structure or
with more then one sentence

Number of extensions without scenarios
Number of extensons with nested scenarios

Number of use cases with less than 3 steps in main
scenario

Number of use cases with more than 9 steps in main
scenario

Lack of interactions between actors
Number of use cases with at least double nested sub-

scenarios

Number of use cases, in which name does not
describe the goal

Number of non-detectable condition in extensions

Property

Number of steps in main scenario

Use cases with extensions

Number of extensions in use case

Number of steps in extension

Steps of validation nature
Extensions of validation nature

Main actor's steps sequence length in main
scenario

Table 4. Referential specifications profiles in comparison to the average profile derived
from the analysis of the use cases stored in UCDB

38 B. Alchimowicz, J. Jurkiewicz, M. Ochodek, J. Nawrocki

to analyse use cases often face the problem of evaluating their ideas. Using some
specification coming from the industrial project is a typical approach; however, this
cannot lead to the conclusion that the given solution would give the same results for
other specifications. The situation looks different when the typical specification is
considered; then researchers can assume that their tool would work for most of the
industrial specifications. Secondly, analysts who want to use some tools to analyse
their requirements can have a problem to choose the best tool that would meet
their needs. With the typical specification in mind it can be easier to evaluate the
available solutions and choose the most suitable one. To conclude, the example of
the typical requirements specification can be used:

• to compare two specifications and assess how the given specification is similar
to the typical one;

• to assess the time required for a tool to analyse requirement specification;

• to assess the quality of a tool/method;

• to compare tools and choose the best one.

In order to demonstrate the usage of the constructed specification we have con-
ducted a case study using the qualitative reference specification Admission sys-
tem 2.0 FULL. As a tool for managing requirements in a form of use cases we chose
the UC Workbench tool [17], which has been developed at Poznań University of
Technology since the year 2005. In addition, we used the set of tools for defects
detection [6] to analyse the requirements. The aim of the mentioned tools is to
find potential defects and present them to analyst during the development of the
requirements specification. The tools are based on the Natural Language Processing
(NLP) methods and use Standford parser [9] and/or OpenNLP [20] tools to perform
the NLP analysis of the requirements.

6.1 Quality Analysis

In order to evaluate the quality of the tools, a confusion matrix will be used [12]
(see Table 5).

Yes No

Yes TP FP

No FN TN

Expert answer

S
ys

te
m

 a
n

sw
e

r

Table 5. Confusion matrix

Building Benchmarks For Use Cases 39

The symbols used in Table 5 are described below:

• T (true) – tool answer that is consistent with the expert decision;

• F (false) – tool answer that is inconsistent with the expert decision;

• P (positive) – positive system answer (defect occurs);

• N (negative) – negative system answer (defect does not occur).

On the basis of the confusion matrix, the following metrics [16] can be calculated:

• Accuracy (AC) – proportion of the total number of predictions that were correct.
It is determined using Equation (1).

AC =
TP + TN

TP + FN + FP + TN
(1)

• True positive rate (TP rate) – proportion of positive cases that were correctly
identified, as calculated using Equation (2).

TP rate =
TP

TP + FN
(2)

• True negative rate (TN rate) is defined as the proportion of negative cases that
were classified correctly, as calculated using Equation (3).

TN rate =
TN

TN + FP
(3)

• Precision (PR) – proportion of the predicted positive cases that were correct,
as calculated using Equation (4).

PR =
TP

TP + FP
(4)

The referential use-case specification was analysed by the mentioned tools (to
perform the NLP processing Stanford library was used) in order to find 10 types
of defects described in [6]. Aggregated values of the above accuracy metrics are as
follows:

• AC = 0.99

• TP rate = 0.97

• TN rate = 0.99

• PR = 0.80.

This shows that the developed tools for defects detection are rather good, how-
ever the precision should be better, so the researchers could conclude that more
investigation is needed in this area.

40 B. Alchimowicz, J. Jurkiewicz, M. Ochodek, J. Nawrocki

If the researchers worked on their tool using only defect-prone or defect-free
specifications the results could be distorted and could lead to some misleading con-
clusions (e.g. that the tool is significantly better or that it gives very poor out-
come). Having access to the typical specification allows the researchers to explore
the main difficulties the tool can encounter during working with the industrial spec-
ifications.

6.2 Time Analysis

One of the main characteristics of a tool being developed is its efficiency. Not only
developers are interested in this metric, but also the users – e.g. when analysts
have to choose between two tools which give the same results, they would choose
the one which is more efficient. However, it can be hard to asses the efficiency
just by running the tool with any data, as this may result with distorted outcome.
Use-cases benchmark gives the opportunity to measure the time required by a tool
to complete its computations in an objective way. It can be also valuable for re-
searchers constructing tools to consider using different third-party components in
their applications.

For instance, in case of the mentioned defect-detection tool there is a possibility
of using one of the available English grammar parsers. In this case study two of
them will be considered – Standford parser and OpenNLP. If one exchanges those
components the tool will still be able to detect defects, but its efficiency and accuracy
may change. Therefore, the time analysis was performed to asses how using those
libraries influences the efficiency of the tool. The overall time required to analyse the
typical specification2 for the tool using Stanford parser was 53.11 seconds and for
the one with OpenNLP it was 29.46 seconds. Although the first time value seems
to be large, the examined tool needed 280 ms on the average to analyse a single
use-case step, so it should not be a problem to use it in industrial environment. Of
course, when comparing efficiency, one has to remember that other factors (like the
quality of the results, memory requirements or the time needed for the initialization
of the tools) should be taken into account, as they can also have significant impact
on the tool itself. Therefore, time, memory usage and quality analysis is presented
in Table 6. This summarised statistics allow researchers to choose the best approach
for their work.

Although this specification describes some abstract system, it shows the typical
phenomenon of the industrial requirements specifications. The conducted case study
shows that the developed referential use-case specification can be used in different
ways by both researchers and analysts.

2 Tests were performed for the tools in two versions: with Stanford and OpenNLP
parsers. Each version of the tools analysed the referential specification five times, on the
computer with Pentium Core 2 Duo 2.16GHz processor and 2GB RAM.

Building Benchmarks For Use Cases 41

English
grammar

parser used

Overall
processing

time [s]

Mean time
needed to

analyse one
step [s]

Maximal
memory

utilization
[MB]

Overall
processing

time [s]

Startup
time [s]

Initial
memory
usage
[MB]

Memory usage
while processing
single element

[KB]
Stanford 53.11 0.28 212 37.01 0.8 27 539

OpenNLP 29.46 0.16 338 13.58 15.4 225 3977

AC TP rate TN rate PR
Stanford 0.99 0.97 0.99 0.80

OpenNLP 0.99 0.83 0.99 0.79

Summarised for all components English grammar parser only

Quality

Table 6. Case-study results (tools are written in Java, so memory was automatically ma-
naged – garbage collection)

7 CONCLUSIONS

In the paper an approach to create a set of reference use-cases-based requirements
specifications was presented.

In order to derive a profile of a typical use-cases-based requirements specification
524 use cases were analysed. It has proved that some of the use-case properties are
project-independent (are observed in most of the projects). They have been used
for creating the referential specification. On the other hand, there is also a number
of properties which depend very much on the author.

In order to present potential usage of the benchmark specification, a case study
was conducted. Two sets of tools for defect detection in requirements were compared
from the point of view of efficiency and accuracy.

In this paper a second release of UCDB is analysed, which was recently extended
from 432 to 524 use cases. A positive observation is that despite the number of use
cases increased by 21 % the typical profile did not change a lot. Therefore it seems
that the typical profile derived based on the use cases stored in the database is stable
and should not differ much in the future releases.

Acknowledgments

We would like to thank Piotr Godek, Kamil Kwarciak and Maciej Mazur for sup-
porting us with industrial use cases.

The research presented at the CEE-SET ’08 [3] and being part of this paper has
been financially supported by the Polish Ministry of Science and Higher Education
under grant N516 001 31/0269.

Additional case studies and analysis have been financially supported by Foun-
dation for Polish Science Ventures Programme co-financed by the EU European
Regional Development Fund.

42 B. Alchimowicz, J. Jurkiewicz, M. Ochodek, J. Nawrocki

REFERENCES

[1] Chaos: A Recipe for Success. 2004, Technical report, Standish Group, 2004.

[2] Adolph, S.—Bramble, P.—Cockburn, A.—Pols, A.: Patterns for Effective
Use Cases. Addison-Wesley, 2002.

[3] Alchimowicz, B.—Jurkiewicz, J.—Nawrocki, J.—Ochodek, M.: Towards
Use-Cases Benchmark. In: 3rd IFIP Central and East European Conference on Soft-
ware Engineering Techniques CEE-SET 2008, 2008.

[4] Anda, B.—Sjøberg, D. I. K.: Towards an Inspection Technique for Use Case Mo-
dels. In: Proceedings of the 14th international conference on software engineering and
knowledge engineering, 2002, pp. 127–134.

[5] Bernardez, B.—Duran, A.—Genero, M.: Empirical Evaluation and Review of
a Metrics-Based Approach for Use Case Verification. Journal of Research and Practice
in Information Technology, Vol. 36, 2004, No. 4, pp. 247–258.

[6] Ciemniewska, A.—Jurkiewicz, J.—Nawrocki, J.—Olek, L.: Supporting Use-
Case Reviews. In: 10th International Conference on Business Information Systems,
Lecture Notes in Computer Science, Vol. 4439, April 2007, pp. 424–437.

[7] Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Boston, 2001.

[8] Use Case Database. Availaible on: http://www.ucdb.cs.put.poznan.pl.

[9] de Marneffe, M.-C.—MacCartney, B.—Manning, Ch. D.: Generating Typed
Dependency Parses from Phrase Structure Parses. In: Proceedings of the EACL
workshop on Linguistically Interpreted Corpora (LINC), 2006.

[10] Denger, C.—Paech, B.—Freimut, B.: Achieving High Quality of Use-Case-
Based Requirements. Informatik-Forschung und Entwicklung, Vol. 20, 2005, No. 1,
pp. 11–23.

[11] Diev, S.: Use Cases Modeling and Software Estimation: Applying Use Case Points.
ACM SIGSOFT Software Engineering Notes, Vol. 31, 2006, No. 6, pp. 1–4.

[12] Fawcett, T.: Roc Graphs: Notes and Practical Considerations for Data Mining
Researchers. HP Labs Technical Report HPL-2003-4, 2003.

[13] Hurlbut, R.: A Survey of Approaches for Describing and Formalizing Use Cases.
Expertech, Ltd., 1997.

[14] Jacobson, I.: Object-Oriented Development in an Industrial Environment. ACM
SIGPLAN Notices, Vol. 22, 1987, No. 12, pp. 183–191.

[15] Jacobson, I.—Christerson, M.—Jonsson, P.—Overgaard, G.: Object-
Oriented Software Engineering: A Use Case Driven Approach. 1992.

[16] Krawiec, K.—Stefanowski, J.: Uczenie Maszynowe i Sieci Neuronowe.
Wydawnictwo Politechniki Poznańskiej, 2004.

[17] Nawrocki, J.—Olek, L.: UC Workbench – A Tool for Writing Use Cases. In:
6th International Conference on Extreme Programming and Agile Processes, Lecture
Notes in Computer Science, Vol. 3556, Jun 2005, pp. 230–234.

[18] Neill, C. J.—Laplante, P. A.: Requirements Engineering: The State of the Prac-
tice. Software, IEEE, Vol. 20, 2003, No. 6, pp. 40–45.

Building Benchmarks For Use Cases 43

[19] Niazi, M.—Shastry, S.: Role of Requirements Engineering in Software Deve-

lopement Process: An Empirical Study. In: Multi Topic Conference, 2003, INMIC,
7th International, 2003.

[20] OpenNLP. Availaible on: http://opennlp.sourceforge.net.

[21] Shull, F. J.—Carver, J. C.—Vegas, S.—Juristo, N.: The Role of Replications
in Empirical Software Engineering. Empirical Software Engineering. Vol. 13, April
2008, No. 2, pp. 211–218.

[22] Somé, S. S.: Supporting Use Case Based Requirements Engineering. Information
and Software Technology, Vol. 48, 2006, No. 1, pp. 43–58.

Bartosz Alhimowiz is a Ph.D. student working at the Fa-
culty of Computing and Management, Poznan University of

Technology in Poland. His main fields of interest are require-
ments engineering, software configuration management and qua-
lity of documentation.

Jakub Jurkiewiz is a Ph.D. student at Poznań University of
Technology, Poland. He received his M. Sc. degree in computer

science in the Faculty of Computer Science and Management
of Poznan Univerity of Technology in 2007. His research inter-
ests are requirements engineering, quality requirements, software
measurement and natural language processing.

Miros law Ohodek is a Ph.D. student working at the Institute

of Computing Science at the Poznan University of Technology.
He is mainly working in the domain of requirements engineer-
ing, software metrics, functional size measurement, and software
effort estimation.

44 B. Alchimowicz, J. Jurkiewicz, M. Ochodek, J. Nawrocki

Jerzy Nawroki received his M. Sc. degree (1980), Ph.D. de-

gree (1984), and Dr. hab. degree (1994) – all in informatics and
all from the Poznan University of Technology (PUT), Poznan,
Poland. Currently he is the Dean of the Faculty of Computing
and Management at PUT, and a Secretary of IFIP Technical
Committee 2: Software Theory and Practice.

