Computing and Informatics, Vol. 29, 2010, 3-25

ENHANCING USE CASES WITH SCREEN DESIGNS.
A COMPARISON OF TWO APPROACHES

Lukasz OLEK, Mirostaw OCHODEK, Jerzy NAWROCKI

Institute of Computing Science

Poznan University of Technology

ul. Piotrowo 2

60-965 Poznan, Poland

e-mail: {Lukasz.0lek, Miroslaw.Ochodek, Jerzy.Nawrocki}@cs.put.poznan.pl

Revised manuscript received 16 October 2009

Abstract. This paper presents a language called ScreenSpec that can be used to
quickly specify screens during the requirements elicitation phase. Experiments and
case studies presented in this paper show that it is easy to learn and effective to
use. ScreenSpec was successfully applied in 9 real projects. Visual representation
generated from ScreenSpec can be attached to requirements specification (e.g. as
adornments to use cases).

Keywords: Use cases, GUI design, prototyping, screenspec

Mathematics Subject Classification 2000: 68N01, 68N30, 68U35

1 INTRODUCTION

Use cases are the most popular way of specifying functional requirements. A survey
published in IEEE Software in 2003 [13] shows that over 50 % of software projects
elicit requirements as use cases or scenarios. Use case is a good way of describing
interaction between user and system at the high level of abstraction, so maybe now
the number can be even higher. At the same time many practitioners (in about
40 % of projects [13]) draw user interfaces to visualise better how the future system
will behave. This is wise, since showing user interface designs (e.g. prototypes [7,
16, 21, 22|, storyboards [9]) together with use cases helps detect problems with

4 L. Olek, M. Ochodek, J. Nawrocki

requirements [14]'. Unfortunately, details of the user interface can clutter use-case
description and should be kept apart from the steps [5, 6]; however, they can be
attached to use cases as adornments [5].

Much has been said about writing use cases [5, 6, 8, 10, 19] (e.g. how to divide
them into main scenario and extensions, what type of language to use); however, it is
not clear how to specify Ul details as adornments. Practitioners seem to either draw
screens in graphical editors and attach graphical files to use cases, or just describe
them using natural language. Both approaches have advantages and disadvantages.
The graphical approach is easier to analyse by humans; however, more difficult to
prepare and maintain. On the other hand, the textual approach is much easier to
prepare, but not so easy to analyse.

The goal of this paper is to propose a simple formalism called ScreenSpec to
specify user interface details. It has both advantages of the approaches mentioned
earlier: as a textual approach it is easy to prepare and maintain, and can be au-
tomatically converted to the graphical form (attached to use cases as adornments
can stimulate readers visually). Currently the language is limited to describe user
interface of web applications.

It is easy to propose a new formalism, but it is much more difficult to prove that
it is useful. This paper presents a case study, where ScreenSpec has been successfully
used in 9 real projects. An investigation was carried out to find out how much effort
is needed to use ScreenSpec, and how much time does it take to learn how to use
it. Finally, an experiment was conducted in order to compare the efficiency of using
ScreenSpec versus a graphical tool — Microsoft Visio.

The plan of this paper is as follows. Section 2 describes chosen approaches to
UI specification that are widely used. Section 3 describes the ScreenSpec language.
Section 4 describes a way to generate graphic files representing particular screens
from ScreenSpec. Section 5 presents how the visual representation of screens can
be embedded in requirements documents: as adornments, or as a mockup. Sec-
tion 6 describes case study and experiment that were conducted to verify whether
ScreenSpec is complete enough and flexible to be used for specifying screens of real
applications and how much effort does it take to specify screens at requirements
elicitation phase.The whole paper is concluded in Section 7.

2 RELATED WORK

There are many approaches to screen specification. They can be roughly divided
into two groups: user interface specification languages and screen sketching tools.
Both have their advantages and disadvantages.

The modern UI specification languages, such as XForms [17] or XUL[2] are
development-focused. They are used as a flexible way for coding user interface.
They allow to formally specify high-fidelity screens. Unfortunately, they require

1 See experiment conclusions in the section “Mockup helps to unveil usability prob-
lems”.

Enhancing Use Cases with Screen Designs 5

a substantial effort to describe a screen, and thus are not suitable to be used for
quick screen sketching.

There are other technologies that are getting more and more popular nowadays,
like for instance MDSD (Model Driven Software Development) approaches, that
provide an ability to generate a whole application (with the user interface) from
a set of models (e.g. WebML [3], UWE/ArgoUWE [4]). Unfortunately, this approach
still seems to require too much effort, to be successfully used at the requirements
elicitation phase. There are companies using such approach, that Poznan University
of Technology cooperates with. According to their experience it takes at least several
hours to describe a single use case with MDSD models. It is definitely too long to
be used at requirements elicitation phase, so they use generic text editors to specify
use cases and screens.

On the other hand, there are tools for sketching the user interface (such as
Microsoft Visio). They allow to draw screens quickly in the visual form. This
approach seems to be most often used in practice to sketch user interface.

3 SCREENSPEC - LANGUAGE FOR SCREEN SPECIFICATION

ScreenSpec is used to specify the structure of the user interface. Since this approach
is supposed to be used at early stages of requirements elicitation phase, it would be
wise to focus on the structure of screens and information exchanged between user and
system, rather then on such attributes like colours, fonts, or layout of components.
This is called a low-fidelity approach ([18, 24]) and is used in ScreenSpec. There were
research experiments conducted to compare low-fidelity and high-fidelity approaches
(e.g. [23, 24]). Researchers concluded that there is no significant difference in the
number, type, and severity of usability issues found by reviewers of low- and high-
fidelity prototypes.

It is best to explain how ScreenSpec specification looks like on a simple example.
Let us imagine a screen for sending e-mail messages (see Figure 1). It contains a field
for entering the title, the content of a message, radio buttons for selecting format
and some buttons.

Title |

SCREEN Send message:
Title(EDIT BOX)
Message (TEXT_AREA)
Format (RADIO_BUTTONS)
Send (BUTTON)
Save_as_draft (BUTTON)
Cancel (BUTTON)

Message

Format (@) HTML
O Plain text

Save Save as a draft Cancel

Fig. 1. A simple screen and its corresponding specification in ScreenSpec

6 L. Olek, M. Ochodek, J. Nawrocki
3.1 Introduction to the Language

3.1.1 Screens

ScreenSpec specification consists of a set of screens. The definition of each screen
starts with the SCREEN keyword followed by screen identifier (each screen must have
an unique ID). The following lines are indented and describe components that belong
to the screen (see Figure 2). In the simplest form of ScreenSpec, which can be used
at early stages of requriements elicitation, the components have only their names,
without the specification of the types. The formal grammar of the ScreenSpec
language is presented in Section 3.3.

Title |

SCREEN Send_message:
Title
Message
Format
Send
Save_as_draft
Cancel

Message

Format (@) HTML
O Plain text

Save Save as a draft Cancel

Fig. 2. A simple screen and the description of its structure in ScreenSpec

3.1.2 Basic Components

Basic components are mostly simple widgets known from the HTML language. They
are specified by putting a component type in parentheses after the component name.
Component type can be one of:

e BUTTON — represents an HTML button (<input type="submit"/>,
<input type="button"/> or <input type="reset"/>),

e LINK — represents an HTML link (Link title),

e IMAGE — represents an HTML image (),

e STATIC_TEXT, DYNAMIC_TEXT — represents a text fragment on a page, that is
meaningful from the testing perspective; the STATIC_TEXT is a text that is each
time the same (e.g. a comment or an instruction), and the DYNAMIC_TEXT is
a text calculated dynamically by the system (e.g. invoice total),

e EDIT_BOX — represents an HTML edit input (<input type="edit"/>),

e PASSWORD — represents an HTML password input
(<input type="password"/>),

e COMBO_BOX — represents a drop-down HTML select component
(<select><option>...</option>...</select>),

Enhancing Use Cases with Screen Designs 7

e LIST_BOX — represents an HTML select component with an ability to select more
than one option
(<select multiple="multiple"><option>...</option>...</select>),

e RADIO_BUTTONS — represents a group of HTML radio buttons
(<input type="radio"/>),

e CHECK_BOXES — represents a group of HT'ML check boxes
(<input type="checkbox"/>),

e CUSTOM — used to denote a component that is not included in the standard set
of HTML components (e.g. date pickers, maps, etc.); mockup has no underlying
functionality, so it cannot render such components; they will be visualised as
empty rectangles.

The screen from Figure 2 supplemented with component types is presented in
Figure 1. Component types are defined in parentheses after their names.

3.1.3 Groups — Structured Components

Groups are component structures, used to specify lists, tables, or just to group the
components visually on the screen in one section. A group is specified with a name
followed by a colon, and a set of indented lines — with specification of components
that belong to the group (see Figure 3). Groups can be declared as simple, list
or table, with a type specified in parentheses between its name and a colon. The
meaning of the group type is as follows:

e SIMPLE (default) — such group is just used to put a couple of components in
one section on the screen (e.g. section personal details can contain: name,
email, etc.), but it does not provide any additional semantics to the compo-
nents,

e LIST —its components are repeated in a list, all child components specify a single
list item,

e TABLE — its components are repeated in rows, as a table (similar to LIST, but
different layout).

There are two more types available for components declared inside a group:
CHECK_BOX and RADIO_BUTTON. These types define a group of these components
across all elements of the group, and can be used for declaring e.g. a radio button
that would allow to select one row from a table (see Figure 4).

3.2 ScreenSpec Advanced Features

3.2.1 Static Values

For some components we already know their initial values at specification time. For
example, a group of radio buttons that allows to choose user sex will always have

8 L. Olek, M. Ochodek, J. Nawrocki

Title
Message
SC
Title(EDIT_ BOX)
Message (TEXT_AREA)
Format (@) HTML Format (RADIO_BUTTONS)
O Piain text Recipients (TABLE) :
Recipients: Name (DYNAMIC_TEXT)
Name Email Email (DYNAMIC_TEXT)
tukasz Olek lolek@cs.put.poznan.pl | A Send (BUTTON)
Jerzy Nawrocki jnawrocki@cs.put.poznan.pl Save_as_draft (BUTTON)
Mirostaw Ochodek | mochodek@cs.put.poznan.pl || Cancel (BUTTON)
Save Save as a draft Cancel

Fig. 3. The screen with a group component (table)

Recipients: sc

° Name Email Recipients(TABLE):

IE' tukasz Olek lolek@cs.put.poznan.pl | A Chosen (CHECK_BOX)
Jerzy Nawrocki jnawrocki@cs.put.poznan.pl Name (DYNAMIC_TEXT)

}31 Mirostaw Ochodek | mochodek@cs.put.poznan.pl [w| Email (DYNAMIC_TEXT)

Fig. 4. Additional component types are available inside a group: CHECK_BOX and
RADIO_BUTTON

two values: male and female. Static values are used to specify the values in such
situations. The meaning of the static value is different for different components
(see Table 1). In order to specify a static value for a component, its declaration
is followed by a colon, and a list of values separated by a vertical bar “|” (see
Figure 5).

Sex @ Male
O Female Sex (RADIO BUTTONS): Male|Female
Search | Type a text for search Search(EDIT_BOX): Type a text for search
Country (COMBO_BOX): Poland|England|Germany
Country WH

Fig. 5. Static values can define initial values for components

3.3 ScreenSpec Grammar Specification

This section presents a grammar of ScreenSpec language in the EBNF notation [25].
Since the original EBNF notation does not allow to specify indentation-based lan-
guages very comfortably, it was extended to pass arguments to non-terminal sym-

Enhancing Use Cases with Screen Designs 9

No. of
Control Type applicable Semantics of static values
static values
BUTTON, LINK 1 Static value specifies the caption of the compo-
nent
STATIC_TEXT 1 Static value specifies the text visible for the user
RADIO_BUTTONS, many Static values specify the descriptions of particu-
CHECK_BOXES lar buttons. Some values can be preceded with
‘=" — these values will be initially selected (there
can be one such value for RADIO_BUTTONS and
many values for CHECK_BOXES)
COMBO_BOX, many Static values specify the options for the compo-
LIST_BOX nents. Some values can be preceded with ‘=" —
these values will be initially selected (there can
be one such value for COMBO_BOX and many val-
ues for LIST_BOX)
EDIT_BOX, 1 The static value is an initial value for the com-
TEXT_AREA ponent
PASSWORD, - No static values can be applied to these compo-
DYAMIC_TEXT nents

Table 1. The semantics of static values depending on control type

bols. These arguments are used to count a proper number of indents, and are passed
in brackets. The grammar assumes the following terminal symbols will be recognized
by lexer:

[43 7

e value — any string that does not contain the character,

w_n “won

e identrifier — a string that can contain letters, digits, “-”,

e indentation — the tab character,

e line break — the new line character(s).

specification = screen *;
screen = "SCREEN", identifier, line break,
(component (1)) *;
component (i) = component indication (i) | simple component (i)
| group component (i);
component indication (i) = indentation (i), identifier, line break;
simple component (i) = indentation (i), identifier,

"(", component type, ")", [":", static values], line break;
static values = value ("|", value)x*;
component type = "BUTTON" | "LINK" | "IMAGE" | "STATIC_TEXT"
| "DYNAMIC_TEXT" | "EDIT_BOX" | "COMBO_BOX" | "RADIO_BUTTONS"
| "RADIO_BUTTON" | "LIST_BOX" | "CHECK_BOXES" | "CHECK_BOX"

| "CUSTOM";

10 L. Olek, M. Ochodek, J. Nawrocki

group component (i) = indentation (i), identifier,

[("(", group type, ")"], ":", line break,
(component (i+1), line break) +;
group type = "SIMPLE" | "LIST" | "TABLE";

3.4 Evolutionary Approach to Screen Specification

ScreenSpec is designed to be used by analyst at requirements elicitation phase.
This phase is exploratory, which means that change-involving decisions are made
frequently. Thus we propose to use ScreenSpec in an incremental way. At the begin-
ning an analyst can just roughly describe the structure of information at particular
screen, and add more details later (after getting a confirmation from a customer
that it is correct). ScreenSpec has 3 levels of details:

L1 Component names — need to be specified at the beginning.

L2 Types of controls and groups — specifies types of information connected
with each screen.

L3 Static values.

These levels can be mixed throughout the specification process: some screens
can be specified at one level of details, and other screens can be specified at other
levels.

4 VISUAL REPRESENTATION OF SCREENS

ScreenSpec can be authored using a dedicated tool. This is a simple editor that
detects each change, and automatically regenerates graphics files (PNG) that can be
attached to requirements documents. The generator uses simple rules to transform
ScreenSpec to visual representation:

1. For each component:

e EDIT_BOX, COMBO_BOX, LIST_BOX, CUSTOM — a label (equal Component ID) is
displayed on the left side of the control, the control’s value is taken from the
defined static value, or it is left empty. CUSTOM component is displayed as
the EDIT_BOX.

e BUTTON, LINK — displays a control with a caption equal to the defined static
value, or component ID.

e STATIC_TEXT, DYNAMIC_TEXT — displays a piece of text equal the static value
or component 1D.

e RADIO_BUTTON, CHECK_BOX — displays a control followed by a label (label’s
value equals the static value or component ID)

e IMAGE — displays a label on the left (equal to component ID) and an empty
image frame on the right.

Enhancing Use Cases with Screen Designs 11

2. For each group:

e SIMPLE — a header and a frame is created, all children components are placed
inside this frame.

e LIST — a header and a frame is created. In the frame 3 rows are displayed
(this visualises that a list can have more elements): two rows having the
child components, and the third one containing “...”

e TABLE — is similar to a LIST, however a new table column is created for each
child component. Its label is displayed in the table header rather than on
the left (near its control).

e TREE - is similar to a LIST, but for each row a nested and smaller list is
displayed.

The following example (Figure 6) shows a visual representation of a simple screen
specified in ScreenSpec.

Screens: + Screen + Group + Component pegistrationForm

¥ _SCREEN RegistrationForm:
4 Username T BOX) Username: Username
4 Password(PASSWOR Password: esssesse

4 Repeat password

4 Email address Repeat password: [insnsnsanninane

4 Registert ON Email address: Emall address

4 Cancel
Register
Cancel

Use cases and screens Test cases Specification

Fig. 6. A screenshot showing the ScreenSpec editor with a generated visual representation
for a registration screen

5 SCREENSPEC MEETS USE CASES

Visual screens generated from ScreenSpec can be directly inserted into require-
ments specification in adornments section of particular use cases. Having up-to-date
graphic files allows to update the specification easily, because many modern text
editors allow to link with external files, and update them each time the document
is opened (e.g. Microsoft Word, OpenOffice).

5.1 Mockup

Mockup is an interesting artefact created by connecting screens to particular steps
of use cases. It is rendered as a simple web application that can display both use

12 L. Olek, M. Ochodek, J. Nawrocki

cases and screens at the same time. Use case (displayed on the left side) shows the
interaction between an actor and a system (see Figure 7). After selecting particular
step, an according screen is displayed (on the right side). This artefact seems to be
useful in practice, initial feedback from commercial projects using mockups is very
positive.

It is difficult to connect screens to use case steps in generic text editor, so
a dedicated tool called UC Workbench [12] was developed at Poznan University of
Technology.

Actors Use Cases Business Objects Business Rules

UC1: Register

Main scenario: RegistrationForm

. Username: Username
1. Customer chooses the register option .
= Password:
2_>System presents registration form . uJ

Repeat password:
3. Customer provides personal information

[CredentialData] . L]

4. System creates a new account .

Email address: Emall address
Register

Cancel
Extnsions:

4.A. Wrong data according to BR1.
4.A.1. System presents error message .
4.A.2. Back to 3.

Fig. 7. A screenshot of Mockup — showing use case with corresponding screens at the same
time

6 EXPERIENCE WITH SCREENSPEC
6.1 Specifying Screens for the Real Projects — Case Studies

Analysts usually use word processors and sheets of papers to author requirements.
Keeping it in mind, it seems that introducing formalised requirements models can
be risky. It may happen that some of the features might be too difficult to describe
with the formalised model.

To make sure that the ScreenSpec formalism is complete and flexible enough to
be used for describing real systems, nine case studies were conducted. They included
a large variety of projects. Some of them were internally-complex (large number of
sub-function? requirements), with a small amount of interaction with a user (e.g.
Project A, Project C). Others were interaction-oriented, with a great number of use
cases and screens (e.g. Project D, Project G). First 6 projects were selected from
the Software Development Studio course at Poznan University of Technology. These
projects were developed for external customers by students of the Master of Science

2 After Cockburn [6]: a sub-function requirement is a requirement that is below the
main level of interest to the user, i.e. “logging in”, “locate a device in a DB”.

Enhancing Use Cases with Screen Designs 13

in Software Engineering. Students were successfully using ScreenSpec approach to
specify screens. They also raised some minor suggestions for ScreenSpec language,
and small simplifications were introduced afterwards. Then screens for 3 commercial
projects were also written using ScreenSpec language. In both cases all screens were
successfully specified.

It seems that the number of lines of code (LOC) per screen may differ depend-
ing on the screen complexity. In analysed projects average LOC per Screen varies
from 3.0 to 14.5 (see Table 2).

Business User Sub- Average Total
Project Level Level function Screens LOC LOC
UCs UCs UCs /Screen /Screen

Project A 4 2 4 14.5 58
Project B 3 13 2 5 9.4 47
Project C 5 4 3.0 12
Project D 16 27 4.7 128
Project E 4 7 3.9 27
Project F 1 3 2 3 13.0 39
Project G 44 39 92 9.5 917
Project H 2 12 7 5.1 36

Project I 8 57 72 14.3 1026

Table 2. Nine projects selected for the case study

6.2 ScreenSpec Efficiency Analysis

Although an average amount of code required to specify a screen with ScreenSpec
seems to be rather small, two important questions arise:

e Q1: how much effort is required to specify® a screen?

e (Q2: how much time is required to learn how to use ScreenSpec?

The second question is also important because practitioners tend to choose solu-
tions, which provide business value and are inexpensive to introduce. If an extensive
training is required in order to use ScreenSpec efficiently, there might be a serious
threat that the language will not be attractive to the potential users.

In order to answer these questions, a controlled case study was conducted?.
Eight participants were asked to specify sequence of 12 screens coming from the real

3 The term “specifying” is understood here as the process of transcribing the vision of
the screen into the ScreenSpec code.

4 The case study is labeled here as controlled, because the methodology was similar
to that used in case of controlled experiments; however, the nature of questions being
investigated refers rather to the “common sense” than to some obtainable values (e.g.
compare average learning time, to the one which is acceptable for the industry).

14 L. Olek, M. Ochodek, J. Nawrocki

application (provided as the series of application screenshots). The time required
for coding each of the screens was precisely measured (up to the seconds). The code
was written manually on sheets of paper. The participants were also asked to copy
a sample screen specification, in order to examine their writing speed. Before they
started to specify screens, they had been also introduced to the ScreenSpec during
the 15-minutes lecture, and each of them was also provided with a page containing
the ScreenSpec specification in a nutshell. All materials provided to participants
are published at [1].

6.2.1 Descriptive Analysis and Data Clearing

During the completion of each task (single screen specification) two values were
measured:

e time required to finish the task

e lines of code developed to specify the screen.

Screens specifications developed by participants differed in respect to their size,
because they were specified only on the basis of the screen-shots, which were per-
ceived slightly differently by different people. Moreover, some of the ScreenSpec
structures might be used optionally. The detailed results of the case study are
presented in Table 3.

Before proceeding to the further analysis, results for all tasks were carefully
analysed in order to find potential outliers. The task was marked as suspicious if
the variability in lines of code provided by participants was high (or there were
outlying observations). According to the box plots presented in Figure 8 tasks 1, 4,
5,7,8,9, 10, 11, 12 were chosen for further investigation in order to find out the
reasons for the LOC variability. It turned out that tasks 4 and 8 were ambiguous,
because in both cases there were two possible interpretations of the screens semantic.
Moreover, the amount of code required to specify each of two versions differed visibly.
Therefore those tasks were excluded from the further analysis.

- 8 o
"_a) : - %—b) °
© — T ' - |
= - . ! R o8 T
Ee gt L. el]t Se A
.Ev— o 4 =« B OQOTE
£ ! ' o T Qw | »° C 3
i:m—E H . A = TR
i - S <
~ = *I;IE La m—%'é’TD -
- - 4
T T T T T T T T T 11 T T T T T T T T T T 1
123456 7 8 910 12 12345678910 12
Task (Screen) Task (Screen)

Fig. 8. Variability of effort and size of code (LOC) for each task, boz-plots presenting
variability of a) effort for each task, b) lines of code for each task

Enhancing Use Cases with Screen Designs 15

Time [min]
Sample
Participant ~ Screen 1 2 3 5 6 7 8 9 11 12

P1 0.9 43 20 20 6.2 23 47 7.7 3.3 5.5 6.3
P2 1.6 28 20 36 36 12 20 4.1 3.1 3.1 4.2
P3 1.2 1.8 20 30 46 15 24 6.2 4.8 3.9 4.4
P4 1.3 1.7 14 57 25 18 19 33 3.5 4.7 3.9
P5 1.0 24 22 10 25 14 18 36 4.3 3.0 4.2
P6 1.0 25 16 15 37 13 14 41 3.0 3.3 3.8
P7 1.0 19 15 16 20 1.1 13 23 1.8 3.2 3.5
P8 1.6 54 42 32 58 3.7 25 47 5.6 4.0 6.7

Mean 1.2 29 21 27 39 18 23 45 37 38 46
SD 0.3 13 09 15 16 09 11 17 12 09 1.2

Lines of code - LOC
Sample
Participant ~ Screen 1 2 3 5 6 7 8 9 11 12

P1 8 14 6 8 17 7 20 35 20 25 32
P2 8 9 7 9 12 6 8 21 16 18 19
P3 8 8 6 9 10 6 7 22 16 18 25
P4 8 7 6 9 10 6 7 15 17 20 19
P5 8 11 8 8 11 6 8 16 16 15 23
P6 8 9 7 8 9 7 8 17 14 17 23
P7 8 10 7 9 10 6 7 17 15 21 21
P8 8 5 7 7 10 6 7 14 16 13 18

Mean 8.0 91 6.8 84 11.1 6.3 9.0 196 163 184 225
SD 0.0 27 07 07 25 05 45 6.8 1.8 3.7 45

Table 3. Effort and lines of code for each participant and task (sample screen refers to the
task measuring participants writing speed)

6.2.2 Productivity Analysis

Based on the effort and code size measured for each task and each participant, the
productivity factor can be calculated. It will be defined here as the time required
to write a single line of code. It can be calculated according to Equation (1).

Effort

P D =
RO Size

: (1)

where:
e PROD is a productivity factor understood as the number of minutes required
to develop a single line of code
o Effort is the effort required to complete the task (measured in minutes)

e Size is the size of code developed to specify the screen (measured in LOC).

16 L. Olek, M. Ochodek, J. Nawrocki

The effort measured during the case study consists of two components: 1) the time
required for thinking and 2) writing down the screen. It would be difficult to pre-
cisely measure both of them, however knowing the writing speed of each participant
(see Equation (2)) it is possible to calculate the approximate effort spent only on
thinking. It can be further used to estimate cognitive productivity factor (see Equa-
tion (3)). It can be understood as a productivity of thinking while coding the
screen. It is independent from the tool (the effort needed mentally to produce the
screen-specification code).

Vv o Siz Esample
writing —
7 Effortsample ’

(2)

where:

® Viyriting 15 the writing speed (measured in LOC per minutes)

o Ef fortsmpe is the effort required to copy the code for the sample screen (mea-
sured in minutes)

o Sizesgmple is the size of the code for the sample screen — 8 LOC.

EffO’l"t — (Size/‘/writing)

PRODcogniti'Ue = Size

: (3)

where:
® PROD ognitive is an estimation of cognitive productivity factor understood as
a number of minutes spend on thinking in order to produce a single line of code
e Effort is the effort required to complete the task (measured in minutes)
e Size is the size of code to specify the screen (measured in LOC)
® Viyriting 1s writing speed (measured in LOC per minute).

Cognitive and standard productivity factors were calculated for each task and
participant. The chart presenting mean values for each task is presented in Figure 9.

=Y e
8 © Productivity factor
Jm : —e— Standard -« Cognitive| :
£0 7 . - - :
En : o— . :
>0 , & . Q
s : :
B L LT R B S T S
§O o --- o - _ _ o--= o
ig T
1 2 3 5 6 7 9 10 11 12

Task (Screen)

Fig. 9. Mean (cognitive and standard) productivity factors for each task (screen)

Enhancing Use Cases with Screen Designs 17
6.2.3 Q1: How Much Effort Is Required to Specify a Screen?

If the mean productivities from the first and the last task are compared, it would
mean that the average beginner produces around 2.81 LOC/minute while person
with some experience 4.7 LOC/minute (this of course may vary depending on the
screen complexity). This means that the total effort for specifying all of the screens
for the largest project included in the case studies — Project I (72 screens with total
of 1026 LOC of screen specifications) would vary from 3.6 to 6.1 hours depending on
analyst skill. Furthermore, an average screen size is between 8 and 9 LOC (average
from Table 2), which could be specified in less than 2 minutes (for experienced
analyst, and around 3 minutes for the beginner). Therefore, it seems that the
ScreenSpec notation might be used directly during the meetings with customer. It
is also worth mentioning that if there was an efficient editor available (with high
usability), the productivity factor for potential user would be closer to the cognitive
one. This means that a 8 LOC screen would be specified in about 30 seconds.

6.2.4 Q2: How Much Time Is Required to Learn How to Use Screenspec?

By looking at the productivity chart presented in Figure 9, the learning process can
be investigated. The ratio between productivity factors calculated for the ending
and beginning task is 1.69. In addition it seems that after completing 8-10 tasks the
learning process saturates. Therefore, it seems that participating in a single training
session which includes a short lecture and ten practical tasks (about an hour) should
be enough to start using ScreenSpec effectively.

An interesting observation is regarding the task number 5, because the produc-
tivity factor suddenly increased at this point (more time required to produce one
line of code). This issue was further investigated, and the finding was that the
screen for that task contained interactive controls, which appeared for the first time
in the training cycle (edit boxes, check boxes etc.). Thus an important suggestion
for a preparation of the training course would be to cover all of the components
available in the ScreenSpec language.

6.3 Comparison Between ScreenSpec and Visual Graphical Editors

As mentioned already, approaches to specify screens can be divided into two main
groups. The first of them is to present structure of the screen by enumerating
elements being displayed. Alternative approach is to use graphical editor to prepare
visual representation of the application screen.

ScreenSpec belongs mainly to the first group (however, it can be also trans-
formed to the simplified visual representation). A benefit of using structured text
to specify screens rather than drawing them in graphical editor is that the text can
be easily modified. This is important especially if we consider how unstable are the
requirements at the initial software project stages.

18 L. Olek, M. Ochodek, J. Nawrocki

Therefore we would like to investigate which approach to specify screens (Screen-
Spec or graphical editor) is more suitable to be used at the early stages of projects.
In order to complete this task we would like to find answers to two research questions:

e (3: is ScreenSpec more efficient for specifying new screens than graphical editor?

e (Q4: is ScreenSpec better for modifying existing screens than graphical editor?

In order to be able to answer those questions we decided to conduct the experiment,
in which participants were asked to specify screens using ScreenSpec and high-quality
graphical editor.

6.3.1 Experiment Design

The independent variable of the experiment was a choice of tools for screens specifi-
cation. One of the tools was a prototype ScreenSpec editor. Then we had to choose
a representative graphical editor. We decided to use Microsoft Visio with a set of
stencils especially designed to draw low-fidelity sketches of screens.

The dependent variable analysed in the experiment was the effort required to
prepare a sketch of a screen based on the screen-shot from the real application. We
prepared a set of 22 tasks. This included 2 warm-up tasks, 7 tasks which goal was
to prepare a new screen and 13 tasks which aim was to modify existing screens (add,
remove, update screen components or divide a screen into a set of sub-screens).

Participants of the experiment were 3"%-year CS students (127 people), who
were completing the 2°¢ semester of the Software Engineering course. They were
randomly assigned to one of two groups:

e ScreenSpec (SS) — 66 participants
e Microsoft Visio (Visio) — 61 participants

6.3.2 Experiment Operation

The experiment was executed on March 2009 at Poznan University of Technology.
Each participant had access to a web-application developed for the purpose of the
experiment. It served for description of the tasks and stored screen sketches deve-
loped by participants. The system was also measuring tasks completion times. Each
participant had also access to a presentation with a short tutorial.

The experiment time was fixed to 1.5 hours. Participants started by familiarising
themselves with the tutorials. After they finished, they were asked to complete 2
simple warm-up tasks which were not considered during the analysis. Their goal was
to make participants familiar with the editors and web-application used to control
the experiment. As soon as they completed this stage they started solving the
rest of 22 tasks until they finished all of them or the time has finished. During
the experiment participants were supervised by a teacher, who was present in the
classroom all the time (teachers were not allowed to provide any hints).

Enhancing Use Cases with Screen Designs 19
6.3.3 Analysis

Analysis started from assessing correctness of screens specified by participants. After
reviewing all solutions, 27 Visio and 186 SS screens were rejected. The reason for
relatively large number of rejections for the SS group was that participants were
specifying screens based on the application screen-shots. Thus the semantics of the
screens was missing. Such lack of knowledge was especially important in case of
structured components (e.g. list of product properties). Participants could treat
them as dynamic lists or explicitly present each property. In most cases those two
approaches yield different number of ScreenSpec LOC. As a result solutions different
from the reference one were rejected.

As the next part of analysis we applied descriptive statistics (short summary is
presented in Table 4) and visualized collected data using box-plots (see Figure 10).
Each outlying observation was investigated once again.

ScreenSpec (SS) Microsoft Visio (Visio)
o

S 4 - 8 S_QOTO T
=7 R
Eg_: e o N Zg | 'Tg B
Qo ' T+ T L © ! L o
E e B | E LT :
"S_H Pooroo 8 F "S_H Hg Lo %0
¥ eHHg T ? N B,TH Hea
g saiet s R B
. Lea*ﬁﬂﬂé&as | BeE s s

3 5 7 9 11 13 15 17 19 21 3 5 7 9 11 13 15 17 19 21
Task Task

Fig. 10. Box-plot presenting completion times for both groups after data clearing

After visualizing the results of the experiment we suspected that most of the
samples are not derived from the normally distributed population. This was con-
firmed by the Shapiro-Wilk test [20] (significance level av was set to 0.01). Only in
case of two tasks (21 and 22) both samples seemed to be derived from the normal
distribution. Therefore, we decided to use non-parametric testing procedures.

In order to be able to answer questions Q3 and Q4 the central tendencies of
effort required to complete each task have to be compared. Because the assump-
tion of normally distributed populations was violated we decided to use medians to
formulate the following hypotheses (for each task):

Null hypothesis — the median effort required to complete it" task is equal for both
groups (H{ : Ogss = Ovisio)

Alternative hypothesis — the median effort required to complete it" task is lesser
for the group using ScreenSpec (Hi : Ogs < Ovisio).

20 L. Olek, M. Ochodek, J. Nawrocki

ScreenSpec (SS) Microsoft Visio (Visio)
Task Type | Screens Median Effort [s] | Screens Median Effort [s]
3 new 56 409 60 478.5
4 modify 66 106.5 61 117
5 modify 66 45.5 61 76
6 new 31 311 60 381.5
7 modify 30 56 61 121
8 new 42 310.5 60 364
9 modify 42 113.5 58 180.5
10 new 49 305 59 382
11 modify 64 49 58 84
12 modify 64 69.5 55 96
13 modify 63 40 57 71
14 new 55 190 54 298.5
15 modify 53 46 51 112
16 modify 53 36 51 85
17 modify 54 34.5 50 73
18 new 39 218 45 278
19 modify 40 35.5 41 90
20 modify 49 47 43 79
21 new 38 515.5 20 673.5
22 modify 39 106 12 156.5

Table 4. Summary of the experiment results (Type: new — participants were supposed to
specify a new screen, modify — participants had to introduce modifications to the last
“new” screen; Screens: is a number of solutions accepted for the task and group)

We applied the Mann-Whitney test [11] to investigate hypotheses. The signifi-
cance level o was set to 0.01. As a result the null hypothesis was not rejected only
for the task number 4 (which was the first modification task). In case of other tasks
median effort required to complete tasks was significantly lesser for the group using
ScreenSpec.

6.3.4 Threats to Validity

The most important threats to internal validity of this study are:

Level of commitment. Because participants were students there is a threat re-
garding their motivation and commitment. We were trying to mitigate this
problem by introducing marks for performing the tasks (based on completion
time and correctness). We also decided to use fixed time (1.5h) to avoid the
risk of decreasing productivity due tiredness.

Familiarity with tools. Another issue is difference in experience with using the
tools. Although the participants had never used ScreenSpec before, they were
familiar with various graphical editors.

Enhancing Use Cases with Screen Designs 21

Objectivness of tasks descriptions. There is a problem with providing descrip-
tion of the screen in such form that it will not favour any of the tools. We
decided to use screen-shots from the real application. It seems that this form
of presentation is more favourable for graphical editor, because one can make
a copy of the screen without understanding its meaning. However, in the real
environment the analyst has to understand the semantic of the screen before
he/she is able to specify it.

The most important threats to external validity of this study are:

Students instead of practitioners. In this experiment participants were stu-
dents, although the method is supposed to be used by the members of software
development teams. However, activities in the experiment did not involve ana-
lytical skills and were limited only to the preparation of the screen designs.

Quality of sketches. In case of graphical representation participants were sup-
posed to use low-fidelity approach. Although low-fidelity sketch presents a sim-
plified version of the screen, it still should be done tidily if one would like to
share such screen design with the customer. This refers mainly to components
such as alignment, size etc. In case of the experiment screens sketches were not
rejected due to such issues as long as they were correct.

Usability of the tool. Usability of the tools chosen for the exepriment could in-
fluence the productivity of the group. In case of graphical editors, we chose
Microsoft Visio, which is a top class editor, however in case of ScreenSpec we
had only a simple prototype editor. Therefore results could differ if MS Visio
was compared to equivalently good editor for ScreenSpec.

6.3.5 Q3: Is ScreenSpec More Efficient Than Graphical Editor?

The role of screen sketches in the early stages of requirements elicitation phase is
to present the structure and semantics of screens. This can be done using both
structured text (e.g. ScreenSpec) or screen images (e.g. MS Visio). However, it
would be beneficial if analyst could specify a screen “online” during the meeting
with the customer in order to receive immediate feedback.

Therefore, the time required to prepare a screen should be as short as possible.
In case of the experiment for all tasks involving specifying a new screen, the group
using ScreenSpec was faster. The ratio between median time required to specify
a new screen using ScreenSpec and MS Visio was 0.79 (for all tasks difference was
statistically significant).

6.3.6 Q4: Is ScreenSpec Better for Altering Screens
Than Graphical Editor?

From the practical point of view it is more important to investigate how much effort
is required to alter the previously specified screen.

22 L. Olek, M. Ochodek, J. Nawrocki

Although the initial sketch of the screen is prepared once only, it can be further
modified frequently as a result of changes in requirements. From our experience
this is the main drawback of using graphical editors for specifying screens. In most
cases simple modifications like reordering, adding, or removing controls can be time
consuming. In case of “modification” tasks the ratio between median time required
to alter a screen using ScreenSpec and MS Visio was 0.57 (for 12/13 tasks difference
was statistically significant).

7 CONCLUSIONS

User interface designs are often attached to use cases as adornments, because it
helps understand the requirements by non-IT people. However, it is not clear how to
specify Ul details. In this paper we proposed a language called ScreenSpec that can
be used for this purpose. ScreenSpec is a formalism that was thoroughly validated.
It was used to describe Ul in nine real software projects. ScreenSpec allows to work
incrementally on screen designs, starting with the general structure of information
at particular screen, and then adding more details about widgets. It is very efficient,
it takes on average about 2 minutes to specify a single screen. ScreenSpec is also
easy to learn, it takes about an hour for a person that has never seen ScreenSpec to
become proficient in using it.

ScreenSpec seems to be especially well suited to be used during the requriements
elicitation phase. This stage involves constant changes of requirements and screen
designs. According to performed experiment, on the average analysts can reduce
the effort required to prepare new screens by 21 % when using ScreenSpec instead
of graphical editors like e.g. Microsoft Visio. What is more important when screen
modifications are considered, this on-average reduction is about 43 %.

Although it is interesting to use ScreenSpec at requirements elicitation stage, it
could be even more interesting to use it at later stages. One can think about gene-
rating skeleton user interface code (in XUL, SWT, Swing or other technologies), that
could be refined during implementation. Appropriate research will be conducted as
a future work.

Acknowledgments

Authors would like to thank the companies which cooperate with Poznan University
of Technology: Polsoft and Komputronik. They find time and courage to try our
ideas in practice and provide us with a substantial feedback.

The research presented at the CEE-SET *08 [15] and being part of this paper has
been financially supported by the Polish Ministry of Science and Higher Education
under grant N516 001 31,/0269.

Additional case studies and comparison experiment have been financially sup-
ported by Foundation for Polish Science Ventures Programme co-financed by the
EU European Regional Development Fund.

Enhancing Use Cases with Screen Designs 23

REFERENCES

1]
2]

8]
[4]

[5]
(6]
7]
8]

[9]

A Web Page Containing All Materials for a ScreenSpec Evaluation Case Study:
http://www.cs.put.poznan.pl/lolek/homepage/ScreenSpec.html.

Home page for Mozilla XUL. Availaible on: http://www.mozilla.org/projects/
xul.

The Web Modeling Language Home Page. Availaible on: http://www.webml.org.

UWE - UML-based Web Engineering Home Page. Availaible on: http://www.pst.
informatik.uni-muenchen.de/projekte/uwe/index.html.

ApoLpPH, S.—BRAMBLE, P.—COCKBURN, A.—PoLs, A.: Patterns for Effective
Use Cases. Addison-Wesley, 2002.

COCKBURN, A.: Writing Effective Use Cases. Addison-Wesley, Boston 2001.

CONSTANTINE, L. L.—LockwooD, L. A.D.: Software for Use: A Practical Guide
to the Models and Methods of Usage-Centered Design. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA 1999.

JACOBSON, I.: Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2004.

LANDAY, J. A.,—MYERS, B. A.: Sketching Storyboards to Illustrate Interface Be-
haviors. In: CHI'96: Conference companion on human factors in computing systems,
New York, NY, USA, ACM Press 1996, pp. 193-194.

LEFFINGWELL, D.—WIDRIG, D.: Managing Software Requirements: A Use Case
Approach, Second Edition. Addison-Wesley Professional, May 2003.

MAaNN, H. B.—WHITNEY, D.R.: On a Test of Whether One of Two Random Va-
riables Is Stochastically Larger Than the Other. The Annals of Mathematical Statis-
tics, Vol. 18, 1947, No. 1, pp. 50-60.

NAWROCKI, J.—OLEK, L.: UC Workbench — A Tool for Writing Use Cases. In:
6" International Conference on Extreme Programming and Agile Processes, Lecture
Notes in Computer Science, Vol. 3556, June 2005, pp. 230-234.

NEILL, C. J.—LAPLANTE, P. A.: Requirements Engineering: The State of the Prac-
tice. Software, IEEE, Vol. 20, 2003, No. 6, pp. 40-45.

OLEK, L.—NAWROCKI, J.—MICHALIK, B.—OCHODEK, M.: Quick Prototyping of
Web Applications. In L. Madeyski, M. Ochodek, D. Weiss, and J. Zendulka (Eds.):
Software Engineering in Progress, NAKOM, 2007, pp. 124-137.

OLEK, L.—NAWROCKI, J.—OCHODEK, M.: Enhancing Use Cases With Screen
Designs. In: 3" IFIP Central and East European Conference on Software Engineering
Techniques CEE-SET 2008, 2008.

PrESSMAN, R.: Software Engineering — A Practitioners Approach. McGraw-Hill
2001.

RaMAN, T.V.: XForms: XML Powered Web Forms. Addison-Wesley Professional
2003.

RupD, J.—STERN, K.—ISENSEE, S.: Low vs. High-Fidelity Prototyping Debate.
Interactions, Vol. 3, 1996, No. 1, pp. 76-85.

24

(19]
20]
(21]
(22]

(23]

24]

(25]

L. Olek, M. Ochodek, J. Nawrocki

SCHNEIDER, G.—WINTERS, J.P.: Applying Use Cases: A Practical Guide.
Addison-Wesley 1998.

SHAPIRO, S.S.—WILK, M. B.: An Analysis of Variance Test for Normality (Com-
plete Samples). Biometrika, Vol. 52, 1965, No. 3-4, pp. 591-611.

SNYDER, C.: Paper Prototyping: The Fast and Easy Way to Define and Refine User
Interfaces. Morgan Kaufmann Publishers 2003.

SOMMERVILLE, Y.—SAWYER, P.: Requirements Engineering. A Good Practice
Guide. Wiley and Sons 1997.

Virzi, R. A.—Sokorov, J.L.—KAaRris, D.: Usability Problem Identification Using
Both Low- and High-Fidelity Prototypes. In: Proceedings of the CHI Conference,
ACM Press 1996.

WALKER, M.—TAKAYAMA, L.—LANDAY, J. A.: High-Fidelity or Low-Fidelity, Pa-
per or Computer? Choosing Attributes When Testing Web Applications. In Pro-
ceedings of the Human Factors and Ergonomics Society 46" Anuual Meeting, 2002,
pp. 661-665.

WIRTH, N.: Extended Backus-Naur Form (EBNF). ISO/IEC, 14977, 1996.

Lukasz OLEK is a Ph.D. student working in the Institute of
Computing Science at the Poznan University of Technology. He
is doing research in the area of requirements engineering and
software testing.

Mirostaw OCHODEK is a Ph. D. student working in the Institute
of Computing Science at the Poznan University of Technology.
He is mainly working in the domain of requirements engineer-
ing, software metrics, functional size measurement, and software
effort estimation.

Enhancing Use Cases with Screen Designs 25

Jerzy NAWROCKI received the M. Sc. degree (1980), the Ph. D.
degree (1984), and the Dr.hab. degree (1994) all in informat-
ics and all from the Poznan University of Technology (PUT),
Poznan, Poland. Currently he is the Dean of the Faculty of
Computing and Management at PUT, and the Secretary of IFTP
Technical Committee 2: Software Theory and Practice.

