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Abstract. In this paper a new evolutionary approach for solving the multi-level
uncapacitated facility location problem (MLUFLP) is presented. Binary encoding
scheme is used with appropriate objective function containing dynamic program-
ming approach for finding sequence of located facilities on each level to satisfy
clients’ demands. The experiments were carried out on the modified standard sin-
gle level facility location problem instances. Genetic algorithm (GA) reaches all
known optimal solutions for smaller dimension instances, obtained by total enu-
meration and CPLEX solver. Moreover, all optimal/best known solutions were
reached by genetic algorithm for a single-level variant of the problem.
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1 INTRODUCTION

The past five decades have witnessed an expansive growth in the field of facility
location area. Much research has been carried out on location problems which
require minimization of physical distance, total travel time, or some other related
cost, and it is often assumed that facilities are sufficiently large to meet any demand
likely to be encountered. There are several deterministic uncapacitated models
proposed in the literature so far.
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The uncapacitated facility location problem (UFLP), also known in the literature
as the simple plant location problem and the uncapacitated warehouse location
problem, is one of the fundamental and most studied models in facility location
theory. The objective is to minimize the sum of fixed costs and transportation costs
in order to satisfy given demands from a set of clients. This is realized by selecting
potential facility locations on a network from a given set. Presentation of all relevant
methods is out of this paper’s scope. Several survey papers are [11, 21, 37, 44].

Some recent successful methods for solving UFLP proposed in the literature up
to now are: genetic algorithms [15, 25, 26], variable neighborhood search [20], tabu
search [42], simulated annealing [45], Lagrangean relaxation [9], filter and fan [18,
19], hybrid multistart heuristics [36] and particle swarm optimization [38]. There are
also methods for solving some generalizations of the basic problem: multi-objective
UFLP [32, 43] and dynamic UFLP [12, 13].

Contrary to previous single-level case, the multi-level version of problem is con-
sidered only in few papers: ([1, 2, 3, 6, 14, 46]). However, except of [14], all other
papers are theoretical without experimental results. In [14] four methods for solving
the MLUFLP are implemented:

• the linear program solution rounding 3-approximation algorithm (MLRR), by
Aardal, Chudak and Shmoys [1],

• the path reduction of the k-level facility location problem to a single-level prob-
lem (PR-RR), by Chudak and Shmoys [8],

• the local improvement 3-approximation algorithm for the path reduction (PR-
LI), by Charikar and Guha [7],

• the facility cost oblivious shortest path algorithm (SP), by Edwards [14].

The first three algorithms are based on linear programming relaxation of the model,
described in Section 2, which has enormous number of variables and moderate num-
ber of constrains. Therefore, all three algorithms are capable of solving only small
size MLUFLP instances with up to 52 potential facility locations. Gaps from LP
lower bounds are up to 98.5% for MLRR, up to 3.3% for PR-RR and up to 10.8%
for PR-LI. Running times of these methods are: up to 813 seconds for MLRR, up
to 183 seconds for PR-RR, up to 105 seconds for PR-LI. Gap values are relatively
satisfiable, except for MLRR, but the corresponding running times are very large
even for these small size instances. Obviously, all three linear programming based
methods are unable to solve larger size problem instances. On the other hand, SP
produce results very quickly (up to 0.07 seconds), but the gaps are very large – up
to 732%. Therefore, none of these algorithms is capable of solving real medium size
and large-scale MLUFLP instances.

The paper is organized as follows. In Section 2 mathematical formulation is
presented. Dynamic programming approach is described in Section 3, which is
the main contribution of this paper that enabled GA to solve large-scale problem
instances. The next two sections contain main features of the GA implementation
designed for the MLUFLP and computational results on various instances.
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2 MATHEMATICAL FORMULATION

The input data to the MLUFLP consists of a set of facilities F (|F | = m) partitioned
into k levels, denoted F1, . . . , Fk, a set of clients D (|D| = n), a fixed cost fi for
establishing facility i ∈ F , and a metric that defines transportation costs cij for each
i, j ∈ F∪D. A feasible solution assigns each client a sequence of k facilities, one from
each level Fk, . . . , F1, respectively. A feasible solution is charged the sum of the fixed
costs of the facilities used, plus the transportation costs of the clients’ assignments.
Each client’s transportation cost is the sum of transportation cost from itself to the
first facility of its sequence, plus the transportation cost between successive facilities
of its sequence. An optimal solution to the multi-level uncapacitated facility location
problem is a feasible solution of minimum total cost.

The multi-level uncapacitated facility location problem is NP-hard, since it is
described as a generalization of the uncapacitated facility location problem that is
proved to be NP-hard in [23].

The integer programming formulation of the multi-level uncapacitated facility
location problem from [14] is used in this paper. The assignment of a client j ∈ D
to a valid sequence of facilities can now be represented as the assignment of j to
a path p from j to one of the top level facilities F1. The set of all valid sequences
of facilities is defined by P = Fk × . . .× F1 and the transportation cost of client j’s
assignment to sequence p = (ik, . . . , i1) by cpj = cjik + cikik−1

+ . . .+ ci2i1. Variable yi
has value of 1 if facility i is established and 0 otherwise. Similarly, variable xpj

represents whether or not a client j is assigned to the path p. Using the notation
mentioned above, the problem can be written as:

min
∑

i∈F

fiyi +
∑

p∈P

∑

j∈D

cpjxpj (1)

∑

p∈P

xpj = 1, for each j ∈ D, (2)

∑

p∋i

xpj ≤ yi, for each i ∈ F, j ∈ D, (3)

xpj ∈ {0, 1} , for each p ∈ P, j ∈ D, (4)

yi ∈ {0, 1} , for each i ∈ F. (5)

The objective function (1) minimizes the sum of overall transportation cost
and fixed costs for establishing facilities. Constraint (2) ensures that every client is
assigned to a path while constraint (3) guarantees that any facility on a path used by
some client is paid for. Constraints (4) and (5) reflect binary nature of variables xpj

and yi.

Example 1. An example of the MLUFLP is shown below. It assumes k = 2 levels
of m = 6 facilities: the first level contains 2 potential facilities and the second
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4 potential facilities. There are n = 5 clients to be served in this example. The fixed
costs of establishing facilities are given in Table 1, the distances between facilities
of different levels and the distances between clients and facilities on second level are
given in Table 2 and Table 3, respectively.

Facilities f1 f2 f3 f4 f5 f6

Fixed cost 20 20 10 10 10 10

Table 1. Fixed costs

f1 f2

f3 12 13
f4 11 15
f5 16 12
f6 12 15

Table 2. Distance between facilities on level 1 and level 2

f3 f4 f5 f6

client 1 5 2 4 3
client 2 4 1 6 8
client 3 1 5 2 3

client 4 8 1 5 1
client 5 4 9 2 1

Table 3. Distance between clients and facilities

The total enumeration technique, described in Section 5, is used to obtain opti-
mal solution. Established facilities are: f1 on the first and f4, f6 on the second level.
The objective function value is 105. The sequences of facilities for each client are
shown in Table 4.

3 DYNAMIC PROGRAMMING APPROACH

Dynamic programming is very popular method for solving combinatorial optimiza-
tion problems with optimal substructure of solutions. The optimal substructure
means that optimal solutions of subproblems can be used to find the optimal so-
lutions of the overall problem. Polynomial number of states and steps are very
important for successful application. Obviously, this is fulfilled only if the problem
has polynomial complexity.

The main idea in solving the MLUFLP is to decrease the number of potential
paths for objective function calculation. Existing methods for the MLUFLP consi-
dered all possible paths, which was both time and memory consuming, so they were
unable to solve practical size problems.
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level 2 level 1

client 1 f4 f1
client 2 f4 f1
client 3 f6 f1
client 4 f4 f1
client 5 f6 f1

Table 4. Sequences of facilities for clients

Consider a subproblem of the MLUFLP, named the FixedMLUFLP, obtained
from the MLUFLP by fixing established facilities, with at least one established
facility existing on every level. The MLUFLP is NP-hard, but the FixedMLUFLP
has polynomial complexity. Indeed, the FixedMLUFLP has optimal substructure of
solutions which will be proved in the following proposition.

Proposition 1. The FixedMLUFLP can be polynomially reduced to shortest path
problem in directed acyclic graph (DAG).

Proof. Construct graph G = < V,E > in the following way:

• Let V = F
⋃

D

• Let (u, v) ∈ E, u, v ∈ F if and only if u ∈ Fl, v ∈ Fl+1, yu = yv = 1, for
l ∈ {1, 2, . . . , k − 1} and,

• (u, v) ∈ E, u ∈ F, v ∈ D if and only if u ∈ Fk, yu = 1

• Weight on edge (u,v) is defined as a distance between u and v.

Constructed graph G is obviously acyclic, since its edges connect vertices on
levels l and l + 1, or the last level k and clients. On graph G, for every client exist
paths from the first level facilities to it, because in the FixedMLUFLP on each level
at least one established facility exists and all facilities from subsequent levels are
connected. Evidently, for every client j its shortest path p from facilities on level 1
to j holds xpj = 1. Consequently, objective value of the FixedMLUFLP can be
calculated by summing the length of these shortest paths for all clients j and adding
fixed costs. Therefore, the FixedMLUFLP can be polynomially reduced to shortest
path problem in directed acyclic graph. 2

Since the shortest path problem in directed acyclic graph can be optimally solved
by dynamic programming, it is obvious that the dynamic programming is also ap-
plicable for the FixedMLUFLP.

Dynamic programming approach can be used in following way. The array of
mininimal costs (named cs) is established and contains transportation cost of estab-
lished facilities from facilities on the first level. Clients are included as facilities on
the (k + 1)st level, so the array cs consists of m + n members.

In the beginning, the array cs is initialized to 0 on positions which correspond
to facilities on the first level and ∞ on other positions. Next, for all levels l =
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2, 3, . . . , k + 1 and all established facilities on that level, i.e. i ∈ Fl and yi = 1, the
array cs is defined recursively by (6).

cs[i] = min
k∈Fl−1∧yk=1

(cs[k] + cik). (6)

Finally, the objective value of the FixedMLUFLP is

objind =
∑

i∈F

fiyi +
m+n
∑

i=m+1

cs[i]. (7)

It is obvious that the number of states (members of array cs) is m + n. The
complexity of (6) is O(n ·maxi(num[i])), 1 ≤ i ≤ k, where array num carries infor-
mation about the number of facilities on each level. In the worst case of k = 1, the
complexity is O(n2).

4 PROPOSED GA METHOD

Genetic algorithms (GAs) are stochastic search techniques that imitate some sponta-
neous optimization processes in the natural evolution. At each iteration, GA works
with a set of individuals, named population. Each individual in the population
represents an encoded solution of a problem. The initial population is either ran-
domly or heuristically generated. The individuals’ quality in the current population
is evaluated by using a fitness function. Good individuals are selected to produce
new generation, by applying genetic operators crossover and mutation. The new in-
dividuals – offsprings – replace some of the individuals from the current population.
The described process is iteratively preformed until some stopping criterion is sa-
tisfied. Detailed description of GAs can be found in [33]. Extensive computational
experience on various optimization problems shows that GA often produces high
quality solutions in a reasonable time [17, 22, 27, 30, 31, 34, 35, 39, 40]. Moreover,
GA has shown to be robust with respect to parameter choice in reasonable bounds
on quite different problems [10, 15, 16, 22, 27, 28, 29, 39, 40, 41].

The outline of our GA implementation is given below, where Npop denotes the
overall number of individuals in the population, Nelite is a number of elite individuals
and ind and objind are the individual and its objective value.

Input Data();
Population Init();
while not Stopping Criterion() do

for ind:= (Nelite + 1) to Npop do

if (Exist in Cache(ind)) then
objind:= Get Value From Cache(ind);

else

objind:= Objective Function(ind);
Put Into the Cache Memory(ind,objind);
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if (Full Cache Memory()) then
Remove LRU Block From Cache Memory();

endif

endif

endfor

Fitness Function();
Selection();
Crossover();
Mutation();

endwhile

Output Data();

The binary encoding of the individuals used in this implementation is as follows.
The set of potential facilities F is naturally represented in the individual by a binary
string of length m. Digit 1 at the ith place of the string denotes that yi = 1,
while 0 shows the opposite (yi = 0).

Fixing the established facilities obtained from genetic code, objective value can
be calculated by solving the FixedMLUFLP. Since in the FixedMLUFLP has to be
at least one established facility, the array of established facilities is checked for that
property. If the array holds that property, objective function is evaluated by dynamic
programming approach described in previous section. Otherwise, the solution is not
valid and the individual is marked as unfeasible.

Example 2. Let genetic code is 100101. Then y1 = y4 = y6 = 1 and y2 = y3 =
y5 = 0. That genetic code represents the optimal solution from Example 1.

The Objective Function(ind), for feasible individual ind, is evaluated in four
steps.

1. In the first step, the values of variables yi are obtained from the genetic code.
The running time complexity of this step is O(m).

2. In the second step, the array of mininimal costs cs is initalized. As can be seen
from previous section, array cs carries information about total minimal costs for
serving clients and facilities (except the ones on the first level), regarding the
costs for serving facilities on the upper level. The minimal cost values in cs, for
the facilities on the first level are initially set to zero, while the costs for facilities
on remaining levels and clients are set to a large constant INF = 1030. The
time complexity for initalizing array cs is O(n+m).

3. The minimal costs for each client and each facility are calculated by dynamic
programming approach defined in the previous section. For each facility in
each level (except the first one), the array cs (initialized in the second step) is
updated. The minimal cost value for each facility is the minimum of the sum of
the minimal cost for established facility on the upper level and transportation
cost between the two facilities, as defined in (6). The same procedure is done for
each client: among the established facilities from the last level, the one with the
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minimal sum of the corresponding minimal cost value and the transportation
cost facility-client is taken. The time complexity of this step, in worst case of
k = 1, is O(n2).

4. Finally, the running time complexity for calculating the objective value O(n+m).

From the explanations given above, it is obvious that the overall time complexity is
O(m+ n2).

In Fitness Function(), the fitness find of individual ind 1, 2, ldots, Npop is com-
puted by scaling objective values objind of all individuals into the interval [0, 1], so
that the best individual indmin has fitness 1 and the worst one indmax has fitness 0.
More precisely, find

objindmax−objind

objindmax−objindmin

. The next step is to arrange individuals in

non-increasing order of their fitness: f1 ≥ f2 ≥ . . . ≥ fNpop
.

Usually GAs have relatively small number of elite individuals, because they have
a chance to pass into the next generation twice: once through selection operator and
once as elite individuals. Such common practice is not adequate for this purpose. In
order to obtain satisfactory results of the GA implementation, it is necessary to pro-
vide sufficient number of elite individuals to preserve good solutions for exploitation
as well as sufficient number of non-elite individuals for exploration. To prevent an
undeserved domination of Nelite elite individuals over the population, their fitness
are decreased by the next formula:

find =

{

find − f, find > f
0, find ≤ f

; 1 ≤ ind ≤ Nelite; f =
1

Npop

Npop
∑

ind=1

find. (8)

In this way, even non-elite individuals preserve their chance to pass in the next
generation. The described approach allows high elitism without too high selection
pressure, which may lead to over-exploitation in the algorithm.

The elitist strategy is applied to Nelite elite individuals, which are directly pass-
ing to the next generation. The genetic operators are applied to the rest of the
population (Nnnel Npop − Nelite non-elite individuals). The objective value of elite
individuals are the same as in the previous generation, so they are calculated only
once, providing significant time-savings.

Duplicated individuals, i.e. individuals with the same genetic code are redun-
dant. In order to prevent them to enter the next generation their fitness val-
ues are set to zero, except for the first occurrence. Individuals with the same
objective value, but different genetic codes, may in some cases dominate in the
population by number, which implies that the other individuals with potentially
good genes are rare. For that reason, it is useful to limit the number of their
appearance to a constant Nrv. This is a very effective technique for saving the
diversity of the genetic material and keeping the algorithm away from a prema-
ture convergence. It consists of two steps for every individual in the popula-
tion:
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Step 1: Check whether the genetic code of the current individual ind is identical
with the genetic code of any of the individuals from 1 to ind− 1. If the answer
is positive, set the fitness of ind to 0. Otherwise go to Step 2;

Step 2: Count the number of the individuals from 1 to ind− 1 which did not get
fitness 0 in Step 1 and which have the same objective value as ind. If it is
greater than or equal to Nrv, set the fitness of ind to 0.

The selection operator chooses the individuals that will produce offspring in the
next generation, according to their fitness. Low fitness-valued individuals have less
chance to be selected than high fitness-valued ones. In the standard tournament
scheme, one tournament is performed for every non-elitist individual. The tour-
nament size is a given parameter and tournament candidates are randomly chosen
from the current population. Only the winner of the tournament, i.e. a tournament
candidate with the best fitness, participates in the crossover. The tournament is
performed Nnnel times on the set of all Npop individuals in the population to choose
the Nnnel parents for crossover. The same individual from the current generation
may participate in several tournaments. The standard tournament selection uses an
integer tournament size, which in some cases may be a limiting factor.

The improved tournament selection operator, also known as the fine-grained
tournament selection – FGTS [15], is implemented in Selection(). This operator
uses a real (rational) parameter Ftour which denotes the desired average tournament
size. The first type of tournaments is held k1 times and its size is ⌊Ftour⌋, while
the second type is performed k2 times with ⌈Ftour⌉ individuals participating, so

Ftour ≈
k1·⌊Ftour⌋+k2·⌈Ftour⌉

Nnnel
.

Extensive numerical experiments in [15, 16, 17, 39] performed for different op-
timization problems indicate that FGTS gives the best results for Ftour = 5.4. For
that reason, the same value is used as reasonable choice in this GA implementation.
The running time for FGTS operator is O(Nnnel ·Ftour). In practice Ftour and Nnnel

are considered to be constant (not depending on n); that gives a constant running
time complexity. For detailed information about FGTS see [16].

In Crossover() all non-elitist individuals chosen to produce offsprings for the
next generation are randomly paired for exchanging genes in ⌊Nnnel/2⌋ pairs. After
a pair of parents is selected, a crossover operator is applied to them producing two
offsprings. The standard one-point crossover operator is used in this GA implemen-
tation. This operator is performed by exchanging segments of two parents’ genetic
codes starting from a randomly chosen crossover point. The crossover operator is
realized with probability pcross = 0.85. It means that approximately 85% pairs of
individuals exchange their genetic material.

The standard simple mutation operator is implemented in the proposed GA.
It is performed by changing a randomly selected gene in the genetic code of the
individual, with a certain mutation rate. During the GA execution it may happen
that all individuals in the population have the same gene on a certain position. This
gene is called frozen. If the number of frozen genes is l, the search space becomes
2l times smaller and the possibility of a premature convergence increases rapidly.
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The crossover operator can not change the bit value of any frozen gene and the
basic mutation rate is often too small to restore lost subregions of the search space.
On the other hand, if the basic mutation rate is increased significantly, a genetic
algorithm becomes a random search.

For that reason, the simple mutation operator used in Mutation() is modified
so that mutation rate is increased only on frozen genes. In this implementation,
the mutation rate for frozen genes is increased 2.5 · (1.0/n), compared to non-frozen
ones (0.4/n). In each generation, we determine positions where all individuals have
a given gene fixed and define them as frozen genes. Obviously the set of frozen genes
is not fixed, i.e. it may change during the generations.

The initial population is randomly generated in Population Init(). This ap-
proach provides the maximal diversity of the genetic material. This function also
computes values of all the individuals of the population.

In order to obtain satisfactory results of our GA implementation, it is necessary
to have sufficient number of elite individuals to preserve good solutions for the
exploitation, as well as sufficient number of non-elite individuals for the exploration.
The population size of Npop = 150 individuals with Nelite = 100 elite and Nnnel = 50
non-elite individuals is a good compromise between exploitation and exploration
part of GA search. In this case, the corresponding values of k1 and k2 in FGTS
operator are 20 and 30, respectively. The maximal allowed number of individuals
with the same objective value is Nrv = 40.

The run-time performance of GA is improved by using caching technique. The
main idea is to avoid computing the same objective value every time when genetic
operators produce individuals with the same genetic code. Evaluated objective val-
ues are stored in a hash-queue data structure using the least recently used (LRU)
caching technique. When the same code is obtained again, its objective value is
taken from the cache memory that provides time-savings. In this implementation
the number of individuals stored in the cache memory is limited to 5 000. Func-
tion Exist in Cache(ind) investigates whether the cache memory contains the in-
dividual ind. In that case objective value objind is directly taken from the cache
memory by Get Value From Cache(ind). Otherwise, the objective value objind is
calculated and the pair (ind, objind) is stored in the cache memory by Put Into the-
Cache Memory(ind, objind). If the cache memory is full, in order to make space for
the new entry, the function Remove LRU Block From Cache Memory() removes the
block (ind, objind), which has been the least recently used. For detailed information
about caching GA see [24].

5 EXPERIMENTAL RESULTS

In order to verify the optimality of GA solutions for small size instances, a to-
tal enumeration technique has been developed. This technique simply checks all
subsets of F and computes minimal objective value of the MLUFLP by using the
same objective function as GA (see Section 4). Since all possible subsets of F are
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examined, the obtained minimal objective value is obviously the optimal solution
of current MLUFLP instance. Additionally, an integer programming formulation
is implemented and tested by in CPLEX 8.1.0 solver in order to obtain optimal
solutions on cap131 MLUFLP instances.

In this section the computational results of the GA method are presented. All
tests were carried out on an Intel 1.8GHz with 512MB memory. The algorithms
were coded in C programming language.

The GA is tested on the instances from the Imperial College OR library (OR-
LIB) [4, 5]. This data set contains instances for a variety of operations research
problems, including the uncapacitated facility location problem. However, these in-
stances are designed only for single-level UFLP and contain small or medium number
of potential facilities. The large-scale M* instances from [35] are used to test the GA
performance on practical size problems. The instances from [14] are not available
and they are, in most cases, based on standard ORLIB instances.

This paper is considering instances that are generated from ORLIB in similar
way as in [14]. Since ORLIB instances contain only client-facility distances, it was
necessary to generate facility-facility distances out of client-facility distances while
preserving triangle inequalities. Each facility-facility distance has to be less than or
equal to the sum of facility-client and client-facility distances for each client(named
Suclient). Similarly, each facility-facility distance has to be greater than or equal
to absolute value of difference of facility-client and client-facility (named Diclient).
The author in [14] considered only the first condition by using minimum of the
facility-client and client-facility sum, i.e. minclient(Suclient). This paper has adopted

the formula minclient(Suclient)+maxclient(Diclient)
2

, that reflects more realistic assumption
in practice. The same technique is applied on M* instances for UFLP from [26] to
generate challenging large-scale MLUFLP instances for the presented GA.

The finishing criterion of GA is the maximal number of generations Ngen =
5 000. The algorithm also stops if the best individual or best objective value remains
unchanged through Nrep = 2 000 successive generations. Since the results of GA are
nondeterministic, the GA was run 20 times on each problem instance. In order to
avoid the presentation of the results on large number of instances, which may be
rather confusing, only the results of GA only on the MLUFLP instances generated
from a subset of basic ORLIB and M* instances are presented in this section.

Tables 5 and 6 summarize the GA result on these instances. In the first column
instance names are given. The instance name carries the information about the
initial instance, the number of levels, the number of facilities on each level and
the number of clients. For example, the instance capb 3l 12 25 63.1000 is created
by modifying ORLIB instance capb, which has 3 levels with 12, 25, 63 facilities,
respectively, and 1 000 clients.

The second column contains optimal solution on the current instance, if it is
previously known, otherwise the sign – is written. The best GA value (GAbest) is
given in the following column, with the mark “optimal” in cases when GA reached
the optimal solution known in advance (obtained either by enumeration technique
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Instance name Optsol GAbest t ttot gen Nbest agap σ eval cache
sec sec % % %

cap71 1l 16.50 932 615.750 000 optimal 0.012 0.606 2 010.1 20 0.000 0.000 3 507.7 96.5
cap101 1l 25.50 796 648.437 500 optimal 0.030 0.781 2 026.3 20 0.000 0.000 9 614.3 90.5
cap131 1l 50.50 793 439.562 500 optimal 0.199 2.037 2 139.8 20 0.000 0.000 30 453.8 71.6
mq1 1l 300.300 3 591.273 000 optimal 14.288 63.289 2 306.7 20 0.000 0.000 68 927.1 40.3
mr1 1l 500.500 2 349.856 000 optimal 74.852 220.295 2 595.3 20 0.000 0.000 82 950.8 36.1
ms1 1l 1000.1000 4 378.632 000 best known 534.888 1 097.619 2 979.7 20 0.000 0.000 100 084.3 32.9
mt1 1l 2000.2000 9 176.509 000 best known 4 134.325 5 580.506 3 871.2 20 0.000 0.000 136 795.1 29.4
capa 1l 100.1000 17 156 454.478 300 optimal 13.409 77.864 2 319.3 20 0.000 0.000 52 072.8 55.1
capb 1l 100.1000 12 979 071.581 430 optimal 43.642 120.241 3 047.2 18 0.060 0.186 76 178.9 50.1
capc 1l 100.1000 11 505 594.328 780 optimal 34.542 102.535 2 907.3 12 0.073 0.135 70 952.4 51.2
cap71 2l 6 10.50 1 813 375.512 500 optimal 0.006 0.610 2 009.5 20 0.000 0.000 3 917.9 96.1
cap71 3l 2 5 9.50 4 703 216.306 250 optimal 0.005 0.557 2 010.4 20 0.000 0.000 4 300.5 95.7
cap101 2l 8 17.50 1 581 551.393 750 optimal 0.018 0.646 2 017.4 20 0.000 0.000 7 198.9 92.9

cap101 3l 3 7 15.50 3 227 179.812 500 optimal 0.019 0.612 2 018.3 20 0.000 0.000 6 797.8 93.3
cap131 2l 13 37.50 1 592 548.450 000 optimal 0.118 1.319 2 078.0 20 0.000 0.000 16 751.4 83.9
cap131 3l 6 14 30.50 3 201 970.462 500 optimal 0.105 1.276 2 108.2 6 0.125 0.084 19 877.3 81.3
cap131 4l 3 7 15 25.50 3 630 297.668 750 optimal 0.071 1.183 2 048.7 20 0.000 0.000 18 447.0 82.0

Table 5. GA results on the instances with previously known optimal/best solution
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Instance name Optsol GAbest t ttot gen Nbest agap σ eval cache

sec sec % % %

capa 2l 30 70.1000 - 31 524 957.410 085 8.380 49.235 2 308.2 5 0.106 0.063 50 829.1 56.0
capa 3l 15 30 55.1000 - 40 725 103.253 535 3.076 27.518 2 120.1 20 0.000 0.000 37 316.4 64.9
capa 4l 6 12 24 58.1000 - 54 643 362.801 190 4.688 36.480 2 194.9 10 0.881 0.904 46 738.3 57.5
capb 2l 35 65.1000 - 25 224 163.282 875 18.414 58.981 2 780.6 14 0.860 1.406 59 650.7 57.3
capb 3l 12 25 63.1000 - 34 978 486.506 140 3.137 23.788 2 089.6 20 0.000 0.000 25 763.8 75.4
capb 4l 6 13 31 50.1000 - 53 034 149.833 035 4.652 29.840 2 222.3 4 0.110 0.057 41 192.1 63.0
capc 2l 32 68.1000 - 22 762 468.837 500 22.625 63.857 3 020.8 8 0.770 0.717 63 538.1 58.1
capc 3l 13 27 60.1000 - 35 540 649.433 070 8.539 38.997 2 406.2 12 0.675 1.176 43 836.3 63.5
capc 4l 4 9 27 60.1000 - 57 017 358.038 275 4.601 39.784 2 166.0 13 0.150 0.210 44 774.9 58.7
mq1 2l 100 200.300 - 8 341.287 000 19.313 60.511 2 670.4 20 0.000 0.000 77 167.7 42.2
mq1 3l 30 80 190.300 - 12 994.871 000 16.980 55.666 2 616.2 3 2.273 1.369 75 305.6 42.4
mq1 4l 18 39 81 162.300 - 18 048.030 500 14.876 49.008 2 619.9 8 0.736 0.876 75 445.1 42.4

mq1 4l 20 40 80 160.300 - 17 648.009 500 17.423 51.654 2 698.7 11 1.764 2.124 77 449.5 42.6
mr1 2l 160 340.500 - 6 707.505 000 83.116 204.099 2 918.3 14 0.611 0.988 91 545.4 37.3
mr1 3l 55 120 325.500 - 10 911.319 000 76.009 187.238 2 858.1 2 1.341 0.814 89 511.4 37.4
mr1 4l 30 65 140 265.500 - 15 311.469 000 61.234 159.532 2 773.3 2 1.544 0.879 86 230.1 37.8
ms1 2l 320 680.1000 - 13 416.805 000 540.534 1 032.551 3 322.9 11 0.510 0.485 110 437.6 33.5
ms1 3n 120 250 630.1000 - 21 881.384 000 501.034 998.641 3 227.8 2 2.260 1.312 107 150.1 33.6
ms1 4l 64 128 256 552.1000 - 30 936.585 000 418.521 833.667 3 224.6 7 2.258 1.019 106 793.9 33.8
ms1 5l 25 55 120 250 550.1000 - 40 191.230 500 396.686 814.261 3 104.9 12 1.738 1.118 103 072.1 33.7
mt1 2l 650 1350.2000 - 27 733.057 000 3949.573 5 494.346 4 309.1 16 0.331 0.704 150 321.4 30.2
mt1 3l 256 600 1144.2000 - 46 095.090 000 3247.064 4 874.861 4 169.9 11 2.021 1.105 145 827.9 30.0
mt1 4l 120 250 520 1110.2000 - 65 044.002 500 3084.885 4 644.064 4 153.6 7 1.126 0.649 145 332.5 30.0
mt1 5l 60 120 250 500 1070.2000 - 83 523.753 000 2944.08 4 444.225 4 143.9 11 1.678 0.830 144 979.3 30.0

Table 6. GA results on the instances with unknown optimal solution
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or CPLEX solver). If the GA reached the best-known solution for single-level cases,
which is not proved to be optimal, the mark “best known” is written.

Average time needed to detect the best GA value is given in the t column,
while ttot represents the total running time (in seconds) needed for finishing GA. On
average, GA finished after gen generations. The number of cases out of 20 when
GA reaches GAbest solution is given in Nbest column.

The solution quality in all 20 executions is evaluated as a percentage gap named
agap with respect to the optimal solution Optsol or GAbest, with standard deviation
σ of the average gap. They are defined as agap = 1

20

∑20
i=1 gapi, where gapi =

100 × GAi−Optsol
Optsol

(gapi = 100 × GAi−GAbest

GAbest
in cases when Optsol is not known) and

GAi represents the GA solution obtained in the i-th run, while σ is the standard

deviation of gapi, i = 1, 2, . . . , 20, obtained by formula σ =
√

1
20

∑20
i=1 (gapi − agap)2.

The last two columns are related to the caching: eval represents the average number
of evaluations, while cache displays savings (in per cent) achieved by using caching
technique.

It is evident from Table 5 that the proposed GA method reaches all previously
known optimal solutions on ORLIB instances and M* instances for k = 1. For two
large-scale instances, ms1 1n 1000.1000 and mt1 1n 2000.2000, no optimal solution
is known up to now, but the GA reaches all best known solutions presented in [35].
For small size instances with multi-levels, the optimal solutions are obtained with
total enumeration or CPLEX solver. The GA method is successful on these in-
stances, reaching optimal solutions in short CPU time. The proposed method also
provides solutions on large-scale M* and modified ORLIB instances in reasonable
amount of CPU time.

In order to support the claim that duplicated individuals have to be removed,
some experiments without removing duplicated individuals (GAdup) are performed.
For small size instance cap71 2l 6 10.50 the optimal value (equal to GAbest) is also
reached byGAdup. For instance capa 3l 15 30 55.1000GAdup obtained solution value
43400224.60963 (best in 20 runs), which has gap 6.16% from GAbest. This gap is
very large, so further testing of GAdup seems to be useless.

GA concept cannot prove optimality and adequate finishing criteria that will
fine-tune solution quality does not exist. Therefore, as column ttot in Tables 5 and 6
shows, our algorithms run through additional ttot − t time (until finishing criteria is
satisfied), although they already reached the optimal/best solution.

It can be seen from the column cache[%] in Tables 5 and 6 that significant
percentage of run-time savings is achieved by using caching technique. On average,
GA reused between 71.6% and 96.5% of the values from the cache-queue table while
solving small size instances (up to 50 clients and up to 50 facilities). On larger data
set, the percentage of savings was between 29.4% and 75.4%.

For large-scale modified ORLIB and M* instances, direct comparisons with exist-
ing methods for solving the MLUFLP can not be carried out. The MLRR, PR-RR
and PR-LI algorithms use linear relaxation of the model with enormous number
of variables and constrains. For example, for instance with n = 2 000 clients and
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m = 2 000 facilities, these methods would involve 2 × 1015 variables and around
2 000× 2 000 = 4 000 000 constraints. Since the integer linear programming problem
is NP-hard, all solvers have exponential complexity, so the running time is O(c2∗10

15

).
Obviously, even for small c value in CPLEX and other solvers, it is impossible for
these methods to obtain any solution in reasonable CPU time. The SP method
is capable to solve larger size instances, but the gaps from optimal solutions are
enormously large (up to 732%). Search space for GA is obviously 2m, since the
binary encoding is applied in genetic algorithm with m genes. For previous instance,
search space is large (22 000 ≈ 10600) but much smaller than search space for integer
linear programming model (1)–(5). That is direct implication of using dynamic
programming in objective function of the GA.

On the other hand, as the results in Tables 5 and 6 show, the GA easily works
even for practical size instances. Since the proposed GA approach quickly reaches
all previously known optimal/best solutions for single-level instances and for multi-
level small size instances, it is reasonable to believe that GA also gave high-quality
solutions on large-scale instances.

It can be seen From the ttot column in Table 5 that the proposed GA quickly
solves small size instances (up to m = 50, n = 50) to optimality. The maximal
ttot time of the GA on these instances was less than 2.04 seconds. The instances of
the same size were used in [14], but in even these cases, the proposed SP method
produced solutions with large gap. On larger-scale instances, the GA also gives
solutions in reasonable CPU time (up to 5 580 seconds), as can be seen from Table 6.

6 CONCLUSIONS

In this paper, a robust evolutionary metaheuristics for solving the multi-level un-
capacitated facility location problem is presented. Enormous number of feasible
sequences of facilities in large-scale instances with more than two levels is signi-
ficantly decreased by using dynamic programming approach with relatively small
number of states. This approach helps the GA to use binary encoding and standard
genetic operators to reach promising search regions. Computational experiments
on generated instances demonstrate the robustness of the proposed algorithm with
respect to both solutions’ quality and running times even on large-scale MLUFLP
instances.

Future research will be directed to parallelization of presented GA, hybridization
with other heuristics and its application in solving similar facility location problems.
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ric Dimension of Graphs by Genetic Algorithms. Computational Optimization and
Applications, DOI 10.1007/s10589-007-9154-5 (to appear).
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