
Computing and Informatics, Vol. 29, 2010, 447–466

A NEW VERTEX COLORING ALGORITHM BASED
ON VARIABLE ACTION-SET LEARNING AUTOMATA

Javad Akbari Torkestani

Department of Computer Engineering
Islamic Azad University
Arak Branch, Arak, Iran
e-mail: j-akbari@iau-arak.ac.ir

Mohammad Reza Meybodi

Computer Engineering Department
Amirkabir University of Technology
Tehran, Iran
&
Institute for Studies in Theoretical Physics and Mathematics (IPM)
School of Computer Science
Tehran, Iran
e-mail: mmeybodi@aut.ac.ir

Manuscript received 6 July 2009; revised 21 July 2009

Communicated by Jozef Kelemen

Abstract. In this paper, we propose a learning automata-based iterative algorithm
for approximating a near optimal solution to the vertex coloring problem. Vertex
coloring is a well-known NP-hard optimization problem in graph theory in which
each vertex is assigned a color so that no two adjacent vertices have the same color.
Each iteration of the proposed algorithm is subdivided into several stages, and at
each stage a subset of the uncolored non adjacent vertices are randomly selected
and assigned the same color. This process continues until no more vertices remain

uncolored. As the proposed algorithm proceeds, taking advantage of the learning
automata the number of stages per iteration and so the required number of colors
tends to the chromatic number of the graph since the number of vertices which
are colored at each stage is maximized. To show the performance of the proposed

448 J. Akbari Torkestani, M.R. Meybodi

algorithm we compare it with several existing vertex coloring algorithms in terms

of the time and the number of colors required for coloring the graphs. The obtained
results show the superiority of the proposed algorithm over the others.

Keywords: Graph coloring, vertex coloring, learning automata, iterative algo-
rithms, legal coloring

1 INTRODUCTION

The vertex coloring problem is a well-known combinatorial optimization problem
in graph theory [1], which is widely used in real life applications like computer
register allocation [2], air traffic flow management [3], timetabling [4], scheduling [5],
frequency assignment [6], and light wavelengths assignment in optical networks [7].
A legal vertex coloring of graphG = (V, E), where V (G) is the set of |V | = n vertices
and E(G) is the edge set including |E| = m edges, is a function f : V → C from the
vertices of the graph G to the color-set C = {c1, c2, . . . , cp} such that f(u) 6= f(v)
for all edges (u, v) ∈ E. That is, a legal vertex coloring of G is assigning one of p
distinct colors to each vertex of the graph in such a way that no two endpoints of any
edge are given the same colors. Formally, the vertex coloring problem can be either
considered as an optimization problem or as a decision problem. The optimization
version of the vertex coloring problem is intended to find the smallest number of
colors by which the graph can be legally colored, and the decision problem aims at
deciding for a given p whether or not the graph is p-colorable, and is called p-coloring
problem.

A given graph G is p-colorable, if it can be legally colored with at most p different
colors. The chromatic number χ(G) is the minimum number of colors required for
coloring the graph, and a graph G is said to be p-chromatic, if χ(G) = p. A mini-
mum coloring of G is a legal coloring in which the smallest number of colors (i.e.,
chromatic number) to be assigned to the vertices. The minimum coloring problem is
formally an NP-hard problem for general graphs as determining the chromatic num-
ber is known to be NP-hard [8]. It is shown in [9] that the decision problem of graph
p-colorability (p-coloring problem) is an NP-complete problem for p ≥ 3, and can be
solved in polynomial time otherwise. Since the vertex coloring problem is known to
be NP-hard for general graphs, all the exact algorithms [10–11] can only be applied
on small graphs, while very large graphs often arise in a variety of applications. On
the other hand, in applications, it often suffices to find a near optimal coloring of
the graph. Hence, a large number of polynomial time algorithms have been pro-
posed to approximate the near optimal solutions to the coloring problem [12]. The
approximation approaches reported in the literature can be classified as local search
approaches [13], genetic algorithms [14], fuzzy-based optimizations [15], evolutionary
algorithms [16], simulated annealing methods [17], ant colony-based approaches [18],
Markov chain approaches [19], neural network approaches [20] and so on.

A New Vertex Coloring Algorithm Based on Variable Action-Set Learning Automata 449

It is shown in [9] the graph coloring problem is an NP-hard problem in graph
theory, an so a host of approximation and exact solutions have been proposed to
solve it. For instance, in [21], Hertz and Werra proposed a tabu search algorithm
in which a partition of the vertices of the graph is maintained at each iteration. In
this algorithm, a different color is assigned to each block of the partition, which is
not always guaranteed to be an independent set. Therefore, this algorithm works
with the solutions which are not necessarily feasible. At each iteration, a sample of
neighbors of each given configuration is generated. The set of neighbors generated
for each vertex is restricted by a tabu list which prevents the algorithm from getting
stuck in local optima.

Caramia and Dell’Olmo [22] proposed a local search algorithm, called HCD,
based on tabu search. The basic idea behind HCD was to make use of tabu con-
cepts without explicitly representing tabu lists. Instead, a dynamic assignment of
priorities to the vertices in the graph performed the same task, avoiding repeti-
tions in subsequent moves of the algorithm. They showed in [22] the experimental
gain of HCD over tabu search. An iterated local search algorithm (ILS) was pro-
posed by Lourenco et al. [23] to solve the graph coloring problem. The proposed
algorithm is based on a randomized walk in the space of the local optima. This
walk is built by iteratively perturbing a locally optimal solution, next applying
a local search algorithm to obtain a new locally optimal solution, and finally using
an acceptance criterion for deciding from which of these solutions to continue the
search. Voudouris and Tsang [24] proposed a meta-heuristic search method known
as Guided Local Search (GLS) to solve the combinatorial optimization problems.
A GLS is a stochastic local search method in which the evaluation function is mo-
dified so as to escape from the local optima and plateaus. Chiarandin and Stutzle
applied GLS to solve the graph coloring problem [25]. In this method, the objective
function is modified using a specific scheme, when the local search algorithm settles
in a local optimum. Caramia et al. [26] proposed a priority search algorithm, called
CHECKCOL, in which the running time decreases by avoiding unnecessary searches
in large portions of the graph without making any progress in the solution. To do
this, they introduced the notion of check point, and forced the algorithm to stop at
certain steps, to release all of its memory, and to start a new local search.

An adaptive algorithm, called AMACOL, proposed by Galiner et al. [27] for the
solution of the graph coloring problem. The adaptive memory algorithm is a hybrid
evolutionary heuristic in which a central memory is used to store the stable sets that
originate from the colorings generated during the previous stages of the search. On
each generation, a randomized greedy set covering heuristic is used to find a set of
color classes that covers the set of vertices of the graph. This covering is transformed
into a coloring in a straightforward way. Then, an iterative neighborhood technique
is applied to the coloring. Eventually, the central memory is updated by using the
color classes of the new obtained coloring. Caramia and Dell’Olmo [28] also proposed
a two-phased local search for vertex coloring. The algorithm alternately executes
two closely interacting functionalities, namely, a stochastic and a deterministic local
search. The stochastic phase is based on a biased random sampling in which the

450 J. Akbari Torkestani, M.R. Meybodi

feasible colorings are iteratively constructed. In deterministic phase, each vertex is
assigned to the color which causes the lowest increase of the solution penalty. In
this algorithm, the objective function tries to minimize the penalty function.

In this paper, a learning automata-based algorithm is proposed for solving the
vertex coloring problem. In the proposed algorithm, a learning automaton is as-
signed to each vertex of the graph. Each iteration of the proposed algorithm is
divided into several stages, and at each stage a subset of the non adjacent vertices
of the graph is selected by the learning automata and assigned the same color. The
remaining uncolored vertices are selected and colored in the next stages. An itera-
tion is completed if all the vertices are colored. The proposed algorithm guarantees
that the graph can be legally colored at each iteration. Then, the coloring is eval-
uated by the random environment as follows. If the number of selected colors (the
color-set size) is less than the size of color-sets selected earlier, the colorings is re-
warded and penalized otherwise. As the proposed algorithm approaches to the end,
each vertex learns how to select one of its non adjacent vertices (or one of its actions)
so that the number of vertices which are selected in a given stage can be maximized.
Therefore, as the algorithm proceeds, the number of stages per iteration decreases
as the number of vertices colored at each stage increases.

The proposed algorithm is compared with several approximation vertex coloring
algorithms like ILS [23], GLS [24], CHECKCOL [26], AMACOL [27] and TPA [28],
and the obtained results show the superiority of the proposed algorithm over the
others in terms of the color-set size (or the number of required colors) and run-
ning time of algorithm. The rest of the paper is organized as follows. The learning
automata are described in the next section. In Section 3, the proposed learning
automata-based algorithm is described. The performance of the proposed algorithm
is evaluated through the simulation experiments in Section 4, and Section 5 con-
cludes the paper.

2 LEARNING AUTOMATA, AND VARIABLE ACTION-SET

LEARNING AUTOMATA

2.1 Learning Automata

A learning automaton [29, 30] is an adaptive decision-making unit that improves its
performance by learning how to choose the optimal action from a finite set of allowed
actions through repeated interactions with a random environment. The action is
chosen at random based on a probability distribution kept over the action-set and
at each instant the given action is served as the input to the random environment.
The environment responds the taken action in turn with a reinforcement signal. The
action probability vector is updated based on the reinforcement feedback from the
environment. The objective of a learning automaton is to find the optimal action
from the action-set so that the average penalty received from the environment is
minimized [29].

A New Vertex Coloring Algorithm Based on Variable Action-Set Learning Automata 451

The environment can be described by a triple E ≡ {α, β, c}, where α ≡ {α1, α2,
. . . , αr} represents the finite set of the inputs, β ≡ {β1, β2, . . . , βr} denotes the set of
the values which can be taken by the reinforcement signal, and c ≡ {c1, c2, . . . , cr}
denotes the set of the penalty probabilities, where the element ci is associated with
the given action αi. If the penalty probabilities are constant, the random environ-
ment is said to be a stationary random environment, and if they vary with time, the
environment is called a non stationary environment. The environments depending
on the nature of the reinforcement signal β can be classified into P -model, Q-model
and S-model. The environments in which the reinforcement signal can only take two
binary values 0 and 1 are referred to as P -model environments. Another class of the
environment allows a finite number of the values in the interval [0, 1] can be taken
by the reinforcement signal. Such an environment is referred to as Q-model environ-
ment. In S-model environments, the reinforcement signal lies in the interval [a, b].
The relationship between the learning automaton and its random environment has
been shown in Figure 1.

Random Environment

Learning Automaton

α(n)

β(n)

Fig. 1. The relationship between the learning automaton and its random environment

Learning automata can be classified into two main families [29]: fixed structure
learning automata and variable structure learning automata. Variable structure
learning automata are represented by a triple 〈β, α, T 〉, where β is the set of inputs,
α is the set of actions, and T is learning algorithm. The learning algorithm is
a recurrence relation which is used to modify the action probability vector. Let
α(k) and p(k) denote the action chosen at instant k and the action probability
vector on which the chosen action is based, respectively. The recurrence equation
shown by (1) and (2) is a linear learning algorithm by which the action probability
vector p is updated. Let αi(k) be the action chosen by the automaton at instant k.

pj(n+ 1) =

{

pj(n) + a[1− pj(n)] j = i
(1− a)pj(n) ∀j, j 6= i

(1)

When the taken action is rewarded by the environment (i.e., β(n) = 0) and

pj(n+ 1) =

{

(1− b)p(n) j = 1
(

b
r−1

)

+ (1− b)p(n) ∀j, j 6= i
(2)

When the taken action is penalized by the environment (i.e., β(n) = 1). r is
the number of actions can be chosen by the automaton, a(k) and b(k) denote the

452 J. Akbari Torkestani, M.R. Meybodi

reward and penalty parameters and determine the amount of increases and decreases
of the action probabilities, respectively. If a(k) = b(k), the recurrence Equations (1)
and (2) are called linear reward-penalty (LR−P) algorithm, if a(k) ≫ b(k) the given
equations are called linear reward-ε penalty (LR−εP), and finally if b(k) = 0 they
are called linear reward-Inaction (LR−I). In the latter case, the action probability
vectors remain unchanged when the taken action is penalized by the environment.

Learning automata have been found to be useful in systems where incomplete
information about the environment, wherein the system operates, exists. Learning
automata are also proved to perform well in dynamic environments. It has been
shown in [33, 34, 35] that the learning automata are capable of solving the NP-hard
problems. Recently, several learning automata-based protocols have been designed
for improving the performance of the wireless ad hoc networks [36, 37, 38, 39, 40].

2.2 Variable Action-Set Learning Automata

A variable action-set learning automaton is an automaton in which the number of
actions available at each instant changes with time. It has been shown in [30] that
a learning automaton with a changing number of actions is absolutely expedient
and also ε-optimal, when the reinforcement scheme is LR−I . Such an automaton
has a finite set of n actions, α = {α1, α2, . . . , αn}. A = {A1, A2, . . . , Am} denotes
the set of action subsets and A(k) ⊆ α is the subset of all the actions which can be
chosen by the learning automaton, at each instant k. The selection of the particular
action subsets is randomly made by an external agency according to the probability
distribution q(k) = {q1k, q2(k), . . . , qm(k)} defined over the possible subsets of the
actions, where qi(k) = prob[A(k) = Ai | Ai ∈ A, 1 ≤ i ≤ 2n − 1].

p̂i(k) = prob[α(k) = αi | A(k), αi ∈ A(k)] is the probability of choosing ac-
tion αi, conditioned on the event that the action subset A(k) has already been

selected and also αi ∈ A(k). The scaled probability (̂p)(k) is defined as

p̂i(k) = pi(k)/K(k) (3)

where K(k) =
∑

αi∈A(k) = pi(k) is the sum of the probabilities of the actions in
subset A(k), and pi(k) = prob[α(k) = αi].

The procedure of choosing an action and updating the action probabilities in
a variable action-set learning automaton can be described as follows. Let A(k) be
the action subset selected at instant k. Before choosing an action, the probabilities
of all the actions in the selected subset are scaled as defined in Equation (3). The
automaton then randomly selects one of its possible actions according to the scaled
action probability vector p̂(k). Depending on the response received from the envi-
ronment, the learning automaton updates its scaled action probability vector. Note
that the probability of the available actions is only updated. Finally, the probability
vector of the actions of the chosen subset is rescaled as

pi(k + 1) = p̂i(k + 1) ·K(k) (4)

A New Vertex Coloring Algorithm Based on Variable Action-Set Learning Automata 453

for all αi ∈ A(k). The absolute expediency and ε-optimality of the method described
above have been proved in [30].

3 THE PROPOSED VERTEX COLORING ALGORITHM

In this section, we propose a learning automata-based approximation algorithm
called LAVCA for solving the minimum vertex coloring problem as defined in Sec-
tion 1. the proposed algorithm is an iterative algorithm in which each iteration is
divided into several stages. At each stage, exploiting the variable action-set learning
automata, a group (subset) of the non adjacent vertices of the graph is selected and
colored (with the same color). The remaining uncolored vertices are selected in the
next stages. Each iteration stops if all the vertices are colored. The required num-
ber of colors will be minimized if the size of the subsets of the non adjacent vertices
(which are colored at the same stage) are maximized. In the proposed algorithm,
this can be done by the learning automata.

In the proposed algorithm, first, each vertex of the graph is assigned a learning
automaton, and so a network of learning automata isomorphic to the graph is ini-
tially constructed. This network of learning automata can be described by a tuple
〈A, α〉, where A = {A1, A2, . . . , An} denotes the set of learning automata corre-
sponding to the vertex-set, and α = {α1, α2, . . . , αn} denotes the action-set in which
αi = {α1

i , α
1
i , . . . , α

r
i i} (for each αi ∈ α) defines the set of actions can be taken by

learning automaton Ai. It should be noted that a learning automaton is associated
with a vertex (one-to-one), and so hereafter vertex vi may be referred to as learn-
ing automaton Ai and vice versa. In this algorithm, the action-set of each learning
automaton (say Ai) includes the vertices which can be colored with the color of
vertex vi. In other words, vertex vi and the vertex corresponding to each action of
automaton Ai can be assigned the same color. For example, as shown in Figure 2,
vertices 4, 6, 7, 8, 9, 10, and 11 are the vertices to which the color of vertex 1 can be
assigned, and so they form the action-set of automaton Ai (or vertex vi). To form
such an action-set, each automaton Ai reserves an action for each of the vertices of
the graph which are not adjacent to vertex vi.

1

2

3

7 4

5 8 10

11

9 6

{4,6,7,8,9,10,11}

Fig. 2. A sample graph

As described earlier, the proposed vertex coloring algorithm consists of a number
of iterations, and at each iteration, the graph is thoroughly colored. Each iteration

454 J. Akbari Torkestani, M.R. Meybodi

also contains a number of stages, and at each stage, a subset of vertices is assigned
the same color. In what follows, we describe an iteration (e.g., iteration k) of the
proposed algorithm shown in Figure 3 in detail.

As shown in Figure 3, graph G(V, E) and threshold p are the input parameters,
and chromatic number of the input graph is the output parameter. After the action-
sets are formed (Lines 4 and 5), the first iteration begins. Let k denote the number
of iterations, Γ denote the set of uncolored vertices, Z denote the set of actions
which must be removed from the action-set of the next automata, and χ denote the
color number which is assigned to the vertices at each stage. At the end of each
iteration, χ also denotes the number of colors required for coloring the graph.

At the beginning of the kth iteration, vertex vi ∈ Γ (such that i = min j, for all
vj ∈ Γ) is selected, activated and assigned color χ. The colored vertex is removed
from the set of uncolored vertices (Line 14). It also must be removed from the
action-set of all the automata which will be selected in the current iteration, if any
(Line 16). From Line 15, it is concluded that the neighbors of the vertices which
are colored in a stage must be also removed from the action-set of the automata
which will be selected in that stage. These actions are removed from the action-
set of the (currently) active learning automaton as described in Section 2.2 on the
variable action-set learning automata. This avoids assigning the same color to the
neighboring nodes. Then, If the action-set of automaton Ai is a null set, the current
stage in which the vertices are colored with color χ is terminated, and the algorithm
initiates a new stage to color the remaining vertices with another color (i.e., color
χ+1); otherwise (i.e., αi 6= Ø), learning automaton Ai (corresponding to the colored
vertex vi) randomly chooses one of its actions. The vertex corresponding to the
selected action is activated, colored an denoted as vj . Then, vertex vj repeats the
same operations as vertex vj did (Lines 21–24). This process is repeated until no
uncolored vertices remain (i.e., Γ = Ø). This process guarantees that the graph can
be legally colored at each iteration. The set of colors with which the graph is colored
is referred to as color-set. After all the vertices are colored, the number of used
colors is compared with dynamic threshold Tk. Dynamic threshold Tk represents
the cardinality of the smallest color-set which have been used to color the graph
until iteration k. If the cardinality of the selected color-set (i.e., χ) is less than
the dynamic threshold Tk, LAVCA rewards the actions chosen by all the activated
learning automata, and sets dynamic threshold Tk to χ, otherwise it penalizes the
selected actions. In this algorithm, learning scheme LR−P is used to update the
action probability vectors. Here, the kth iteration of LAVCA is completed, and the
stopping condition of algorithm should be verified. The proposed algorithm stops
if all the activated learning automata choose their action with a probability higher
than pre-specified threshold P . This condition represents the stopping condition of
algorithm. The proposed algorithm stops and returns the chromatic number χ if
the stopping condition is met, and initiates a new iteration otherwise. The pseudo
code of the proposed vertex coloring algorithm is shown in Figure 3.

As given in Lines 28–33, at each iteration the actions which form a smaller color-
set are rewarded. Therefore, in the forthcoming iterations, these actions are selected

A New Vertex Coloring Algorithm Based on Variable Action-Set Learning Automata 455

with a higher probability as the choice probability of the other actions decrease. As
the algorithm proceeds, the number of stages (i.e., the number of colors required for
coloring the graph) decreases. This is due to the fact that the number of vertices
which are colored at each stage increases as the algorithm approaches to the end.
Indeed, after a number of iterations, the network of learning automata converge to
an optimal action selection strategy in which at each stage the maximum subset of
the non adjacent vertices can be colored.

ALGORITHM LAVCA THE PROPOSED VERTEX COLORING ALGORITHM

01:Input Graph , Thresholds

02:Output Chromatic number
03:Begin Algorithm

04: ,

05: Repeat

06: ,

07: Repeat

08:

09: Vertex with the lowest ID is selected

10: is assigned color

11: , ,

12: While do

13: Automaton (corresponding to) randomly chooses one of its actions

14: The vertex corresponding to the chosen action is denoted as

15: is assigned color

16: , , ,

17: End While

18:

19: Until

20: If

Then

21:

22: All learning automata reward their chosen actions

23: Else

24: All learning automata penalize their chosen actions

25: End If

26:

27: Until stopping condition = True

28: Return

29:End Algorithm

Fig. 3. The pseudo code of the proposed algorithm

3.1 An Example

In this section, we illustrate the proposed vertex coloring algorithm step by step for
a sample graph. Figures 4 a)–4 l) show a possible execution scenario of the proposed
algorithm for coloring the sample graph shown in Figure 2. This graph comprises 11
vertices and 18 edges. In these figures, a white circle represents an uncolored vertex,
and a colored circle represents a vertex which has been assigned a color. The number
beside a vertex represents the vertex ID number. The set beside a vertex represents
the action-set of the learning automaton corresponding to the vertex. For each
vertex, the set of vertices which are not adjacent to the vertex form its action-set.

456 J. Akbari Torkestani, M.R. Meybodi

For instance, in Figure 4 a), vertices 4, 6, 7, 8, 9, 10, and 11 belong to the action-
set of vertex 1. A crossed action (or vertex) represents a disabled action which
can not be temporarily chosen by the learning automaton (e.g., actions 1 and 3 in
Figure 4 b)). In these figures, we assume that color 1 is blue, color 2 is red and
color 3 is green.

1

2

3

7 4

5 8 10

11

9 6

{4,6,7,8,9,10,11}

1

2

3

7 4

5 8 10

11

9 6

{1,3,8,9,10,11}

1

2

3

7 4

5 8 10

11

9 6

{1,2,3,4,6,9}

a) b) c)

1

2

3

7 4

5 8 10

11

9 6
{1,2,3,4,5,8,10}

{3,5,7,8,9,10,11}

1

2

3

7 4

5 8 10

11

9 6

{1,2,3,5,10,11} 1

2

3

7
4

5 8 10

11

9 6

d) e) f)

 {2,4,6,7,8,9,10,11}

1

2

3

7
4

5 8 10

11

9 6

1

2

3

7
4

5 8 10

11

9 6

{1,2,3,4,5,6,7,9}

1

2

3

7
4

5 8 10

11

9 6

{2,6,7,9,10,11}

g) h) i)

{1,3,5,8,10,11}

1

2

3

7
4

5 8 10

11

9 6

{1,2,3,4,5,6,7}

1

2

3

7
4

5 8 10

11

9 6

 1

2

3

7
4

5 8 10

11

9 6

j) k) l)

Fig. 4. The steps of a possible execution scenario of the proposed algorithm for coloring
the sample graph shown in Figure 2

As shown in Figure 4 a), vertex 1 is initially selected and colored with color 1
(blue) since it is the vertex with the lowest ID in Γ = V . Vertex 1 is removed from the
set of uncolored vertices Γ. This vertex and its neighboring vertices are added to Z.

A New Vertex Coloring Algorithm Based on Variable Action-Set Learning Automata 457

The set of actions which are in Z are disabled in the action-set of vertex 1. Vertex 1
randomly chooses one of its available actions (i.e., 4, 6, 7, 8, 9, 10, 11). Let us assume
that vertex 4 is chosen by vertex 1. Vertex 4 is also colored blue. It is removed from
the set of uncolored vertices Γ, and added to Z. The neighbors of vertex 4 (i.e.,
vertices 2, 5, 6 and 7) are also added to Z. Now the action-set of vertex 1 is updated
by removing the members of Z. As shown in Figure 4 b) vertices 1 and 3 are in Z,
and must be removed from the action-set of vertices 4. The crossed vertices 1 and 3
represent the disabled actions. Now, vertex 4 chooses one of its remaining actions
(i.e., 8, 9, 10, 11). We assume that vertex 4 chooses vertex 8. Vertex 8 is colored
blue, and the sets Γ and Z are updated as described earlier (Lines 21–24). It can be
seen that vertices 1, 2, 3, 4, and 6 should be removed from the action-set of vertex 8.
From Figure 4 c), it is clear that the updated action-set of vertex 8 only includes
vertex 9. Therefore, vertex 9 is chosen by vertex 8 with probability one. Vertex 9 is
colored blue too. After updating Γ, Z, and the action-set of vertex 9, we find that
no more actions can be taken by vertex 9 and so the first (current) stage stops (see
Figure 4 d)). This means that no more vertices can be colored blue. Since there are
some uncolored vertices, a new stage is initiated. A new color (color 2) is selected for
coloring the vertices which are chosen in the second stage (Line 26). Vertex 2 which
has the lowest ID number is initially selected and colored red (i.e., color 2). After
updating Γ, Z, and the action-set of vertex 2, we assume that it selects vertex 7
among the possible choices (i.e., 3, 5, 7, 10, 11) (see Figure 4 e)). Let us assume
that vertex 7 chooses vertex 3, and vertex 3 chooses vertex 10 (Figures 4 f)–4 h)).
As shown in Figure 4 h), vertex 10 has no more possible actions, and so no more
vertices can be colored red. The third stage starts by choosing and coloring vertex 5
with color 3 (i.e., green). As shown in Figures 4 i)–4 k), we assume that vertex 5
chooses vertex 6, and vertex 6 chooses vertex 11. Here, the third stage is completed
since vertex 11 has no more available actions (see Figure 4 k)). Figure 4 k) shows
that each vertex is assigned a (legal) color (i.e., the set of uncolored vertices Γ = O),
and so the current iteration terminates. It can be seen that three colors are used
to color the graph in this iteration. Indeed, the number of stages is equal to the
number of used colors. Flowchart of the proposed algorithm is shown in Figure 5.

4 NUMERICAL RESULTS

To study the efficiency of the proposed algorithm, we have conducted several simu-
lation experiments. In these experiments, the proposed vertex coloring algorithm
is tested on a subset of hard-to-color benchmarks like DSJ [31], Leighton [32], and
Wap [28]. The performance of the proposed algorithm is measured both in terms
of the time and the number of colors required for coloring the benchmarks, and
compared with those of ILS [23], GLS [24], CHECKCOL [26], AMACOL [27] and
TPA [28]. In all experiments presented in this paper, the reinforcement scheme
by which the action probability vectors are updated is LR−P , and the reward and
penalty parameters (i.e., a and b) are 0.1. In these experiments, threshold P is set

458 J. Akbari Torkestani, M.R. Meybodi

Action-Set Formation

0;V ←← kTk

1;V ←←Γ χ

Γ−←Ζ V

Select vertex Γ∈iv with

lowest ID

Color(iv) χ←

Automaton iA randomly chooses one

of its actions and denotes it jv

}{ iv+Ζ←Ζ +Neighbors of }{ iv

}{ iv−Γ←Γ ; Ζ−← ii αα

 ∅≠iα

Color(jv) χ← ; ji vv ←

}{ iv+Ζ←Ζ +Neighbors of }{ iv

}{ iv−Γ←Γ ; Ζ−← ii αα

1+← χχ

 ∅≠Γ

 kT≤χ

Reward the chosen actions

Penalize the chosen actions

1+← kk

 Stopping
Condition

Return χ

Input PG ,)EV,(

Yes

No

No

Yes

Yes

No

No

Yes

Fig. 5. Flow chart of the proposed algorithm

to 0.95, and so the proposed algorithm stops if all the activated learning automata
choose their action with a probability higher than 0.95. The results are summarized
in Tables 2, 4, and 6. In these tables, the first column includes the number of colors
required for coloring the graph (CN), and the second column includes the running
time of each algorithm in seconds (RT).

A New Vertex Coloring Algorithm Based on Variable Action-Set Learning Automata 459

DSJ [31] benchmark graphs are the first class of graphs on which the proposed
algorithm is tested. This class comprises a set of uniform (n, p) random graphs
which are denoted as DSJC n · p, where n = {125, 250, 500, 1 000} is the number of
vertices, and p = {0.1, 0.5, 0.9} denotes the probability of connecting every pair of
nodes in the graph. DSJR graphs are geometric graphs introduced by Johnson et
al. [31] to provide benchmarks for heuristics. The number of nodes in these graphs
changes from 125 to 1 000, and so it is not easy to find good solutions, especially
with density of 0.5 and 0.9, and with the number of nodes greater than 125. The
characteristics (i.e., density and number of vertices and edges) of DSJ benchmark
graphs are given in Table 1.

Graph Name Class Number of Vertices Number of edges Density

DSJC125.1 DSJ 125 736 0.09

DSJC125.5 DSJ 125 3 891 0.50

DSJC125.9 DSJ 125 6 961 0.90

DSJC250.1 DSJ 250 3 218 0.10

DSJC250.5 DSJ 250 15 668 0.50

DSJC250.9 DSJ 250 27 897 0.90

DSJC500.1 DSJ 500 12 458 0.10

DSJC500.5 DSJ 500 62 624 0.50

DSJC500.9 DSJ 500 112 437 0.90

DSJR500.1 DSJ 500 3 555 0.03

DSJR500.1c DSJ 500 121 275 0.97

DSJR500.5 DSJ 500 58 862 0.47

DSJC1000.1 DSJ 1 000 49 629 0.10

DSJC1000.5 DSJ 1 000 249 826 0.50

DSJC1000.9 DSJ 1 000 449 449 0.90

Table 1. The characteristics of DSJ benchmark graphs

Comparing the results of the other algorithms, we observe that, in most cases,
GLS has the shortest running time, and CHECKCOL and AMACOL have the worst
running time. It also can be seen that, in almost all cases, AMACOL picks the
smallest number of colors to color the graphs, and GLS uses the highest number of
colors. Comparing the results of LAVCA with AMACOL, we find that the color-
sets chosen by the proposed algorithm are as small as those of AMACOL, while the
running time of the proposed algorithm is considerably shorter than AMACOL. On
the other hand, comparing the proposed algorithm with GLS, it can be seen that
the running time of the proposed algorithm is as close to GLS as possible, while the
size of the color-set, in the proposed algorithm, is significantly smaller as compared
with GLS.

The second class of the benchmark graphs on which the proposed algorithm is
tested is Leighton [32] which is a set of large random graphs, with 450 nodes, and
denoted as Le450 xy, where x = {5, 15, 25} is the chromatic number of the graph
and equal to the maximum clique size, and extension y = {a, b, c, d} denotes the

460 J. Akbari Torkestani, M.R. Meybodi

Graph Best TPA [28] AMACOL [27] ILS [23]
CN RT CN RT CN RT

DSJC125.1 5 5 0 5 0 5 0

DSJC125.5 17 19 289 17 125 17 2

DSJC125.9 44 44 5 44 57 44 0

DSJC250.1 8 8 10 8 12 8 0

DSJC250.5 28 30 3 282 28 64 28 34

DSJC250.9 72 72 155 72 2 604 72 6

DSJC500.1 12 12 0 12 9 13 0

DSJC500.5 48 48 124 48 326 50 106

DSJC500.9 126 127 1 268 126 1710 128 82

DSJC1000.1 20 21 28 20 969 21 6

DSJC1000.5 84 84 2 386 84 9 235 91 303

DSJC1000.9 224 226 3 422 224 4 937 228 2 245

Graph CHECKCOL [26] GLS [24] LAVCA

CN RT CN RT CN RT

DSJC125.1 5 0 5 0 5 0.0090

DSJC125.5 17 110 18 0 17 17.040

DSJC125.9 44 4 44 0 44 41.170

DSJC250.1 8 28 9 0 8 16.015

DSJC250.5 28 557 30 1 28 42.010

DSJC250.9 72 182 73 6 72 67.300

DSJC500.1 12 4 13 0 12 32.200

DSJC500.5 48 1 789 52 81 48 80.230

DSJC500.9 126 2 045 130 154 127 114.50

DSJC1000.1 21 142 22 1 20 43.107

DSJC1000.5 84 7 025 93 546 84 205.10

DSJC1000.9 226 12 545 234 1 621 224 423.00

Table 2. A performance comparison of the proposed algorithm and the most effective col-
oring algorithms (Tested on hard-to-color DSJ benchmark graphs)

edge density of the graph. Finding a solution to the graphs with extensions c and d
is, in general, more difficult than that with extensions a and b. The characteristics
(i.e., density and number of vertices and edges) of Leighton benchmark graphs are
given in Table 3.

Comparing the results reported in Table 4, we find that, in almost all cases, ILS
outperforms the others in terms of running time. It can be seen that CHECKCOL
always selects the smallest color-sets for coloring the graphs, while its running time
is the worst. Comparing the results of the proposed algorithm with the chromatic
number of the benchmarks, we observe that the size of the color-sets constructed
by the proposed algorithm is equal to the chromatic number. It can be seen that
CHECKCOL is also capable of finding the optimal solution (Best results). However,

A New Vertex Coloring Algorithm Based on Variable Action-Set Learning Automata 461

Graph Name Class Number of Vertices Number of edges Density

Le450 5a LEI 450 5 714 0.06

Le450 5b LEI 450 5 734 0.06

Le450 5c LEI 450 9 803 0.10

Le450 5d LEI 450 9 757 0.10

Le450 15a LEI 450 8 168 0.08

Le450 15b LEI 450 8 169 0.08

Le450 15c LEI 450 16 680 0.17

Le450 15d LEI 450 16 750 0.17

Le450 25a LEI 450 8 260 0.08

Le450 25b LEI 450 8 263 0.08

Le450 25c LEI 450 17 343 0.17

Le450 25d LEI 450 17 425 0.17

Table 3. The characteristics of Leighton benchmark graphs

comparing the running time of our proposed algorithm with that of CHECKCOL,
we find that the proposed algorithm significantly outperforms CHECKCOL in terms
of the running time.

The third class of the benchmarks we consider includes Wap[28] graphs which
arise in the design of transparent optical networks and are denoted by Wap0ma,
where m = {1, . . . , 8}. In this class, the graphs have a large number of vertices

Graph Best TPA [28] AMACOL [27] ILS [23]
CN RT CN RT CN RT

Le450 15a 15 15 1 444 15 345 15 0

Le450 15b 15 15 1 655 15 345 15 0

Le450 15c 15 15 82 15 2 15 19

Le450 15d 15 15 34 15 4 15 20

Le450 25c 25 26 44 26 93 26 2

Le450 25d 25 26 22 26 10 26 1

CHECKCOL [26] GLS [24] LAVCA

CN RT CN RT CN RT

Le450 15a 15 2 145 15 2 15 31.290

Le450 15b 15 2 756 15 0 15 40.140

Le450 15c 15 4 534 15 6 15 77.120

Le450 15d 15 4 576 15 8 15 59.150

Le450 25c 25 3 477 26 18 25 74.200

Le450 25d 25 4 524 26 2 25 80.103

Table 4. Performance of the proposed algorithm and comparison with the most effective
coloring algorithms (Tested on hard-to-color Leighton benchmarks)

462 J. Akbari Torkestani, M.R. Meybodi

between 905 and 5 231, and all instances have a clique of size 40. The characteristics
(i.e., density and the number of vertices and edges) of Wap benchmark graphs are
given in Table 5.

Graph Name Class Number of Vertices Number of edges Density

Wap01a KOS 2 368 110 871 0.04

Wap02a KOS 2 464 111 742 0.04

Wap03a KOS 4 730 286 722 0.03

Wap04a KOS 5 231 294 902 0.02

Wap05a KOS 905 43 081 0.11

Wap06a KOS 947 43 571 0.10

Wap07a KOS 1 809 103 368 0.06

Wap08a KOS 1 870 104 176 0.06

Table 5. The characteristics of Wap benchmark graphs

Graph Best TPA [28] AMACOL [27] ILS [23]
CN RT CN RT CN RT

Wap01a 42 42 245 45 345 44 2

Wap02a 41 41 1 618 44 802 43 251

Wap03a 44 44 17 53 245 46 365

Wap04a 43 43 95 48 45 44 484

Wap06a 41 41 348 44 545 42 1

Wap07a 42 42 541 45 89 44 1

Wap08a 42 42 200 45 446 43 56

CHECKCOL [26] GLS [24] LAVCA

CN RT CN RT CN RT

Wap01a 44 568 42 55 42 16.186

Wap02a 43 486 41 160 41 32.057

Wap03a 46 689 44 782 44 90.321

Wap04a 44 23 43 834 43 68.250

Wap06a 42 25 41 8 41 3.2300

Wap07a 44 182 42 215 42 20.195

Wap08a 44 22 42 41 42 28.302

Table 6. A performance comparison of the proposed algorithm and the most effective col-
oring algorithms

Comparing the results reported in Table 6, we observe that GLS and TPA
outperform the others in terms of the size of the color-set, and ILS in terms of the
time required for coloring the Wap benchmark graphs. The obtained results show
that the size of the color-sets constructed by the proposed algorithm is always equal

A New Vertex Coloring Algorithm Based on Variable Action-Set Learning Automata 463

to the best reported results. On the other hand, the running time of the proposed
algorithm is considerably shorter as compared with GLS and TPA.

5 CONCLUSION

Vertex coloring problem is a combinatorial optimization problem in which a color
is assigned to each vertex of the graph so that no two adjacent vertices have the
same color. The minimum vertex coloring is an NP-hard problem which a host of
algorithms have been proposed to solve. In this paper, an approximation algorithm
was proposed for solving the minimum vertex coloring problem based on learning
automata. The proposed algorithm iteratively finds different possible colorings of
the graph. Each iteration of the proposed algorithm is subdivided into several stages.
The number of stages per iteration represents the required number of colors. At each
stage of algorithm, a subset of the non adjacent vertices of the graph is randomly
selected and assigned the same color. This process continues until no vertices remain
uncolored. The proposed algorithm guarantees that the graph can be legally colored
at each iteration. As the proposed algorithm approaches to the end, each vertex
learns how to select one of its non adjacent vertices so that the number of selected
vertices per stage is maximized. Therefore, as the proposed algorithm proceeds, the
number of stages and so the required number of colors tends to the chromatic number
of the graph. To show the performance of the proposed algorithm we compared it
with several vertex coloring algorithms in terms of the time and the number of colors
required for coloring the graphs. The obtained results show the superiority of the
proposed algorithm over the others.

REFERENCES

[1] Jensen, T.R.—Toft, B.: Graph Coloring Problems. John Wiley&Sons, USA
1994.

[2] Chaitin, G. J.—Auslander, M. J.—Chandra, A.K.—Cocke, J.—Hop-

kins, M.E.—Markstein, P.W.: Register Allocation Via Coloring. Computer Lan-
guages, Vol. 6, 1981, pp. 47–57.

[3] Barnier, N.—Brisset, P.: Graph Coloring for Air Traffic Flow Management.
In: Proceedings of the Fourth International Workshop on Integration of AI and OR
Techniques, Le Croisic, France, 2002, pp. 133–147.

[4] de Werra, D.: An Introduction to Timetabling. European Journal of Operational
Research, Vol. 19, 1985, pp. 151–162.

[5] Giaro, K.—Kubale, M.—Obszarski, P.: A Graph Coloring Approach to Sche-
duling of Multiprocessor Tasks on Dedicated Machines With Availability Constraints.
Discrete Applied Mathematics, Vol. 157, 2009, pp. 3625–3630.

[6] Gamst, A.: Some Lower Bounds for a Class of Frequency Assignment Problems.
IEEE Transactions of Vehicular Technology, Vol. 35, 1986, No. 1, pp. 8–14.

464 J. Akbari Torkestani, M.R. Meybodi

[7] Zymolka, A.—Koster, A.M.C.A.—Wessaly, R.: Transparent Optical Net-

work Design With Sparse Wavelength Conversion. In Proceedings of the 7th IFIP
Working Conference on Optical Network Design and Modelling, Budapest, Hungary
2003, pp. 61–80.

[8] Karp, R.M.: Reducibility Among Combinatorial Problems. Complexity of Com-
puter Computations, Plenum Press, USA 1972, pp. 85–103.

[9] Garey, M.R.—Johnson, D. S.: Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Co., San Francisco, CA 1979.

[10] Brelaz, D.: New Methods to Color the Vertices of a Graph. Communications of the
ACM, Vol. 22, 1979, No. 4, pp. 252–256.

[11] Brown, J.R.: Chromatic Scheduling and the Chromatic Number Problem. Manage-
ment Science, Vol. 19, 1972, No. 4, pp. 456–463.

[12] Bőttcher, J.—Vilenchik, D.: On the Tractability of Coloring Semi-Random
Graphs. Information Processing Letters, Vol. 108, 2008, pp. 143–149.

[13] Galinier, P.—Hertz, A.: A Survey of Local Search Methods for Graph Coloring.
Computers&Operations Research, Vol. 33, 2006, pp. 2547–2562.

[14] Mabrouk, B. B.—Hasni, H.—Mahjoub, Z.: On a Parallel Genetic-Tabu Search
Based Algorithm for Solving the Graph Coloring Problem. European Journal of Ope-
rational Research, 2008, doi:10.1016/j.ejor.2008.03.050.

[15] Asmuni, H.—Burke, E. K.—Garibaldi, J.M.—McCollum, B.—Parkes,

A. J.: An Investigation of Fuzzy Multiple Heuristic Orderings in the Construction
of University Examination Timetables. Computers&Operations Research, Vol. 36,
2009, pp. 981–1001.

[16] Eiben, A. E.—Vanderhauw, J.K.—Vanhemert, J. I.: Graph Coloring With
Adaptive Evolutionary Algorithms. Journal of Heuristics, Vol. 4, 1998, pp. 25–46.

[17] Thompson, J.—Dowsland, K.: A Robust Simulated Annealing Based Exa-
mination Timetabling System. Computers&Operations Research, Vol. 25, 1998,
pp. 637–648.

[18] Dowsland, K.A.—Thompson, J.M.: An Improved Ant Colony Optimiza-
tion Heuristic for Graph Coloring. Discrete Applied Mathematics, Vol. 156, 2008,
pp. 313–324.

[19] Cooper, C.—Dyer, M.—Frieze, A.: On Markov Chains for Randomly H-Co-
loring a Graph. Journal of Algorithms, Vol. 39, 2001, pp. 117–134.

[20] Talavan, P.M.—Yanez, J.: The Graph Coloring Problem: A Neuronal Network
Approach. European Journal of Operational Research, Vol. 191, 2008, pp. 100–111.

[21] Hertz, A.—Werra, D.: Using Tabu Search Techniques for Graph Coloring. Com-
puting, Vol. 39, 1987, pp. 345–351.

[22] Caramia, M.—Dell’Olmo, P.: A Fast and Simple Local Search for Graph Co-
loring. Lecture Notes in Computer Science, Algorithm Engineering, Vol. 1618, 1999,
pp. 319–333.

[23] Lourenco, H.R.—Martin, O.—Stutzle, T.: Iterated Local Search. In: Hand-
book of Metaheuristics, F. Glover, G. Kochenberger (Eds.), Kluwer Academic Pub-
lishers, USA, 2002, pp. 321–353.

A New Vertex Coloring Algorithm Based on Variable Action-Set Learning Automata 465

[24] Voudouris, C.—Tsang, E. P.K.: Guided Local Search. In: Handbook of Meta-

heuristics, F. Glover (Eds.), Kluwer Academic Publishers, USA, 2003, pp. 185–218.

[25] Chiarandin, M.—Stutzle, T.: Stochastic Local Search Algorithms for Graph Set
T-Coloring and Frequency Assignment. Constraints, Vol. 12, 2007, No. 3, pp. 371–403.

[26] Caramia, M.—Dellolmo, P.—Italiano, G. F.: CHECKCOL: Improved Local
Search for Graph Coloring. Journal of Discrete Algorithms, Vol. 4, 2006, pp. 277–298.

[27] Galinier, P.—Hertz, A.—Zufferey, N.: An Adaptive Memory Algorithm for
the K-coloring Problem. Discrete Applied Mathematics, Vol. 156, 2008, pp. 267–279.

[28] Caramia, M.—Dell’Olmo, P.: Embedding a Novel Objective Function in a Two-
Phased Local Search for Robust Vertex Coloring. European Journal of Operational
Research, Vol. 189, 2008, pp. 1358–1380.

[29] Narendra, K. S.—Thathachar, K. S.: Learning Automata: An Introduction.
Prentice-Hall, New York 1989.

[30] Thathachar, M.A. L.—Harita, B. R.: Learning Automata With Changing Num-
ber of Actions. IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMG17,

1987, pp. 1095–1100.

[31] Johnson, D.R.—Aragon, C.R.—McGeoch, L.A.—Schevon, C.: Optimiza-
tion by Simulated Annealing: An Experimental Evaluation, Part II, Graph Coloring
and Number Partitioning. Operations Research, Vol. 39, 1991, pp. 378–406.

[32] Leighton, F. T.: A Graph Coloring Algorithm for Large Scheduling Problems.
Journal of Research of the National Bureau of Standards, Vol. 84, 1979, pp. 489–505.

[33] Akbari Torkestani, J.—Meybodi, M.R.: Learning Automata-Based Algorithms
for Finding Minimum Weakly Connected Dominating Set in Stochastic Graphs. Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-based Systems, to appear,
2010.

[34] Akbari Torkestani, J.—Meybodi, M.R.: Approximating the Minimum Con-
nected Dominating Set in Stochastic Graphs Based on Learning Automata. Pro-
ceedings of International Conference on Information Management and Engineering
(ICIME 2009), Kuala Lumpur, Malaysia, April 3–5, 2009.

[35] Akbari Torkestani, J.—Meybodi, M.R.: Solving the Minimum Spanning Tree
Problem in Stochastic Graphs Using Learning Automata. Proceedings of Interna-
tional Conference on Information Management and Engineering (ICIME 2009), Kuala
Lumpur, Malaysia, April 3–5, 2009.

[36] Akbari Torkestani, J.—Meybodi, M.R.: Mobility-based Multicast Routing Al-
gorithm in Wireless Mobile Ad Hoc Networks: A Learning Automata Approach.
Journal of Computer Communications, Vol. 33, Issue 6, 15 April 2010, pp. 721–735.

[37] Akbari Torkestani, J.—Meybodi, M.R.: Weighted Steiner Connected Domi-
nating Set and its Application to Multicast Routing in Wireless MANETs. Wireless
Personal Communications, Springer Publishing Company, February 2010.

[38] Akbari Torkestani, J.—Meybodi, M.R.: An Efficient Cluster-based
CDMA/TDMA Scheme for Wireless Mobile AD-Hoc Networks: A Learning Au-
tomata Approach. Journal of Network and Computer applications, Vol. 33, 2010,
pp. 477–490.

466 J. Akbari Torkestani, M.R. Meybodi

[39] Akbari Torkestani, J.—Meybodi, M.R.: Clustering the Wireless Ad-Hoc Net-

works: A Distributed Learning Automata Approach. Journal of Parallel and Dis-
tributed Computing, Vol. 70, Issue 4, April 2010, pp. 394–405.

[40] Akbari Torkestani, J.—Meybodi, M.R.: An Intelligent Global Flooding Al-

gorithm in Wireless Ad Hoc Networks based on Distributed Learning Automata.
Journal of Computer Networks, Vol. 54, Issue 5, 8 April 2010, pp. 826–843.

Javad Akbari Torkestani received the B. Sc. and M. Sc. de-
grees in computer engineering in Iran, in 2001 and 2004, res-
pectively. He also received the Ph.D. degree in computer en-
gineering from Science and Research University, Iran, in 2009.
Currently, he is an Assistant Professor in Computer Engineer-
ing Department at Arak Azad University, Arak, Iran. Prior to
the current position, he joined the faculty of the Computer En-
gineering Department at Arak Azad University as a lecturer.
His research interests include wireless networks, mobile ad hoc
networks, fault tolerant systems, learning systems, parallel algo-
rithms, and soft computing.

Mohammad Reza Meybodi received the B. Sc. and M. Sc.
degrees in economics from Shahid Beheshti University in Iran,
in 1973 and 1977, respectively. He also received the M. Sc. and
Ph.D. degrees in computer science from Oklahoma University,
USA, in 1980 and 1983, respectively. Currently, he is a Full Pro-
fessor in Computer Engineering Department, Amirkabir Univer-
sity of Technology, Tehran, Iran. Prior to current position, he
worked as an Assistant Professor at Western Michigan Univer-
sity (1983 to 1985), as an Associate Professor at Ohio University,
USA (1985 to 1991). His research interests include wireless net-

works, fault tolerant systems, learning systems, parallel algorithms, soft computing and
software development.

