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Abstract. In this paper we engage in AWGN watermark for grayscale image (the
message is embedded by adding of white Gaussian noise matrix; detection is blind,
correlation based). We search criteria for “the best” (minimal one which guar-
anties watermark detectability) embedding strength for watermark robust against
expected attack. These criteria we find for AWGN watermarks, which are embed-
ded in spatial or in transform domains; for one bit message or for a longer message;
into whole image or into some of its coefficients. This paper peculiarity is that we
do not propose new watermarking algorithm; for well known, robust algorithm we
find the best embedding strength for robust watermark.
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1 INTRODUCTION

During the last fifteen years, a lot of methods for grayscale images robust watermar-
king have been proposed. Classification of these methods is usually made according
to the embedding domain used. So, embedding techniques have been proposed

• in spatial domain [1, 2, 3]

• in transform domain, first of all in DCT and block DCT [4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15], Fourier [16, 17, 18] and wavelet [19, 20, 21, 22] domains.
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Also, there are “hybrid methods”, where watermark is embedded in two different
domains (for example, in spatial and transform domain [23].

Another classification is based on the necessity of original image availability in
the detection phase:

• Algorithms with informed detection require original image presence in the detec-
tor – in algorithms with blind detection, detectors do not require original image.

• Algorithms with informed detection [5, 6, 7] are nowadays rarely used, and
whenever it is possible (with respect to watermarking application), they are
replaced with blind ones [1, 2, 13, 15, 22, 24, 25, 26]. In some applications,
original image presence in detector is especially undesirable. Particularly, this
applies to watermarking application of ownership proving in a court dispute. In-
formed detection here usually leads to algorithm invertibility, reverse engineering
possibility, and famous Craver attack [32, 33, 34].

One important watermarking algorithms class is based on spread spectrum tech-
nique [3, 5, 6, 7, 16, 27, 28, 29, 30, 31] – embedding by spreading the information
about each message bit across several image pixels, or across the whole image.
Watermark embedding in such algorithms is usually performed by adding of some
pseudorandom data vector to the image.

Among such algorithms, an interesting class is represented by those based on
additive white Gaussian noise (AWGN) embedding, with blind detection based on
correlation between image and embedded message. To these techniques, Cox et al.
in [29] devote a lot of space (principally they concentrate on watermark embedding
in spatial domain). In our paper we will use the term AWGN watermarks for such
watermarks.

Important property of digital watermark, which is dedicated to copyright pro-
tection, is its robustness. The watermark needs to remain detectable after common
image operations (lossy compression, contrast/brightness changing, cropping, ro-
tation . . .). In this text, we’ll call these operations watermark (removal) attacks,
irrespective if they were performed without or with the intention to remove the
watermark from the image.

A lot of watermarking algorithms robust against these attacks are proposed.
All the just mentioned algorithms are robust. AWGN watermarking algorithm is
not an exception – it exhibits good robustness characteristics against many removal
attacks.

Clearly, not every individual watermark embedded by robust technique is robust:
a watermark, to be robust, needs to be embedded strongly enough. However, wa-
termark which is embedded too strongly will damage image quality. It is important
to find a real measure for embedding strength.

This is the theme of our paper: we do not propose new watermarking algorithm,
but for well known, robust algorithm, we determine “the best” embedding strength –
minimal, that ensures message detectability practically with 100% probability after
expected attack.
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The procedure of finding attacks to which our image was exposed is beyond the
scope of this paper. Here we assume that it is known which attack occurred and
what kind of procedure should be done (if necessary) in this situation. We only
determine necessary embedding strength for watermarks to remain detectable after
performed attacks.

This paper arose from investigation how strongly the watermark needs to be
embedded to be robust against expected lossy compression; precisely, how strongly
we need to embed it into image which then will be exposed to known compression
(e.g. DjVu or JPEG), in order the watermark stays detectable in a compressed file.
That’s why the most part of this text is dedicated to lossy compression attack. Only
in Section 7 we deal with embedding, robust against other attacks.

Sections 2–4 are dedicated to the simplest AWGN algorithm – spatial domain
embedding. In Section 2 we briefly outline AWGN watermark embedding algorithm
in spatial domain, in the way it is described in [29]. In Section 3 we consider effective
embedding in spatial domain. We discover “the best” embedding strength – mathe-
matically argued minimum strength needed for certain message detection immedi-
ately after embedding (effective embedding). Section 4 is dedicated to determining
of embedding strength which is needed for a message to survive the expected lossy
compression.

In Sections 5 and 6 we consider the same algorithm within the transform domain.
The content of Section 5 shows that there is practically not any difference between
white Gaussian noise embedding algorithms in spatial and in transform domains. In
Section 6 we give several examples of strength coefficients setting, while embedding
in some image coefficients, in block DCT transform domain.

In Section 7 we give a short analysis of determining embedding strength for
other attacks.

Section 8 concludes this paper.

Note: We will use the known facts about normal distribution. The reader may, in
case of need, find them in a book on probability, for example [36].

2 AWGN WATERMARK ALGORITHM

In this section, we briefly outline the AWGN watermark algorithm, as it is described
in [29] (spatial domain embedding).

Later, we will analyze other variants of this algorithm too (embedding in dif-
ferent domains and image coefficients). However, this will always be in essence
the same algorithm: we add white Gaussian noise to image (or subimage) in some
domain; we test the correlation in the same domain in which the watermark is
embedded.
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2.1 Embedding

We embed one message bit (binary one or zero) into the image in the following way:

cw1 = co + α · rw, cw0 = co − α · rw

where cw1 and cw0 are image vectors that arise from embedding of binary one or
binary zero into the image, co is the original image vector before embedding,1 α is
the embedding strength coefficient (α > 0) and rw is the reference pattern.2

The reference pattern is a vector of the same dimension as the image, which
contains (white Gaussian) noise. In this paper, the reference pattern is the pseudo-
random vector chosen in accordance with N(0, 1).

The original image, the message bit and the watermark key are used as inputs
into the embedding program. The watermark key is a number, equal for the embed-
der and the detector, and it is used as the pseudorandom number generator seed for
the reference pattern. Watermarked image is the embedder output.

2.2 Detection

The image and the watermark key (the same as in the embedder) are inputs to the
detector. The detected watermark message is the output. As a measure of detection,
we use linear correlation between the image and the reference pattern:

lc(c, rw) =
c • rw

‖rw‖ · ‖rw‖

(• denotes the dot product, and ‖ ‖ denotes the vector norm).
The detector compares the computed linear correlation value with the threshold

value τ , set in advance, and replies:

Binary one is embedded if lc(c, rw) ≥ τ
Binary zero is embedded if lc(c, rw) ≤ −τ
Nothing is embedded if |lc(c, rw)| < τ

2.3 Embedding of Longer Message

We embed into the image a k bits message by embedding repeatedly (k times) one
bit message. This embedding we call embedding message bits one over another.

1 We present the grayscale image co, dimensionality of m × n pixels, with one m × n

matrix or, (in fact the same) with one m · n vector. In this paper, we will use the terms

image vector, image matrix and image as synonyms (if this will not make confusion).
2 More precisely, resultant values in matrices must be from permissible set of image

pixels values. Therefore, it is more precise to say cw1 = [co+α·rw]8 and cw0 = [co−α·rw]8.
The sign [ ]8 designates “squeezing” of the result vector coordinates into 8-bits values, i.e.
into values from the set {0, 1, 2, . . . , 255}.
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An alternative solution is embedding into subimages : we divide the image into dis-
joint subimages, and then we embed one bit message into each subimage. In this
text, the subimage term is understood as any subset of image pixels set. Subimages
may, but need not, be composed of adjacent pixels.

Different variants of the above methods are also possible. For example, we may
embed several message bits into every subimage.

2.4 Watermark Impact on Image Fidelity

Embedding strength coefficient magnitude directly determines the measure of the
image fidelity loss. This impact may be expressed for example with mean square
error :

mse(co, cw) =
1

mn

mn
∑

i=1

(cw(i)− co(i))
2 =

1

mn

mn
∑

i=1

α2rw(i)
2 =

α2

mn
‖rw‖2 = α2.

The theme of this paper is determining minimal value of coefficient α that en-
sures message detectability. Hence, if we wish effective embedding, α and mse are
as they are – they cannot be smaller.

3 EMBEDDING EFFECTIVENESS

Watermark embedding is effective if immediately after embedding the detector re-
ports the image as watermarked.

In subsection 3.1, we determine the minimum sufficient embedding strength
coefficient (α) for effective embedding of one bit message. In subsection 3.2, we
determine it for a longer message.

3.1 Effective Embedding of One Bit Message

Embedding strength coefficient α and detection threshold τ directly influence the
embedding effectiveness.

If we embed the watermark strongly (with large coefficient α), we will be able to
achieve the ideal of 100% effective embedding. However, that may affect the image
quality badly – the image changes caused by watermarking may become noticeable.
Therefore, it is important to find the best measure for the coefficient α.

Clearly, if we reduce the detection threshold τ (set it to be close to, or maybe
equal, to zero), embedding will be automatically more effective (the detector will
report higher percentage of embedding cases for the image as watermarked). But,
if the threshold τ is too low, the probability of a false positive error (the case when
the detector replies that the image is watermarked if it is not) will increase.

It is very important to find the real measure – to set the threshold τ and the
coefficient α, in such a way that false negative probabilities (non-effective embed-
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ding) and false positive ones are acceptably low. Also, that watermark must not be
embedded too strongly to have the fidelity affected.

3.1.1 Deviation of lc(co, r) from Zero – The σlc Parameter

When setting the α and τ parameters for the image co, linear correlation value
lc(co, r) plays an important role (r is an arbitrary reference pattern).

The σlc parameter – the standard deviation of a sample (linear correlations
between the original image and reference patterns) is the basis for correct setting of
parameters α and τ , for effective embedding.

Now we try to determine the dependence of value σlc on the image characteristics.

All reference pattern r = (r(1), r(2) . . . r(mn))) coordinates are liable to N(0, 1)
distribution. The mathematical expectation for ‖r‖ is

√
mn.

For our image c = (c(1), c(2) . . . c(mn))) and reference pattern r, the linear
correlation3 is

lc(c, r) =
c • r

‖r‖ · ‖r‖ =

mn
∑

i=1

c(i)r(i)

mn
.

Therefore, the lc(c, r) value for fixed c and reference pattern r (with coordi-
nates from N(0, 1)), also has values from normal distribution, N(0, σ2

lc) , where the
standard deviation, σlc, is

σlc =

√

(c(1))2 + (c(2))2 + . . .+ (c(mn))2

mn
=

√

E(c)

mn
.

3.1.2 Setting of τ and α Parameters

In the interval (−3σlc, 3σlc) almost all linear correlation values4 are between the
image and reference patterns.

If we set the threshold τ = 3σlc , the linear correlation between the original image
and the reference pattern would be in the interval (−τ, τ) almost with probability
p = 1. In other words, it would be almost 100% sure that the detector would not
respond with a false positive error.

We have to consider the possibility of a false positive error when the message is
quite short (as here, the message being one bit long). If the message is longer, the
false positive error is not a great problem (more about this later – subsection 3.2.1),
and τ could be set considerably smaller.

3 The subject of this text, by its very nature, does not mention “exact”, but “appro-
ximate” arithmetic. Based on the value of σlc we set τ and α , as values that roughly
satisfy the mentioned conditions. Nevertheless, in order to simplify, the sign “=” will
often appear in formulas. We should be aware that “=” means rather “≈” here.

4 This comes from the well known [68− 95− 99.7] rule for the normal distribution.
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The threshold should not be larger than 3σlc: this is not only needless, but also
affects the fidelity (a stronger embedding would be needed, so that the detector
might recognize the message).

In order to make the embedding effective, for arbitrary reference pattern r the
following should be satisfied (for binary one or binary zero embedding):

lc(co + α · r, r) > τ or lc(co − α · r, r) < −τ , i.e.
lc(co, r) + α > τ or lc(co, r)− α < −τ , i.e.
α > τ − lc(co, r) or α > τ + lc(co, r),

i.e., for each reference pattern

α > τ + |lc(co, r)|.

If we choose α > τ +3σlc, then almost every reference pattern will be effectively
embedded with strength α.

Clearly, α has to be as small as possible, in order that the image fidelity stays
at a sufficient level.

Taking into account that here approximate arithmetic is used, we should not
make a great mistake if we set τ = 3σlc, α = τ + 3σlc = 6σlc.

Such embedding, in which α is set in advance, and the reference pattern is
embedded with this strength (without consideration for the value of the linear cor-
relation between the image and the reference pattern which will be embedded), is
called a fixed strength embedding.

The drawback of the fixed strength embedding is that it is bigger than necessary.
This is the reason to consider the linear correlation between the image and the
pattern that is to be embedded. In this case, we talk about an algorithm with the
embedding strength adjustment.

Let lc(co, r) = l (r is the reference pattern to be embedded). If l < τ and we
embed binary one, we will set α = τ − l. If l > τ , we will set α = 0 (not necessary
to embed anything). So, if we embed binary one, then α = max(τ − l, 0). If we
embed binary zero, then α = max(τ + l, 0).

In such a way, we achieve great saving in embedding strength. If τ = 3σlc, it
will be (in the case of embedding binary one) α = max(3σlc − l, 0) and (in the case
of binary zero) α = max(3σlc + l, 0).

Since E[l] = 0 (l is random variable with normal distribution, and E[l] is the
mathematical expectation of variable l), then E[α] ≈ 3σlc. It is smaller than in the
case of fixed strength embedding (where E[α] = α = 6σlc).

3.2 Effective Embedding of Longer Message

3.2.1 Threshold τ Setting for Longer Message

The threshold τ for a longer message may be smaller than 3σlc (the value recom-
mended in case of one bit message). For example, for τ = σlc, for roughly 68% of
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possible reference patterns the linear correlation between the image and the refer-
ence pattern will be within the interval (−τ, τ). So, the false positive may appear
in every third case. If we insist that every message bit must be detected in order
to confirm the presence of message, it will be almost impossible to detect the mes-
sage if it is not embedded (for detection of non-existing message, it is necessary for
all reference patterns to arise as a false positive, and this is almost impossible in
a longer message). So, in the case of longer message, a smaller τ value is permitted.

3.2.2 Embedding of Message Bits One Over Another

We embed k bits into an image, co = (co(1), co(2), . . . , co(mn)), in a way that for each
bit we add to the image (or subtract from it) the corresponding reference pattern
rj = (rj(1), rj(2), . . . , rj(mn)) (j = 1, 2, . . . , k), multiplied by embedding strength
αj. The resultant image is cw = (cw(1), cw(2), . . . , cw(mn)). We obtain each image
pixel with

cw(i) = co(i) +
k
∑

j=1

(±αj · rj(i)) (i = 1, 2, . . . , mn).

Embedding defined in this way is localized in space. Only corresponding co-
ordinates of the original image and reference pattern influence the resultant image
pixel value. The reference patterns coordinates take values from normal distribution
N(0, 1).

Therefore, their linear combination

R(i) =
k
∑

j=1

(±αj · rj(i)) (i = 1, 2, . . . , mn)

takes values from N(0, σ2), where σ =
√

α2
1 + α2

2 + . . . , α2

k.

Also, the coordinates of vector rs = (rs(1), rs(2), . . . , rs(mn)), where

rs(i) =
R(i)

√

α2
1 + α2

2 + . . . , α2

k

(i = 1, 2, . . . , mn)

are liable to N(0, 1) distribution, and therefore, rs is the reference pattern.
Thus, embedding of k reference patterns rj one over another, with strengths αj

(j = 1, 2, . . . , k), is equal with embedding one reference pattern, rs, with strength

β =
√

α2
1 + α2

2 + . . .+ α2

k,

or
cw = co + β · rs.

If all patterns are embedded with the same strength, α1 = α2 = . . . = αk = α,
then the total embedding strength is

β =
√

α2
1 + α2

2 + . . .+ α2

k =
√
k · α2 =

√
k · α.
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Example 1. If α = 2, and we embed the message of k = 25 bits (one over another,
with fixed strength embedding), it will be β =

√
k ·α = 10 (embedding of 25 patterns

with strength 2 is equivalent to embedding of one pattern with strength 10).

Example 2. If k = 2, α1 = 3, α2 = 4, then rs = (3 · r1 + 4 · r2)/5.
Embedding effect for two patterns with strengths 3 and 4 is equivalent to em-

bedding of one pattern, with strength β =
√

α2
1 + α2

2 =
√
32 + 42 = 5.

3.2.3 Embedding Into Subimages

We divide image co with dimensionsmn pixels into k disjoint subimages c1o, c
2

o, . . . , c
k
o,

of dimensions mn1, mn2, . . . , mnk, respectively (mn =
∑k

j=1
mnj). For each subim-

age, the coefficient σj
lc (j = 1, 2, . . . , k) is

σj
lc =

√

E(cjo)

mnj
.

If it is possible to divide an image into k parts of equal dimensions and energies,
then all subimages will have the same value of the σj

lc parameter:

σj
lc =

√

E(cjo)

mnj
=

√

E(co)/k

mn/k
=

√
k ·

√

E(co)

mn
=

√
k · σlc.

In this case, the overall strength for k bits message, when embedding into
k subimages, is equal to the strength for one bit message, multiplied by

√
k. In

this case embedding strength is equal as the message is embedded one bit over
another.

3.2.4 Dependence of σlc Parameter on Image Dimension

The σlc parameter is lower for bigger images. So, the image ck originated from k equal
images, c, of energy E(c), will have energy E(ck) = k ·E(c) and dimension dim(ck) =
k · dim(c). Its σlc parameter will be

σlc(ck) =

√

E(ck)

dim(ck)
=

√

k ·E(c)

k · dim(c)
=

√

E(c)
√
k · dim(c)

=
1√
k
· σlc(c).

Therefore, in an image with larger dimensions, we have to embed our message
with a lower strength. In the previous case, it will be αk = α/

√
k and τk = τ/

√
k.

If we take care of the image fidelity, it is obvious that in larger image a longer
message may be embedded.

The σlc, α and τ parameters increase with image energy growth. If c1 and c2 are
images with equal dimensions, and E(c1) > E(c2), then in image c2 we may embed
a longer message. Thus, a longer message may be written in darker than in brighter
image.
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4 ROBUSTNESS AGAINST LOSSY COMPRESSION

The following text gives an estimate for the strength coefficient α, in order that the
watermark survives the expected lossy compression.

In subsection 4.1 we consider the case of one bit message, and in subsection 4.2 –
the case of a longer message. For the purpose of simplicity, we will only consider
the case of embedding binary one; what is said here may be easily transferred to the
case of binary zero.

4.1 Robustness of One Bit Message

4.1.1 Embedding Strength Parameter After Compression (α′)

Now, we try to find which part of the watermark will be destroyed by lossy compres-
sion. In this way, we will be able to set the embedding strength coefficient so that
it will be adequate to ensure robustness against the expected lossy compression.

In our experiment, first we embed several (k) reference patterns (one by one)
into the image with strength α (the number α is the same for all of them). In a way,
we get k watermarked images (with binary one embedded).

Then we subject each of these k images to expected lossy compression (the same
for all k images). So, we get k compressed watermarked images.

In the detector we have:5

• one original image co;

• k reference patterns r(1), r(2), . . . , r(k);

• k watermarked images cw(1), cw(2), . . . , cw(k), for which cw(i) = co + α · r(i)
(i = 1, 2, . . . , k) applies;

• k compressed watermarked images cwn(1), cwn(2), . . . , cwn(k) (cwn(i) is the image
cw(i) after lossy compression);

• k values of linear correlation lco(1), lco(2), . . . , lco(k), where lco(i) = lc(co, r(i))
(in this text they are called LCo array);

• k values of linear correlation lcw(1), lcw(2), . . . , lcw(k), where lcw(i) = lc(cw(i),
r(i)) (called LCw array);

• k values of linear correlation lcwn(1), lcwn(2), . . . , lcwn(k), where lcwn(i) =
lc(cwn(i), r(i)) (called LCwn array).

Figure 1 represents (for k = 20) functions graphics for values of arrays of LCo,
LCw and LCwn. Here we present results of the experiment for the first page
of the book “Elementa geometriae”. The compression is DjVu Photo (made by the

5 Here the detector, besides recognizing the message, also compares watermark proper-
ties before and after lossy compression. This is why it uses noted images.
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Fig. 1. Linear correlation between the image (original, watermarked and compressed wa-
termarked) and corresponding reference patterns (left), for the first page of the book
“Elementa geometriae” (right). Embedding strength is α = 3

program DjVu Solo 3.1 – LizardTech, Inc). Graphic abscissa presents arrays indexes,
and ordinate – theirs values.6

• The bottom line presents the linear correlation values between the original image
and reference patterns (LCo).

• The top line presents the linear correlation values between watermarked images
and corresponding reference patterns (LCw).

• The middle line presents the linear correlation values between compressed wa-
termarked images and corresponding reference patterns (LCwn).

In our example, embedding with α = 3 increased the value of linear correlation
roughly by 3. Intensive compression “ate up” the most part of watermark infor-
mation. We may see from the previous graph that for each reference pattern r(i),
(i = 1, 2, . . . , k) and linear correlation of (1) the original image co; (2) the water-
marked image cw(i) (binary one embedded); and (3) the compressed watermarked
image cwn(i), with this reference pattern (LCo(i), LCw(i), LCwn(i)) is

• LCw(i) − LCo(i) ≈ α (embedding of binary one raises linear correlation value
between the image and the reference pattern by α);

• LCwn(i) − LCw(i) ≈ const (lossy compression reduces linear correlation by
constant, i.e. it erases the constant part of watermark);

• LCwn(i) − LCo(i) ≈ const (after lossy compression, the constant part of wa-
termark remains).

In our example, for the embedded watermark (with α = 3), lossy compression
(DjVu Photo) of our image (“Elementa geometriae”) “ate up” around 2.25 of the

6 This comment applies also to other similar graphics in this paper.
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reference pattern. In other words, the lossy compression effect is the same as if
watermark were embedded with strength α = 0.75. So, we introduce new concept:
embedding strength coefficient after compression, α′. α′ is α that survives after lossy
compression.

For all twenty reference patterns the effect is the same: for our image and α = 3,
after DjVu Photo compression, α′ = 0.75 survives.

Conclusion: How much of the watermark will survive after lossy compression,
does not depend on the reference pattern choice and on linear correlation of the
original image with it. In other words, for given α, the value of α′ does not depend
on the watermark key.

Figure 2 shows this watermark characteristic for JPEG compression. The test is
done for the image “Cameraman”. Embedding strength is α = 10, and JPEG com-
pressions are 5%, 25%, 45%, 65% and 85%. The lines in the figure present linear
correlation values for images with 30 reference patterns. The bottom line presents
them for the original image. The top line is for watermarked images. Five lines
in-between are for compressed watermarked images (five compression strengths).

0 5 10 15 20 25 30
−2

0

2

4

6

8

10

12

Fig. 2. Linear correlation values for images (original, watermarked and compressed water-
marked) with corresponding reference patterns, for different JPEG strengths

So, in the case of JPEG compression, the conclusion is the same: after lossy
compression constant part of watermark survives, no matter which key is used as
the generator seed for the reference pattern.
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4.1.2 Coefficient α Setting for a Robust Watermark

If we wish the watermark to be robust against lossy compression, we need to mod-
ify all statements from Section 3 (“Embedding effectiveness”) and replace each α
with α′:

• in the case of fixed embedding strength: α′ = τ + 3σlc

• in the case of embedding strength adjustment:

– α′ = max(τ − l, 0)) if we embed binary one,

– α′ = max(τ + l, 0)) if we embed binary zero.

The procedure of deriving α′ from α is “natural”, because it matches with the events
chronology – α and α′ are “cause and effect”:

• We embed watermark with strength α;

• we compress the image;

• we read α′.

In order to derive α from α′, we have to try with different α values. We do this
by using watermarks made from arbitrary (but only one) reference pattern.

Steps for setting α:

• We set σlc value for our image. Using σlc, we set τ and (desired value of) α′.

• We embed in our image the watermark for several α values; in this way we get
several watermarked images.

• We expose these images to expected lossy compression.

• The detector reads α′ for each compressed watermarked image. Then we com-
pare the obtained α′ values with the desired value. The α value which corre-
sponds to the α′ value, closest to the desired one, is appropriate.

For example, for the image – the first page of the book “Elementa geometriae”,
compression DjVu Photo, and eight α values, the results are as follows:

α 3 4 5 6 7 8 9 10
α′ 0.72 0.99 1.36 1.90 2.58 3.34 4.14 4.92

In Figure 3, for our example α values for each of eight images can be read on
the abscissa. The point of interesection of two lines in this figure shows: To have α′

of at least 2.5, α should be ≥ 7.

4.1.3 Dependence of Coefficient α′ on Image Content

Two images of different sizes and the same entropy (for example, “Cameraman”, of
dimensions 128 × 128 and 256 × 256), have the same values of α′ for the same α
coefficient and compression technique.
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Fig. 3. Dependence α′ on α

Conclusion: The coefficient α′ does not depend on the image dimension.
In order to examine the value of α′ (for given α and compression technique) for

different images, we perform the following test: Into one image (“Cameraman”) we
embed the message with strength α. Then, we subject the image to (DjVu Photo)
compression.

The detector reads the image, dividing it into 4 × 4 subimages. It treats each
subimage as separate image. For each subimage it calculates entropy and α′ value
(for each of them α = 7).

The results of the experiment for subimages (presented by the order defined in
Figure 4a)) are presented by the graph in Figure 4b).

Principally, where there is bigger entropy, there is also bigger α′ value. Hence,
more of the watermark will remain in active than in flat regions.

Conclusion: α′ depends on the image content. More of watermark remains (α′

is bigger for the same α) in more active images (or image parts).

4.1.4 Dependence of Coefficient α′ on Compression Technique

Into the image we embed a message bit with strength α. The image is then subjected
to different compression techniques, as JPEG (based on the image division into 8×8
pixels blocks and on discrete cosine transform), as DjVu (a wavelet compression,
without an image division – the transform is performed on the whole image).

In each lossy compression technique we have tested, for the given image and
α coefficient, α′ remains the same after compression, independently of the water-
mark key and linear correlation value between the original image and the embedded
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Fig. 4. a) Subimages of the image “Cameraman”. b) Upper line presents entropy values

flow, and the lower one – α′ for 16 image parts

reference pattern.
For fixed α, α′ value is smaller in more intensive compression. For example, α′

is bigger for JPEG 70% compression than for JPEG 40%. DjVu Clean compression
will have still smaller α′ value.

4.2 Robustness of a Longer Message

If we embed k patterns into the image, each with own embedding strength coefficient
αi (i = 1, 2, . . . , k), then:

cw ≈ co +
√

α2
1 + α2

2 + . . .+ α2

k · rs = co + β · rs,

where

rs =
±α1r1 ± α2r2 ± . . .± αkrk

β
.

After compression:

cwn ≈ co + β ′rs = co +
√

(α′

1)
2 + (α′

2)
2 + . . .+ (α′

k)
2 · rs.

After compression, the overall strength coefficient that remains will be β ′ (the
coefficient that corresponds to β for our image and compression technique). The
procedure for setting the coefficients αi (i = 1, 2, . . . , k) as follows:

• for our image, we set parameter σlc ;

• based on σlc, we set parameters τ and α′ (i = 1, 2, . . . , k);
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• β ′ =
√

(α′

1)
2 + (α′

2)
2 + . . .+ (α′

k)
2

• we obtain β from β ′ and p = β ′/β

• αi = α′

i/p (i = 1, 2, . . . , k).

Example 3. Into the image co = “Fishingboat” ( 512 × 512 pixels), we embed
k = 16 message bits (binary ones).

σlc =
√

E(co)/(512 · 512) = 0.25 τ = 0.25

α′ = [0, 0.18, 0, 0.17, 0.41, 0.54, 0.19, 0.58, 0.42, 0.58, 0.64, 0.66, 0.14, 0.57, 0.31, 0.05]

β ′ = 1.65, β = 5.4, p = 0.3, αi = α′

i/p (i = 1, 2, . . . , k)

0 2 4 6 8 10 12 14 16
−0.5

0

0.5

1

1.5
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Fig. 5. Linear correlation between the image (original, watermarked and compressed wa-
termarked) and embedded reference patterns

Figure 5 shows the linear correlation values between the image and each of
the embedded patterns. The bottom line presents linear correlation values for the
original image; the top line is for the watermarked image.

Roundels present linear correlation values between the compressed watermarked
image and embedded reference patterns. It may be seen that their ordinates are near
the threshold τ value. So, they are the smallest values needed that the detector after
compression reports the image as watermarked.

Example 4. The same test is done for 64 bits message. The watermark also sur-
vives DjVu Photo compression. Overall embedding strength is β = 6.94. In Figure 6,
the compressed original (without watermark) and compressed watermarked image
may be seen.
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Fig. 6. Compressed original and compressed watermarked image (“Fishingboat”, 512×512
pixels, k = 64 message bits, DjVu Photo compression)

5 AWGN WATERMARK EMBEDDING IN TRANSFORM DOMAIN

In this section, we apply the described watermarking algorithm in transform domain
(embedding and detection occur in transform, instead of spatial domain). We show
that there is no difference from the viewpoint of effective embedding of AWGN
watermark between watermarking in spatial and in transform domains (DCT, block
DCT, Fourier or arbitrary orthogonal wavelet domain).

First of all, almost all transforms which are used in image processing and com-
pression nowadays are orthogonal (or at least unitary) linear transformations. Linear
transform f respects addition and scaling. Therefore,

f(co + α · r) = f(co) + α · f(r).

Orthogonal transform f preserves the inner product and, consequently, preserves
vectors lengths and angles between vectors. Consequently,

lc(co, r) = lc(f(co), f(r))

‖co‖ = ‖f(co)‖ and ‖r‖ = ‖f(r)‖
cos(co, r) = cos(f(co), f(r)).

Also (Parseval’s, energy theorem): If bo = f(co), then

E(bo) =
mn
∑

i=1

(bo(i))
2 =

mn
∑

i=1

(co(i))
2 = E(co)

Orthogonal transform maps reference pattern r = (r(1), r(2), . . . , r(mn)) (i.e.
vector whose coordinates were taken from distributionN(0, 1)) into vector f(r) from
distribution N(0, 1), i.e. orthogonal transform maps reference pattern to reference
pattern.
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Standard deviations from zero of linear correlation for vector co and reference
patterns in spatial and transform domain are equal:

σlc(co) = σlc(f(co)).

It is all the same if we embed AWGN watermark into an image with strength α
in spatial or in orthogonal transform domain. Correlation values as well as errors
values will be the same in both domains.

Also, there is no difference in AWGN watermark robustness against lossy com-
pression between spatial and transform domains.

6 AWGN WATERMARK EMBEDDING INTO SUBIMAGE
IN TRANSFORM DOMAIN

As in the spatial domain, it is possible to embed watermark in some part of coeffi-
cients in transform domain (here also, we call it embedding into subimage).

Technically, there is not any difference in embedding strength setting, for ef-
fective and robust against lossy compression, speaking of the part of coefficients
(subimage) and of the whole image. Effective embedding strength is determined by
dimension and energy of image (or image part) in which AWGN watermark will be
embedded. Robustness against lossy compression is determined by these coefficients
properties with regard to expected compression. However, robustness examining
when embedding in part of image coefficients in transform domain is a consider-
ably more complex problem, compared with embedding over the whole image. The
domain in which we embed watermark is not often equal to the domain used in
the lossy compression. Also, during embedding, it is usually not known to which
compression our image will be subjected afterwards. Therefore, in this case it is not
possible to give general advice concerning embedding strength.

We may analyze only some particular cases here.
We will give some examples for such embedding in blockwise DCT domain. This

domain, which is the basis of JPEG compression, is often used in digital watermarks
embedding. When describing these embeddings, we will use the term image sub-
channel. Eggers and Girod have introduced this term in [9]. Subchannel is the
vector which in blockwise DCT has coordinates – elements, with the same index
in blocks. Subchannels are ordered according to zigzag order. Thus, subchannel 1
consists of all DC blocks elements; subchannel 10 consists of all elements which are
on position 10 in the block (zigzag order).

So, the image of dimension m × n in DCT domain may be presented with 64
subchannels7:

sj = (sj(1), sj(2), . . . , sj(nbl)) (j = 1, 2, . . . , 64), wherenbl = mn/64.

7 Here, for the purpose of simplicity, we will assume that image dimensions are multiples
of 8, in order to make the partition in 8× 8 blocks possible.
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In the next two subsections, by several examples we illustrate the procedure
for determining the strength coefficient, when embedding in part of coefficients in
transform domain. Subsection 6.1 shows how we determine the strength coefficient
for effective embedding in the case of embedding in image subchannels. In subsec-
tion 6.2 we examine robustness of watermark embedded in some subchannels.

In these examples we show the results for the image “Cameraman”, dimension
256× 256 pixels.

6.1 Effectiveness of Embedding Into Image Subchannels

6.1.1 Watermark Embedding Into First 32 Subchannels

In this sub-subsection we will find effective embedding measure for the first 32 sub-
channels

cws = co + αs · rs,
and the given results will be compared with embedding over the whole image

cw = co + α · r.

We obtain the rs pattern from the reference pattern r, by data nullifying in
subchannels 33–64 (clearly, rs pattern is no more a reference pattern).

When embedding over the whole image, we calculate the σlc parameter by the
formula

σlc(co) =
√

E(co)/dim(co).

We may observe embedding into the first 32 subchannels as embedding into
subimage

s = {si, i = 1, 2, . . . , 32},
and

σlc(s) =
√

E(s)/dim(s) ≈
√

E(co)/(dim(co)/2) = 2 · σlc(co),

because almost all image energy is concentrated in the first 32 subchannels (for
example, with the image “Cameraman”, this is even 99.76% of total image energy).

Therefore, in the case of effective embedding into the first 32 subchannels, a dou-
ble strength is needed compared to embedding over the whole image:

αs = 2 · α.

To evaluate real impact of watermark embedding on the image fidelity, we will
notice that ‖rs‖ = ‖r‖/

√
2 . If we “standardize” the rs pattern, i.e. lead it to the re-

ference pattern r norm, it will be ‖rnors ‖ =
√
2 · ‖rs‖. Therefore, effective embedding

strength is
αnor
s =

√
2 · α.

Embedding into the first 32 subchannels, in order to be effective, must be done
with

√
2 times bigger strength, comparing with embedding across the whole image.
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Also, mse(co, cws) = 2 · mse(co, cw) (it is necessary, in order to effective em-
bedding, to make the mean square error twice as large, compared to the original
algorithm).

Also, embedding in this way is more noticeable – because embedding is done in
lower frequencies.

Now we examine capacity and robustness for some subchannels from the first
half of the zigzag scan. We will, as in [9], concentrate on representatives. Those are,
traditionally, subchannels 1, 10 and 22.

6.1.2 Embedding into Subchannel 1

For the image “Cameraman” (dimension 256×256), the value of parameter σlc value
for the first subchannel is

σlc 1 =

√

E(s1)

nbl
=

√
1 130.41 · 106

1 024
= 32.83.

On the basis of Section 3, embedding strength must be (for one message bit,
and fixed strength embedding algorithm), at least α = τ + 3 · σlc 1, i.e. the minimal
α value, needed for effective embedding of one bit message (if we set τ = σlc 1) must
be even 131.33!

If we standardize embedded pattern r1 (r1 appears when in reference pattern r
we nullify all elements except in subchannel 1), it will be ‖rnor

1
‖ = 8·‖r1‖. Therefore,

standardized embedded strength coefficient is αnor = α/8 = 16.42. The mean square
error value for this embedding is mse(co, cw) = 268.92.

Clearly, watermark embedding with blind detection into these coefficients is out
of question due to extremely high DC coefficients.

6.1.3 Embedding into Subchannel 10

σlc 10 =

√

E(s10)

nbl
=

√
1.14 · 106
1 024

= 1.04

For effective embedding of one bit message into subchannel 10 (if we set τ =
σlc 10), it is adequate to use embedding strength of α = 4·σlc 10 = 4.17, αnor = α/8 =
0.52. We may embed 64 message bits with β = 8 · α = 33.35 (βnor = β/8 = 4.17,
mse = 16.22). Seemingly, this mse value is not too large; however, image changes
are fairly noticeable (Figure 7). Subchannel 10 contains data of the low-frequency
image component. HVS is sensitive to such data. Therefore, we should be careful
with embedding strength for this component.

6.1.4 Embedding into Subchannel 22

σlc 22 =

√

E(s22)

nbl
=

√
0.23 · 106
1 024

= 0.47
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Fig. 7. Original image and image after message embedding with β = 33.35 in subchan-
nel 10

For our image, embedding strength (in the case of one bit message, fixed strength
embedding, and τ = σlc 22) is α = 4 · 0.47 = 1.89. Therefore, with embedding
strength β = 20, in this subchannel we could embed somewhat more than 100 bits,
and with embedding strength 40 – even 400. Thus, the embedding capacity in this
subchannel is not a problem.

For β = 20, mse = 6.14; for β = 30, mse = 13.80; for β = 40, mse = 24.54.
Even the last mean square error value is not too big. It corresponds to embedding
strength 5 in the spatial domain. Nevertheless, the embedding in subchannel 22 is
in the low frequency region, compared to the embedding across the whole image.
Hence, the image subjective quality is not so good here.

6.2 Robustness Against Lossy Compression of Embedding
into Image Subchannels

Now, for some of the recently presented embedding examples in block DCT domain,
we analyze watermark robustness against some compression techniques. We examine
the effect of embedding into some of block DCT domain coefficients – both in the
case that image undergoes JPEG, and for some different lossy compression. Among
these “different” compression techniques, we will also present the effect for wavelet
DjVu compression.

6.2.1 Subchannel 10

In the next experiment, our watermarked image with embedded strengths β = 10,
β = 20 and β = 30 is subjected to many different compressions: JPEG (from 0% to
100%, with step 5%), and DjVu (Photo and Clean). Watermark robustness results
for this subchannel are illustrated in Figure 8. JPEG compression intensities are
presented on the abscissa. In order to present the results for DjVu compression in
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the same figure too, we use the abscissa value −5 for DjVu Photo, and −10 for DjVu
Clean.

−20 0 20 40 60 80 100
0

5

10

15

20

25

30

Fig. 8. Subchannel 10 robustness versus different compression qualities

We can see from the graph that embedding into this subchannel is robust against
any reasonable JPEG compression strength8, and the embedded watermark remains
practically completely undamaged. Hence, a sufficiently strong embedding in these
coefficients is practically immune against each sensible JPEG compression. As to
DjVu compression, it destroys a part of the data embedded into the subchannel.
Therefore we should take this fact into consideration when we choose embedding
strength: if we want to detect our message after DjVu compression, we need to set
adequate embedding strength.

6.2.2 Subchannel 22

In Figure 9 we can see subchannel robustness against three embedding strengths:
20, 30 and 40. For weak embedding strength in subchannel 22, robustness against
compression is not good. If the whole embedding strength is high enough, the
watermark will survive compression in the highest part. It can be seen on the graph
that for robustness against somewhat stronger compression the watermark would
be embedded somewhat stronger. Also, for DjVu compression we can see that, if
we embed watermark strongly enough, after the compression the watermark will be
detectable.

8 With compression quality < 15%, the image is practically worthless. Therefore, it is
not a problem if watermark is not preserved.
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Fig. 9. Subchannel 22 robustness versus compression

Important note: The values obtained in this section are more or less similar
for most natural images. Hence, the preceding two figures are similar for them.
For example, in Figure 10 corresponding values are presented in subchannel 22 for
embedding strength β = 30, for images “Cameraman” (red), first page of book
“Elementa geometriae” (black) and “flat” image (all pixels have the same grayscale
nuance) (blue line).

7 AWGN WATERMARK AND OTHER ATTACKS

In [29], habitual image operations are organized in two classes – valumetric and
geometric distortions.

7.1 Valumetric Distortions

Valumetric distortions are simpler than geometric ones. They change the values of
individual pixels. These attacks include additive noise, amplitude changes, linear
filtering and lossy compression.

7.1.1 Additive Noise

This attack has the effect of adding a random signal. For watermarked image,
additive noise adding is defined by the formula:

cw1 = cw + s,
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Fig. 10. Illustration of equal behavior of white Gaussian noise message in subchannel 22,
for three different images

where cw = c0 + α · r is watermarked image and s is a random vector chosen from
some distribution, independently of cw and reference pattern r.

Clearly,

lc(cw1, r) = lc(cw, r) + lc(s, r) ≈ lc(cw, r)

(because s is uncorrelated with r).

Therefore, an additive noise does not affect AWGN watermark (AWGN water-
marking algorithm with detection based on linear correlation is robust against this
attack).

AWGN watermark is also robust against brightness changing (cw1 = cw + n · J ,
where J is matrix of ones and n is an integer).

7.1.2 Amplitude Changes

They may be modeled by help of the formula

cw1 = cw · ν,

where ν > 0 is a scaling factor. Such operations cause brightness and contrast
changing.

Linear correlation value will be equal to starting, multiplied by factor ν. Depen-
ding on factor ν, the linear correlation value (watermark detectability) will increase
(if ν > 1), or diminish (if ν < 1).
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7.1.3 Linear Filtering

It is given by the formula
cw1 = cw ⋆ f,

where f is a filter, and ⋆ designates convolution. Many common image operations are
performed using linear filters. These operation examples are blurring and sharpening
effects.

7.2 Geometric Distortions

This class of attacks includes many image distortions, such as rotation, spatial sca-
ling, translation, skew or shear, cropping, perspective transformation, and changes
in aspect ratio.

These attacks are more complicated than valumetric ones, because they displace
information about image pixels in image matrix. Also, image matrix dimensions
change usually. Therefore, the watermark can not be detected readily here. Yet,
with these attacks, information about embedded message will not be lost, but only
“masked”.

For each geometric attack, we need to perform one correction procedure before
detection. This procedure is not uniquely determined, and it is beyond the scope of
this paper.

To illustrate this, we will depict one geometric attack – image rotation by
an angle. Many of this analyze inferences could be applied to other attacks.

7.2.1 Robustness Against Rotation

In the case of image rotation, one of several different procedures may be used prior
to the detection. If the watermarked image is rotated by angle ϕ, we may do one of
the following to make watermark detection possible:

• we may compare (rotated) image (using linear correlation) with the reference
pattern which is also rotated by ϕ

• before detection, we may rotate the rotated image by angle −ϕ; and then com-
pare it with reference pattern, which is also rotated by angles ϕ and −ϕ

• we may compare the image rotated by ϕ and then by −ϕ (and then cropped to
original image dimensions) with the original reference pattern.

In Figure 11 linear correlation values for image and reference pattern (unrotated
and rotated) are presented. In each row we present image and pattern for which
the correlation is calculated. So, it is specified for each example which image and
pattern (and their dimensions) we deal with, and also the linear correlation value
for them.

Reference pattern is not an image: its matrix elements are real (positive or
negative) numbers. For its presentation we use the solution proposed in [35].
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0c (256,256) - original image ('Cameraman') 

r (256,256) -  reference pattern 
== ),( 00 rclclc 0.787 

 
 
 

wc (256,256) - watermarked image (embedding 

strength 5=α ) 
r (256,256) -  reference pattern 

== ),( rclclc ww 5.787 

 
 
 

wrc (297,297) - watermarked image, rotated by 

)10( o=ϕ  

rr (297,297) -  reference pattern, rotated by ϕ  

== ),( rwrr rclclc 5.815 

 
 

1wrc (345,345) - watermarked image, rotated by 

ϕ , and then by ϕ−  

1rr (345,345) -  reference pattern, rotated by ϕ , 
and ϕ−  

== ),( 111 rwrr rclclc 5.591 

 

2wrc (256,256) - watermarked image, rotated by 

ϕ , and ϕ− , after cropping to original image 
dimensions 

2rr (256,256) -  reference pattern, rotated by ϕ , 
and ϕ− , after cropping to original dimensions 

== ),( 222 rwrr rclclc 5.592 

 

2wrc (256,256) - watermarked image, rotated by 

ϕ , and ϕ− , cropped to original image 
dimensions 
r (256,256) -  reference pattern 

== ),( 22 rwrpr rclclc 1.953 

 
 Fig. 11. Linear correlation values for image and reference pattern (unrotated and rotated)
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Rotation practically does not reduce the linear correlation value, if it is calcu-
lated for image rotated in the same manner and for the reference pattern. However,
if we compare the rotated image (after restoration to original position by rotation
in opposite direction and cropping to original dimension) with the original reference
pattern, a part of the watermark will be lost (α′ value will be less than embedding
strength value α).
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Fig. 12. Values lc0 (bottom line), lcw, lcr, lcr1, lcr2 (top lines) and lcr2p (middle line) for
20 reference patterns

In Figure 12 we present the above-mentioned linear correlation values, for 20 dif-
ferent reference patterns, for image ‘Cameraman’, ϕ = 10 ◦ and α = 5. We may see
that (similarly as earlier analyzed lossy compression attack), for given image and
embedding strength α after rotation by given angle ϕ, strength α′ remains, that does
not depend on the reference pattern nor on its correlation with the original image.
Hence, for deciding with what strength α the watermark needs to be embedded so
that after rotation it strength α′ remains, it is sufficient to experiment with only one
reference pattern.

The above inference remains also for other (valumetric and geometric) image
distortions. The procedure of determining the necessary embedding strength α may
be performed in the next steps:

1. Using the formula given in Section 3 (Embedding Effectiveness) we determine
the embedding strength needed for watermark detectability.

2. In order that after attack the watermark remains detectable, the minimal
strength that remains (α′) must be that determined in the preceding point.

3. Experimenting with only one reference pattern we determine the embedding
strength α needed that after the expected attack, the remaining strength would
be at least α′.
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8 CONCLUSION

In this paper we considered effectiveness and robustness against lossy compression
for AWGN watermark embedded in grayscale image. We found the “minimum” em-
bedding strength value for effective embedding and robustness against compression.

For effective embedding of a longer message, we performed the following steps:

• For our original image, we calculated the parameter σlc;

• Based on σlc, we set the α parameter for each message bit; total embedding
strength β was calculated using the Pythagoras theorem (embedded reference
patterns are mutually orthogonal).

For each lossy compression (JPEG or wavelet), for every image and the chosen
coefficient α the same part α′ remains after the compression.

In order to embed the watermark robust against lossy compression, in the pre-
vious procedure we have to replace each α with α′ (and β with β ′). The calculating
sequence is as follows:

σlc −→ α′

1
, α′

2
, . . . , α′

k −→ β ′ −→ β −→ α1, α2, . . . , αk

There is no essential difference between the AWGN watermark embedding in
spatial and in transform domain. Nonetheless, there is the difference in information
amount that may be embedded in some coefficients, and robustness of such messages
against lossy compression.

With other attacks, procedures for determining strength α are similar with lossy
compression. With geometric attacks, however, it is necessary to first perform the
proposed interventions to make that detection possible.
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