
Computing and Informatics, Vol. 29, 2010, 537–555

ENABLING INFORMATION GATHERING PATTERNS
FOR EMERGENCY RESPONSE
WITH THE OPENKNOWLEDGE SYSTEM

Gaia Trecarichi, Veronica Rizzi, Maurizio Marchese

Department of Information Engineering and Computer Science
University of Trento
Via Sommarive 14, I-38123 POVO (TN), Italy
e-mail: {gtrecari, vrizzi, marchese}@disi.unitn.it

Lorenzino Vaccari

Spatial Data Infrastructure Unit
European Commission – Joint Research Center
via Enrico Fermi 2749, 21027 Ispra (VA), Italy
e-mail: lorenzino.vaccari@jrc.ec.europa.eu

Paolo Besana

Laboratoire d’informatique médicale
Université de Rennes I
2 Avenue du Pr. Leon Bernard, 35043 Rennes Cedex, France
e-mail: paolo.besana@univ-rennes1.fr

Revised manuscript received 24 March 2010

Abstract. Today’s information systems must operate effectively within open and
dynamic environments. This challenge becomes a necessity for crisis management
systems. In emergency contexts, in fact, a large number of actors need to collabo-

rate and coordinate in the disaster scenes by exchanging and reporting information
with each other and with the people in the control room. In such open settings,
coordination technologies play a crucial role in supporting mobile agents located
in areas prone to sudden changes with adaptive and flexible interaction patterns.

538 G. Trecarichi, V. Rizzi, M. Marchese, L. Vaccari, P. Besana

Research efforts in different areas are converging to devise suitable mechanisms for

process coordination: specifically, current results on service-oriented computing and
multi-agent systems are being integrated to enable dynamic interaction among au-
tonomous components in large, open systems. This work focuses on the exploitation
and evaluation of the OpenKnowledge framework to support different information-
gathering patterns in emergency contexts. The OpenKnowledge (OK) system has
been adopted to model and simulate possible emergency plans. The Lightweight
Coordination Calculus (LCC) is used to specify interaction models, which are pub-
lished, discovered and executed by the OK distributed infrastructure in order to
simulate peer interactions. A simulation environment fully integrated with the OK
system has been developed to: (1) evaluate whether such infrastructure is able to
support different models of information-sharing, e.g., centralized and decentralized
patterns of interaction; (2) investigate under which conditions the OK paradigm,
exploited in its decentralized nature, can improve the performance of more conven-
tional centralized approaches. Preliminary results show the capability of the OK
system in supporting the two afore-mentioned patterns and, under ideal assump-
tions, a comparable performance in both cases.

Keywords: Interaction modeling, P2P coordination, crisis management, agent-
based simulation

Mathematics Subject Classification 2000: 68T35, 68T27, 68N17, 68M14

1 INTRODUCTION

In crisis management, it is important to coordinate emergency response1 activities in
an effective way. At present, most of the information management infrastructures
required for dealing with emergencies are based on centralized architectures that
(i) are specifically designed prior to the emergency, (ii) gather centrally the available
information, (iii) distribute it upon request to the appropriate agents (e.g., emer-
gency personnel, doctors, citizens). While such infrastructures provide a number
of significant advantages (e.g., quality control, reliability, trustworthiness, sustain-
ability, etc.), they also present some well-known intrinsic problems (e.g., physical
and conceptual bottlenecks, communication channel overloads, single point of fail-
ure). Alternative solutions are currently being explored, studied and analyzed to
support data sharing also in the absence of a centralized infrastructure [6, 5]. In this
study, we explore the flexibility and adaptability of the framework developed within
the OpenKnowledge project2. This framework provides a distributed infrastructure,
that enables peers to find and coordinate with each other by publishing, discovering
and executing multi party conversational protocols.

1 In the rest of this paper, we will refer to “emergency response” as “e-Response”.
2 http://www.openk.org.

Information Gathering Patterns for Emergency Response with OpenKnowledge 539

In this paper, the proposed OpenKnowledge infrastructure is used to explore its
capability to support both centralized and decentralized information-gathering pat-
terns in open environments. For this purpose, we built a simulation-based testbed
fully integrated with the OK platform. The final goal of such virtual environment
is to evaluate this framework in the e-Response domain. In particular, we imple-
mented an e-Response simulation environment through which existing emergency
plans based on real-data are modelled and simulated. Moreover, a suite of experi-
ments has been designed and run to evaluate the performance of the OK e-Response
system under specific assumptions. Preliminary results show the system’s capability
of supporting the two afore-mentioned architectures and a comparable performance
in both cases. The idea to test with simulations the effectiveness of different data
management architectures within e-Response settings is not new, as shown by the
agent-based simulations developed in [7, 8, 9].

The rest of the paper is organized as follows: in Section 2, the fundamentals
of the OK system are presented. Section 3 presents the e-Response case study,
based on realistic data and emergency plans, which is used to evaluate the OK
system. In Section 4, the p2p simulation environment architecture is analysed and,
in Section 5, the experimental testbed designed for the evaluation is presented; here
the preliminary results of centralized vs. decentralized information management
architectures are discussed. Conclusion and future work are given in Section 6.

2 THE OPENKNOWLEDGE SYSTEM

The OpenKnowledge (OK) system provides the underlying peer-to-peer infrastruc-
ture needed to run our experiments. The core concepts in OK are: (1) the inter-
actions between agents, defined by interaction models; and (2) a distributed infras-
tructure, denoted as OK kernel, that supports the publishing, discovery, execution,
monitoring and management of interaction models.

Interaction models3 are written in the Lightweight Coordination Calculus
(LCC) [2], an executable choreography language based on process calculus and
specifically designed to express P2P style interactions within multi-agent systems.
Interactions in LCC are expressed as the message passing behaviours associated with
roles. The most basic behaviours are to send or receive messages, where sending
a message may be conditional on satisfying a constraint (precondition) and receiving
a message may imply constraints (postcondition) on the agent accepting it. LCC
makes no commitment to the method used to solve constraints, so different par-
ticipants might operate different constraint solvers (including human intervention).
LCC clauses of some interactions relevant to our experiments are shown later in this
paper (Figure 4, Section 4.1).

The OK kernel [1] provides the layer that assorted services and applications
can use to interact using a choreography-based architecture able to deal both with
the semantic heterogeneity of the actors and with their discovery. The IMs are

3 Henceforth, we use the shorthand term “IM” in place of “interaction model”.

540 G. Trecarichi, V. Rizzi, M. Marchese, L. Vaccari, P. Besana

published by the authors on a distributed discovery service (DDS) with a keyword-
based description. A peer willing to perform a task (e.g., verifying the flood state
in some area), searches for published IMs by sending a keyword-based query to the
DDS which in turn collects them by matching the query and sends back the list to
the peer; it then selects an interaction by comparing the constraints with its own
capabilities; finally, it subscribes to one of the roles on the DDS. When, in a given
interaction, all the roles are subscribed by at least one peer, a compatible team is
formed and the interaction is executed.

The peer’s capabilities are provided by plug-in components, called OpenKnow-
ledge Components (OKCs) and consist of a set of Java methods. Figure 1 shows
a snapshot of a network, when the roles in interaction IM1 are all subscribed by
at least one peer. The peers have installed their OKCs locally: some of them can
be found online (e.g., OKC1, OKC2 and OKC3), others might be private to a peer
(e.g., OKC4).

DDS

IM1

IM3

IM2

OKC2

OKC1

OKC3

OKC1

OKC3

P2

OKC1

P3

OKC1

OKC2

P1

r1

r2
r3

OKC1

OKC4

P4

Subscriptions

Published Interaction Models

Nodes of the DDS:
IMs and OKCs can be
stored in multiple locations

Peers

Shared OKCs
Locally installed OKCs

Fig. 1. OpenKnowledge architecture

3 EMERGENCY RESPONSE: A CASE STUDY

This section presents the case study used to evaluate the OK system: an e-Response
scenario. In particular, we considered a flooding disaster in Trento (Italy). The
work started from a preliminary analysis on this kind of disaster, resulted from
documents related to the current flood emergency plan foreseen by the Trentino
region and from interviews with experts. We selected emergency peers (e.g., firemen,

Information Gathering Patterns for Emergency Response with OpenKnowledge 541

police, bus/ambulance agents, etc.), the main organization involved (e.g., Emergency
Coordination Center, Fire Agency, Civil Protection4, etc.), a hierarchy between the
actors (e.g., emergency chief, subordinate peers, etc.), service peers (e.g., water level
sensors, route, weather forecast and GIS services) and a number of possible scenarios,
i.e., possible interactions among the agents and their assigned tasks. The peers can
be distinguished into two main categories: service peers and emergency peers. While
the former are basically peers providing services under request, the latter are peers
often acting on behalf of human agents that are in charge of realizing the emergency
plan.

Our analysis resulted in the modeling of the pre-alarm and the evacuation phases
of the emergency plan. In the pre-alarm phase, an Emergency Monitoring System
(EMS) continuously gathers data from water level sensors placed in strategic points
(break points) along the river. It also checks weather information in order to enrich
the data needed to predict the evolution of a potential flood. When a critical situa-
tion is registered, the automatic system notifies the emergency chief, who can then
decide whether to enact the evacuation plan or not. The evacuation phase regards
all the activities needed to move people to safe places. Here, the key peers are
emergency peers, i.e., all the peers in charge of helping in the evacuation of citizens:
emergency coordinators, firemen, government agencies (e.g., civilian protection de-
partment), real-time reporters (e.g., people, sensors). Of course, the emergency
peers are supported by service peers such as route services and sensors scattered
across the emergency area. The evacuation plan considered consists of agents (e.g.,
emergency subordinates such fire-fighters) moving to specific locations assigned by
the chief. In order to move, they need to perform some activities: choosing a path
to follow by asking a route service; checking if the path is practicable by inter-
acting with the CP or with available reporters distributed in the area; proceeding
along the path. The CP is able to serve requests on the blockage state of a given
path, since it continuously gathers information from reporters (e.g., sensors) scat-
tered around the emergency area and reporting the water level registered at their
locations.

Figure 2 sketches the two phases involved in our case study. It shows the involved
actors (denoted by round circles), their interactions and the kind of information ex-
changed. The smooth rectangle denotes the simulator, i.e., the virtual environment
where all the peers act; obviously, it does not correspond to any entity in the reality,
therefore, we do not describe it in this context. However, the simulator is essential
for the simulation-based testbed and will be illustrated in detail in Section 4.2.

It also shows two different evacuation sub-scenarios: in both of them, an emer-
gency subordinate (ES) needs to get information on route’s practicability but while
in one case (area above the red line) such peer gets route information by asking the
CP, in the other one (area below the red line) it interacts directly with reporters
(r1, r2, r5) physically present at the locations of interest. These two information-
gathering patterns are referred to as centralized and decentralized strategies.

4 Henceforth, we use the shorthand term “CP” in place of “Civil Protection”.

542 G. Trecarichi, V. Rizzi, M. Marchese, L. Vaccari, P. Besana

EMS

s1

s2

s3

s4

WFS

water level

at break points

route status

directive

RS

EC

route

alarm

CP

r

r

r

r

r

action

Simulator

ES

ES

ES

weather

conditions

water level

at city locations

Prealarm

centralized strategy

decentralized strategy

r

r

r

r

r

Evacuation

water level

at city locations

Fig. 2. e-Response case study: pre-alarm and evacuation phases

4 THE PEER-TO-PEER SIMULATION ENVIRONMENT

To fully use and test the OK system in the previously described e-Response scenario,
we built a p2p simulation environment. The current e-Response simulation environ-
ment is based on the system presented in [4] and extends it both in a complete
integration with the OK kernel and in the inclusion of a realistic flood-simulator.
The testbed is used to evaluate IMs, coordination tasks and the diverse emergency
information-gathering models; through simulations, it is possible to estimate how
the platform could perform in a “real-world” emergency. In particular, the developed
e-Response system is used to:

1. model and execute interactions among peers (e.g., institutional agents, indivi-
duals, sensors, web services) involved in emergency response activities;

2. provide feedbacks about the environment at appropriate moments, in a way that
mirrors the real world (for example, an agent attempting to take a road will be
informed at that moment if that road is blocked, and it can then share this
information with other peers through the network);

3. visualise and analyze a simulated coordination task through a Graphical User
Interface (GUI).

The e-Response system is composed of two main components: the peer network
and the e-Response simulator. Figure 3 sketches its overall architecture. All peers
are equipped with their own OKCs; black arrows represent LCC interactions either
among simulator peers or between simulator and network peers; the grey arrows
indicate interactions among network peers only.

4.1 The Peer Network

The peer network represents the group of agents involved in a simulated coordination
task. An agent in the peer network can interact with other agents, perform some

Information Gathering Patterns for Emergency Response with OpenKnowledge 543

Controller Visualiser

simulator

Route

Service

Flood

Sub-Simulator

peer network

Emergency

Monitoring

System

Emergency

Coordinator

Water

Sensor

Reporter

Weather

Service

Emergency

Subordinate

LCC interaction btw

network peers

OK plug-in

network peer

simulator peer

Flood Visualiser

Perform
Action

Connect/Sensory-Info

WMS

Civil

Protection

Gazetteer

Service

Check
Route State

Querier
Reporter

Find
Route

Fig. 3. The e-Response system’s architecture

actions (e.g., move along a road) and gather information (e.g., sense the water level
in its vicinity).

In order to perform an action or receive sensory information near its location,
a peer must connect to the simulator by enacting the “Connect” IM. Once added
to the simulation, the connected peer periodically receives sensory information from
the simulator via the “Sensory-Info” IM; finally, to perform an action, a connected
peer enacts the “Perform-Action” IM which models the action coordination with the
simulator. The connected network peers are called physical peers (shaded ellipses in
Figure 3).

Not all peers must connect to the simulator: non-physical peers, such as a route
service that provides existing routes, do not need to communicate with the controller
but only with other peers in the peer network. In the real world such peers would
not actually be in the disaster area and could not affect it directly, but could provide
services to peers that are there. Non-physical peers are represented as not shaded
ellipses in Figure 3.

The interactions – modeled as LCC specifications – among the network peers
which take place during the evacuation phase (see Figure 2) can be recaped as
follows:

1. Start evacuation: the emergency coordinator EC alerts its subordinates to go
to a specific location. The team-members prepare to satisfy the directive;

544 G. Trecarichi, V. Rizzi, M. Marchese, L. Vaccari, P. Besana

2. Find a route: an emergency subordinate ES requests a path connecting its
current location to the destination from a route service RS ;

3. Check path conditions : a subordinate ES relies either on the CP (centralized
strategy) or on reporters dislocated in the interested area (decentralized strat-
egy) to get information on the route’s practicability;

4. Gather info from reporters : an agent (e.g., CP, ES) requests real-time water
level information from a group of reporters.

The “Start evacuation” IM is the main one in the selected use case. It simulates
the evacuation phase and can be used in all those situations where an emergency
chief sends the directive of reaching specific locations to its subordinates. In short,
an emergency subordinate ES receives an alert message from the chief and resolves
some constraints in order to set the goal to be achieved (reach the goal destination G)
and get the current position. The activities of ES thus evolve through three key roles:
the goal achiever role which abstractly models the activity of searching for a path
and moving towards the goal; the free path finder role which defines the operations
needed to find a free path; the goal mover role which models the actions needed to
move towards the goal destination. Figure 4 shows an LCC code snippet for two of
the key ES roles.

The constraints specified in bold indicate that they are solved by enacting se-
parate IMs. This is a key functionality of the OK platform, since it allows to write
simple, modular and reusable LCC specifications. In particular, the constraint re-
quest path state enacts the “Check-Route-State” (“Querier-Reporter”) IM when the
centralized (decentralized) information-gathering strategy is adopted. The execution
of both IMs is needed to get route condition information and then decide whether
to go ahead or to find another path. However, while in the centralized scenario
the CP acts as the only provider of such information, in the decentralized setting
there is a direct interaction between an emergency subordinate ES and a set of
reporters. In this last case, after having found a route, the peer subscribes to the
“Querier-Reporter” IM, selects an appropriate group of reporters and start inter-
acting with them. The selection of a suitable group of reporters is done by looking
at the reporter’s subscriptions returned by the DDS and that indicate their current
locations.

4.2 The e-Response Simulator

The simulator is designed to represent the environment where all the involved agents
act. It is composed of three modules which are themselves peers: the controller,
the flood sub-simulator, and the visualiser (Figure 3). The controller regulates
the simulation cycles and the management of the simulated agent activities; the
flood sub-simulator reproduces the actual evolution of the 1966 flood in Trento; the
visualiser stores simulation information used by the GUI to view a simulation run
in a step-by-step way. The simulator does not interfere or help the coordination
among network peers: it just simulates the real world.

Information Gathering Patterns for Emergency Response with OpenKnowledge 545

a(emergency_subordinate,FF)::

alert(G) <= a(emergency_chief,FFC) then
 null <- set_goal(G) and get_current_position(CurrPos) then
 a(goal_achiever(CurrPos,G),FF)

a(goal_achiever(From,To),GA)::

(
 //moving peer already at destination
 null <- equal(To,From) and setGoalAchieved(To)

 or

 (//try to find a free path
 a(free_path_finder(From,To,FreePath), GA) then

 //no free paths between From and To
 null <- FreePath=[] and setGoalUnreachable(To)

a)

a(free_path_finder(From,To,FreePath), FRF) ::

null <- find_path(From,To,Path) then
(
 //no paths are found
 null <- Path=[] and makeEmptyList(FreePath)

 or

 (
 //check if the path is free
 null <- request_path_state(Path,PathState) and
 path_free(PathState) then
 null <- assign(Path,FreePath)
)

 or

 //search for an alternative path which is free
 a(free_path_finder(From,To,FreePath), FRF)
)

b)

Fig. 4. LCC fragments; a) “goal-achiever” role, b) “free-path-finder” role

Controller drives the simulation cycles and keeps track of the current state of the
world. In order to achieve that, it needs to know what changes are happen-
ing to the world and updates its state accordingly. After updating its state, it
also informs the relevant peers of these changes. The simulation thus evolves
through cycles (or time-steps). A simulation cycle foresees two main opera-
tions:

• Gathering changes : the controller receives information about the changes
that happened to the world:

546 G. Trecarichi, V. Rizzi, M. Marchese, L. Vaccari, P. Besana

1. it receives the disaster (e.g., flood) changes from the disaster sub-simu-
lator via the “Flood” IM and

2. it serves requests of performing (move) actions with the “Perform-Action”
IM (see Figure 3). In this latter interaction, the controller verifies whether
certain actions are legal or not before they are performed, and if a certain
action is illegal, the peer is informed of the reason of failure;

• Informing peers : the controller sends information about the changes that
happened in the world:

1. it sends, at each time-step, local changes to each connected peer via the
“Sensory-Info” IM and

2. it sends, to the visualiser, information on –

(a) the locations of all connected peers;
(b) the status of the reporter peers (e.g., available, responding to re-

quests) and
(c) the water level registered; here, the “Visualiser”IM is used.

Before a simulation cycle initiates, some preliminary activities are performed:
establish key parameters (e.g., number of simulation cycles, timeouts, water
level thresholds), connect with the flood sub-simulator, share with it the initial
topology of the world, and add connecting peers. Once a simulation cycle ter-
minates, the controller updates the time-step and starts the next cycle. Note
that, due to the modularity of the above architecture, it is reasonably easy
to add as many disaster sub-simulators (e.g., landslides, earthquake, etc.) as
needed.

Flood sub-simulator simulates a flood in Trento town (Italy). The equation de-
fined in its core OKC is based on flooding levels and flooding timings deduced
from existing flood models. The flood sub-simulator has been developed in Java
and it is fully integrated into the OK platform. The main component is an OK
peer that subscribes to two IMs: the first is enacted at the beginning of the
simulation to share the topology (e.g., point of interests and roads) of the world
between the controller and the flood sub-simulator peers and to store, in the
controller local knowledge, the connection state of the sub-simulator; the second
one, (“Flood”, in Figure 3) is used by the controller at every time-step, to get
from the flood sub-simulator the water level changes registered at the topology
nodes.

Visualiser enables the GUI used to visualise the simulation. In particular, the GUI
shows the information provided by the controller through the “Visualiser” IM.
At every time-step, the visualiser receives the changes and updates its history
according to the new information. The update results in a change on the GUI.
Figure 5 shows the appearance of the GUI in the simulated centralized and de-
centralized scenarios. A green dot represents a reporter peer available for giving
information on the water level registered at its location; a grey dot represents

Information Gathering Patterns for Emergency Response with OpenKnowledge 547

this peer actually giving this information; the water level at a location is de-
picted as a blue circle whose size depends on how high the water level is; finally,
the hat represents the emergency subordinate.

The lack of space prevents us to describe all the developed LCC IMs. For more
details, we direct the interested reader to the technical report [3].

5 THE EXPERIMENTAL TESTBED

This section describes the evaluation of the OK framework in the e-Response domain.
A series of experiments simulating both centralized and decentralized information
gathering strategies were conducted with a three-fold aim:

1. Show the OK system in action, illustrating that all parts of the system are
capable of working cohesively in the desired manner.

2. Verify that the technology provided by OK supports different information-ga-
thering patterns.

3. Establish whether the OK paradigm can make positive differences in perfor-
mance between such disaster scenarios. In particular, what is expected (and
desirable) is to have the OK P2P framework comparable or even improving
traditional centralized systems when specific fault conditions arise.

In respect to the last point, the hypotheses to be tested are that:

1. under ideal conditions, the OK system exploited in its decentralized nature is
comparable in performance to traditional centralized systems and

2. it improves on conventional centralized systems when specific fault conditions
arise. In this paper, we only test the first hypothesis, leaving the exploration of
the second one to future work.

5.1 Experimental Design

To design our experiments we established adequate performance measures, analyzed
the variables involved, and set some assumptions.

Performance measures for the presented experiments:

1. the percentage of times an emergency subordinate arrives at destination;

2. the travelling time, i.e., the number of time-steps needed to reach the desti-
nation.

These indicators are used to compute and compare the experimental results.

548 G. Trecarichi, V. Rizzi, M. Marchese, L. Vaccari, P. Besana

a)

a)

Fig. 5. e-Response GUI; a) Centralized and b) Decentralized information-gathering

Information Gathering Patterns for Emergency Response with OpenKnowledge 549

Experimental variables – a list of the variables considered follows:

A. Number of moving peers : the number of peers moving to a specific destina-
tion. Since the main aim is to compare two different strategies (centralized
vs decentralized) rather than to make a realistic simulation, this variable is
fixed to 1 in all experiments. By running an experiment a certain number of
times, we compute the performance 1. of the simulated scenario.

B. Distance: set of paths in the topology connecting two locations. To get
significant results it is crucial to consider, for each experiment type, the
routes covering both safe and flood-prone areas.

C. Flooding law : how the flood evolves over time. The flooding law, which
is fixed in our experiments, strongly affects the outcome of an experiment
run: a peer may either arrive at destination or be blocked depending on how
rapidly the flood propagates along the route taken.

D. Number of nodes : locations included in the topology and those whose status
can be reported by some peer. Incrementing this number is useful to test
the capacity of the OK kernel to support many peers. In our testbed, this
variable is the number of nodes composing only those routes involved in
a given experiment.

E. Number of (reporter) peers per node: the number of reporters located in one
node. As before, this variable is useful to test the robustness of the OK
kernel and, moreover, the effectiveness of some of its modules.

Assumptions – in order to interpret the results in a reasonable way, the following
assumptions were set:

1. the CP peer has infinite resources (under ideal conditions). This means that
the peer is able to serve any number of simultaneous requests and the commu-
nication channel never breaks; therefore, under this assumption, bottleneck
problems due to overwhelming requests never occur;

2. a querier, asking a certain number of reporters for an info, will receive all
the answers within a time-step. This is due to how the time-step interval is
set: the value is such that the time elapsing between one time-step and the
next one is sufficiently high to guarantee the replies from all the reporters.

With such assumptions, we simulate a scenario where advantages and disadvan-
tages of both centralized and decentralized architectures are kind of balanced.
The configuration of the experiment is sketched in Table 1: each experiment is
run 10 times; at each run, the only variables that change are the destination
assigned and the locations where reporters are present. Such locations are de-
termined according to the set of routes associated with the destination assigned.
The flooding law, the number of emergency subordinates and reporters remain
unchanged during all runs.

Each experiment consists in the simulation of the evacuation scenario described
in the previous section. Independently on the kind of strategy adopted, the final

550 G. Trecarichi, V. Rizzi, M. Marchese, L. Vaccari, P. Besana

Variable Settings

Exp No Information Gathering Runs A B C D E

1 centralized 10 1 1 distance/run fixed 70 x run 1
2 decentralized 10 1 1 distance/run fixed 70 x run 1

Table 1. Experiments configuration (no fault conditions)

goal of an emergency subordinate is to safely reach the assigned destination. There
are three possible experimental outcomes :

1. the agent reaches the destination by following the first route found;

2. the agent finds blocked routes but finally reaches the destination after a number
of alternative paths and

3. the agent does not reach the destination at all.

5.2 Experimental Results

After having run an experiment, the relative simulation was visualized on the GUI
in order to analyze the movements of the emergency peers and verify the correct
mechanism in the coordination among the agents.

Figures 5,a) and b) show a simulation run for the centralized and decentralized
scenario, respectively. Figure 5 a) shows the agent out from the flooded area. Here,
all the dots are grey, meaning that all reporters are being queried by the CP in
order to obtain the water level of their location. Some of them register high levels
of water. Figure 5 b) shows the agent moving along a route which can be deduced
by the grey dots ahead of the agent; in fact, these dots represent those reporters
located along the route followed and therefore queried by the moving agent; all the
other reporters remain available (green dots). Here, the OK paradigm is exploited
in its decentralized nature, since the information-gathering is based on the use of
distributed information reporter agents and not on a unique provider, as in the first
case.

Figure 6 a) shows the outcome distribution obtained by running 10 times the first
experiment. As can be seen, 70 percent of the time the experiment has outcome 1)
(the peer reaches the destination without problems) while 30 percent of the time the
outcome is 3) (the peer does not reach the destination). The outcome 2) is never
obtained. Although we setup the routes in order to cover different kind of areas
(either safe or flood-prone areas), the case where an agent finds free routes after a
re-routing never happens. This could be explained by considering how the design of
the flooding law and its related “flood speed” affect the evolution of the scenario.
The outcome distribution related to the second experiment, which simulates the
decentralized scenario, is identical to the one found for the first experiment and
hence is not reported here. This result can be explained with the assumptions
previously made: asking information on the route’s practicability to either the CP
or reporters scattered around the city does not make the difference.

Information Gathering Patterns for Emergency Response with OpenKnowledge 551

Figure 6 b) shows the time taken (measured as the number of simulation time-
steps) by an agent to reach the goal location according to the shortest distance (in
terms of intermediate locations) between the initial position and the final destina-
tion. The trend is shown for both experiments. It can be observed that, in both
cases, the time needed to achieve the goal is nearly equal to the shortest distance.
This can be explained by how the simulation is designed – an agent moves from
a location to the next one exactly in a time-step – and by the missing outcome 2).
Finally, Figure 6 b) reveals very similar trends for both centralized and decentra-
lized scenarios. Again, this is mainly due to the assumptions made and the variable
settings.

In view of the results described above, we can conclude that our first expectation
is met: the use of the OK framework supports both architectures (centralized and
decentralized) and provides comparable performances under the selected – ideal –
assumptions.

6 CONCLUSIONS AND FUTURE WORK

This work focuses on testing whether the OK framework is capable to support the
coordination of emergency activities and how, in absence of fault conditions, the OK
p2p framework is comparable in performance to traditional centralized gathering
approaches. An agent-based e-Response simulation system fully integrated with
the OK infrastructure has been developed. It is used to model specific emergency
scenarios and agents in terms of both LCC specifications and OKC components.
A suite of experiments has been designed and run to evaluate the performance of
the OK e-Response system in different scenarios and under specific assumptions.
The preliminary results thus obtained show how the OK infrastructure is equally
effective in both centralized and decentralized information-gathering.

We are currently working on further experiments. In particular, we want to
repeat the described experiments by increasing the number of runs and by tuning
parameters like the “flood speed” and the routes to follow, so that different outcomes
can be obtained. This way, we could reconfirm our hypothesis in a more robust
setting. Also, we want to run experiments where two types of fault conditions are
injected: failures in the communication channels and inaccurate signaling. For this,
the following variables will be considered:

• Distribution of trustworthy (reporter) peers : number of trustworthy reporters,
i.e., peers always reporting accurate water level values. By setting this variab-
le, the fault due to inaccurate signaling, its location and its severity can be
simulated.

• Degradation of the CP communication channel : measured as the likelihood of
a fault in the communication channel of the CP agent. For example, a degrada-
tion of the 80% means to have this agent serving incoming requests only 20%
of the times.

552 G. Trecarichi, V. Rizzi, M. Marchese, L. Vaccari, P. Besana

OUTCOME DISTRIBUTION

experiment=centralised

wl_thr=0.8

Destination reached

without re-routing,

70%

Destination reached

with re-routing, 0%

Destination not

reached, 30%

Destination not reached Destination reached with re-routing Destination reached without re-routing

a)

Timesteps vs. Path Lenght

0

5

10

15

20

25

30

35

40

11 19 20 26 28 30 36

Path Lenght

T
im

e
st

e
p

s

Centralized Decentralized

b)

Fig. 6. a) Outcome Distribution, b) Time-steps vs. Path Length

• Distribution of degraded reporter’s communication channels : defines, for each
reporter communication channel, the probability of its disruption.

With these new experiments, we can investigate if – and eventually under
which conditions – a complete p2p architecture improves the overall performance
and robustness over traditional centralized architectures. Finally, in respect to
the simulated scenarios and the involved agents, it is worth to consider the re-
porter agents as mobile agents rather than fixed sensors, and thus to explore how

Information Gathering Patterns for Emergency Response with OpenKnowledge 553

the OK platform supports the coordination of team-members in an emergency
site.

Acknowledgements

This work was supported by the OpenKnowledge project (FP6-027253).

REFERENCES

[1] Siebes, R.—Dupplaw, D.—Kotoulas, S.—Perreau de Pinninck, A.—

van Harmelen, F.—Robertson, D.: The OpenKnowledge System: An Inter-
action-Centered Approach to Knowledge Sharing. In: CoopIS 2007.

[2] Robertson, D.: A Lightweight Coordination Calculus for Agent Systems. In: Lec-
ture Notes in Computer Science – DALT, Vol. 3476, 2005, pp. 183-197.

[3] Trecarichi, G.—Rizzi, V.—Vaccari, L.—Pane, J.—Marchese, M.: Open-
knowledge Deliverable 6.8: Summative Report on Use of OK Approach in eResponse:
Integration and Evaluation Results. Technical report, Openknowledge project, 2008.

[4] Marchese, M.—Vaccari, L.—Trecarichi, G.—Osman, N.—McNeill, F.—

Besana, P.: An Interaction-Centric Approach to Support Peer Coordination in
Distributed Emergency Response Management. In: IDT, Special Issue on Incident
Management, Vol. 3, No. 1, 2009, pp. 19–34.

[5] D’Aprano, F.—de Leoni, M.—Mecella, M.: Emulating Mobile Ad-Hoc Net-
works of Hand-Held Devices. The OCTOPUS Virtual Environment. In: Proc. of the
ACM Workshop on System Evaluation for Mobile Platform: Metrics, Methods, Tools
and Platforms (MobiEval) at Mobisys, 2007.

[6] Mecella, M.—Catarci, T.—Angelaccio, M.—Buttazzi, B.—Krek, A.—

Dustdar, S.—Vetere, G.: Workpad: An Adaptive Peer-To-Peer Software In-
frastructure for Supporting Collaborative Work of Human Operators in Emer-
gency/Disaster Scenarios. In: CTS 2006.

[7] Bellamine-Ben, Saoud N.—Ben Mena, T.—Dugdale, J.—Pavard, B.—Ben

Ahmed, M.: Assessing Large Scale Emergency Rescue Plans: An Agent Based Ap-
proach. Special Issue on Emergency Management Systems. In: IJICS, Vol. 11, 2006,
No. 4, pp. 260–271.

[8] Kanno, T.—Morimoto, Y.—Furuta, K.: A Distributed Multi-Agent Simulation
System for the Assessment of Disaster Management Systems. In: IJRAM, Vol. 6,
2006, No. 4–5, pp. 528–544.

[9] Massaguer, D.—Balasubramanian, V.—Mehrotra, S.—Venkatasubra-

manian, N.: Multi-Agent Simulation of Disaster Response. In: ATDM Workshop
in AAMAS 2006.

554 G. Trecarichi, V. Rizzi, M. Marchese, L. Vaccari, P. Besana

Gaia Trearihi is a Ph.D. student at the University of Tren-

to. She is currently working on the “LiveMemories” project for
the development of an advanced Web 2.0 platform enabling com-
munities in the construction of personal and collective memories.
She is also involved in the “Glocal” project, whose aim is to build
an event-based multimedia retrieval system. She worked on the
“OpenKnowledge” project and, in particular, on the evaluation
of the OK framework in the e-Response domain. She obtained
a Master Degree in computer engineering from the University of
Palermo.

Veronica Rizzi is a research technician at University of Trento.
She currently works on the “LiveMemories” and the EU-funded
“Glocal” projects. She holds a postgraduate degree in computer
science from the University of Trento.

Maurizio Marhese is Associate Professor of computer scien-
ce at the Department of Information Engineering and Computer
Science, University of Trento. He is author of over 80 publica-
tions and has been program coordinator of a number European
Research Projects. His main research interest are: the design
and development of service architectures in distributed systems;
the integration of services in Geographical Information Systems
(GIS) environments; the analysis, development and integration
of services to support scientific knowledge creation and dissem-
ination processes.

Information Gathering Patterns for Emergency Response with OpenKnowledge 555

Lorenzino Vaari has received his Ph.D. examining the se-

mantic interoperability between geographic web services from
the University of Trento, Italy; his M. Sc. from the same univer-
sity, and his B.Eng. from the Turin Polytechnic, Italy. He is now
working at the European Commission (DGJRC) as a post-doc
researcher. Working in the ENABLE action of the SDI Unit,
he undertakes research to support the development of the Eu-
ropean Spatial Data Infrastructure foreseen by the INSPIRE
directive, focusing on the interoperability of spatial data and
services. He previously worked in the FP6 EU-funded Open-

Knowledge project that investigated the dynamic and semantic integration of components
and services in open, peer-to-peer (P2P) systems. Prior to joining the JRC, he worked
for thirteen years at the Autonomous Province of Trento (PAT), as a GIS/SDI specialist.
During his permanence at PAT, he also joined the Italian geographic national commit-
tees of CPSG and SINA. His previous work has also included software design in the field
of real time embedded systems, closed loop systems and PID controllers in distributed
and centralized environments. His research interests include semantic interoperability and
spatial data infrastructures, GIS management, P2P architectures for emergency response
and semantic web issues.

Paolo Besana is a post doctoral researcher at the Université
de Rennes I. He is currently working on “ASTEC” project for
automating the prescreening of patients for clinical trials. Pre-

viously he worked in the UK-funded “Safe and Sound project”,
aiming at creating a distributed approach to medical decision
support systems and in the EU-funded OpenKnowledge project,
whose target was the dynamic integration of the components and
services in open, peer-to-peer systems. He holds a Ph.D. in In-
formatics from the University of Edinburgh and a postgraduate
degree in telecommunication engineering from the Politecnico
of Milan.

