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Abstract. Target tracking is an important cooperative sensing application of wire-
less sensor networks. In these networks energy, computing power and communica-
tion bandwidth are scarce. In this paper, we consider a randomly deployed sensor
network with sensors acting as a set of distributed datasets. Each dataset is assumed
to have its local temporal dataset, along with spatial data and the geographical co-
ordinates of a given object. An approach towards mines global temporal patterns
from these datasets and to discovers nonlinear trajectories of a moving object is
proposed. It is tested in a simulation environment and compared with straightfor-
ward method. The results of the experiments clearly show the benefits of the new
approach in terms of energy consumption.

Keywords: Global temporal pattern, mining, nonlinear trajectories, target track-
ing, wireless sensor networks

1 INTRODUCTION

A wireless sensor network (WSN) usually consists of a set of sensors, deployed in
hundreds or thousands over a region. Each sensor is capable to measuring acoustic,
magnetic, spatial, or seismic data and the wireless interconnection network enables
performing distributed computations over the gathered data by individual sensors,
make meaningful inferences at the base station, and then send the data to end user
for appropriate action. WSNs promise novel applications in several domains such
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as forest fire detection, battlefield surveillance, or monitoring of human physiologi-
cal data are only in the vanguard of improvements provided by the WSNs. Sensor
nodes can be spread out in a dangerous or remote environment by low flying air-
planes or unmanned aerial vehicles that opens up new application fields. One of
the main challenges raised by these networks is the fact that they are usually power
constrained, since sensing nodes typically exhibit limited capabilities in terms of
processing, communication, and especially run on battery power [18]. Sensor net-
works’ power limitation is impacted by the fact that, once deployed, they are often
left unattended for their lifetime. Thus, in order to maximize the WSN’s operational
lifetime energy conservation is of prime consideration in algorithms used for WSN
algorithms.

In this paper, we refer to WSN as a set of geographical distributed stand alone
sensors that randomly spread over a region to be monitored and are capable of
sensing predefined parameters such as temperature, motion and geographical coor-
dinates of objects in its vicinity and is of interest to determine global patterns in
a geographical area.

We consider the problem of tracking a target moving in a region populated by
sensor nodes that have limited wireless communication capabilities. The sensors
have fixed sensing range and the quality of range estimates degrades with distance
from the sensor. The best accuracy is obtained if the measurements from all the
sensors can be collected and processed together to estimate the target location.
Nevertheless, this global collection is not possible due to communication constraints
of individual sensors. To accomplish this task efficiently a distributed mechanism is
necessary for target tracking.

We present a methodology for mining geographically distributed datasets for
spatio-temporal patterns. In order to achieve energy efficiency in WSN, we present
a clustering architecture for the sensor nodes, where instead of sending individual
raw data from sensors to end users, multiple data items are aggregated as they
are forwarded by the WSN. Our main goal is to perform data mining on the data
stored in sensor nodes to extract useful information and then to do a further round
of exchange of messages between the sensor nodes and the cluster heads (CHs) to
discover global spatio-temporal patterns.

Our distributed mechanism can be described as follows: We assume that there
is no central authority governing WSN operation. Since information degrades with
distance, only sensors sufficiently close to the target share their data. Second, since
there is no designated central authority, an arbitrary sensor takes the role of a fusion
center (or leader node) for a given time period and the data is processed at that
sensor.

The rest of the paper is organized as follows: related research is reviewed in
the following section. In Section 3, we give the basic concepts of the problem for-
mulation. A step by step outline of our algorithm is described in Section 4. The
simulation of our algorithm is presented in Section 5. Section 6 analyzes the com-
munication requirements of our algorithm. We conclude our work in Section 7.
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2 RELATED RESEARCH

During the past few years surveillance and monitoring applications using WSNs has
attracted a lot of attention in the research community. This kind of functionalities
form a canonical class of applications which can be constructed with WSNs. The
work presented in this paper has been inspired by various existing research efforts,
and we introduce data mining algorithm to discover temporal movement patterns
of object in a WSN.

A number of approaches have been investigated for object localization and track-
ing. Some existing approaches such as [19] use the sensor nodes only to collect data
and do the computation of the event’s location at a base station equipped with more
computing resources and power (such as a laptop computer). This circumvents the
limited computing resources at the individual sensor nodes and the complexity of
a distributed algorithm, but creates the strain on the WSN bandwidth and sensor
node batteries by the increased traffic between the nodes around the event and the
base station. Other approaches observe events through clusters of sensor nodes that
are formed during the self-configuration process [26, 27]. Cluster members are able
to directly communicate with the CH and send their information to it. The CH
collects the data from all the cluster members and computes the event location.

In [5], the authors present Sextant, a unified framework for node and event lo-
calization. Sextant is a comprehensive system that derives its effectiveness from in-
tegrating negative as well as positive information, representing areas precisely using
Bezier curves, transitively disseminating constraints in the presence of uncertainty,
and solving the resulting system of constraints using a distributed algorithm. The
resulting system is capable of providing probability distributions for event locations,
and non-convex area estimates for node locations to higher level applications.

In [3], a technique for clustering homogeneously distributed data in a peer-
to-peer WSN environment is described. The proposed technique is based on the
principles of the k-means algorithm. It works in a localized asynchronous manner
by communicating with the neighboring nodes. The results showed that, in contrast
to the case when all the data is transmitted to a central location for application
of the conventional clustering algorithm, the communication cost of their approach
is significantly smaller. In [23], the authors propose a fully distributed localization
scheme that consists of two steps. The first step of distributed election-winner
notification algorithm (DENA) determines the closest sensor node to an event and
informs all other sensor nodes about the sensor node closest to the event. The
intensity based localization algorithm (ILA) provides a signal independent position
estimation of the event and is calculated at the closest winner node. A combination
of both these algorithms builds a framework to efficiently and accurately detect
and localize events. The novelty of their ILA algorithm is that it is independent of
signals emitted by an event.

In [24], a location estimation algorithm on a single sensor node equipped with
inexpensive directional antennas is proposed and demonstrated by measuring the
received signal strength of the transmission peers. The authors provided an algo-



650 A.M. Khedr, W. Osamy

rithm for location estimation of moving targets, individually by the sensor node; and
the estimation is computed by selecting two patch antennas using strongest received
signal strength (RSS). The final result is obtained by averaging these two estimated
locations. We consider the system proposed by Chin-Lung in [24], as we consider
sensor nodes to be capable of capturing and storing coordinate information about
a moving object. Other aspects in which localization approaches differ are the kind
and the number of sensing modalities used, such as light, magnetism, seismic waves,
angle of arrival or time of arrival of acoustic waves.

In [9], the authors suggested a target tracking algorithm MCTA using mini-
mal tracking area called tracking contour that is based on the vehicular kinematics.
MCTA minimizes the number of working sensor nodes in terms of the communica-
tion and sensing energy cost during the mobile target’s trajectory. They showed that
the ratio of tracking contour’s working sensor number to tracking circle’s working
sensor number is proportional to the ratio of the tracking contour’s area to track
circle’s area. This indicates that the reduction of the tracking area leads to saving
in communication and sensing energy. Also, in order to reduce the dissemination of
tracking contour information within the tracking contour, they used the RF trans-
mission power control and directional antenna, leading to the minimization of the
number of RF receiving sensors.

In [14], the authors proposed a simple scheme for tracking object’s movement.
The proposed scheme is based on the difference of signal arrival times, which is so-
called inter-node time difference-of-arrival (ITDOA). It has a similar measurement
characteristic to classical time difference-of-arrival (TDOA) measurement. How-
ever, the ITDOA scheme has an advantage over TDOA; it does not require any time
synchronization between reference nodes. In context of time synchronization or sim-
ply timesync, it is useful for establishing temporal ordering of events (x happened
before y) and real-time issues (x and y happened within a certain interval) [20].
Timesync also may be used to coordinate future actions at two or more nodes (x,
y, and z will all happen at time T ). In mobile target tracking, it is essential that
the nodes act in a coordinated and synchronized fashion and global clock synchro-
nization is required, which is all the nodes of the WSN need to refer to a common
notion of time. For example, consider the problem of tracking a moving target using
proximity sensors, where some sensor nodes are deployed in the environment and
their proximity sensors detect when the moving object passes in their vicinity. As-
suming that the position of the sensors is known, it is essential that the instants of
detection are precisely time-stamped for determining the trajectory (direction and
speed) of the moving object. Clearly, the precision of the tracking algorithm based
on this system is limited by the accuracy of the clock synchronization [1]. In our
algorithm, we implicitly assume that the node clocks are synchronized.

In [12], the authors discussed collaborative signal processing techniques to de-
tect, classify, and track multiple targets. The authors assumed multiple target
detection at each sensor separated either in space or time, i.e., two targets are either
separated by some distance or appear in two different time durations. The work
described in [13, 2, 4, 6, 7, 15, 17, 25] provides similar distributed collaborative al-
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gorithms for target localization, classification, and tracking. Our mechanism can be
readily extended to track multiple targets by assuming that each target has a unique
ID and the local and the global hypotheses can be created for each ID.

There are some works in the literature on mining the movement patterns asso-
ciated with time intervals in object tracking WSNs (OTSN). In [21], a group moving
pattern mining algorithm, a prediction-based routing algorithm, and a group data
aggregation algorithm are proposed. The authors contribute in two areas: first,
exploring group relationship among object moving patterns and second, an efficient
prediction-based query algorithm and an efficient data aggregation algorithm for
OTSN. They show by experiments that the explored group relationship and group
moving pattern are adopted to predict the group location such that the amount
of query network traffic is significantly reduced. The amount of update network
traffic that is incurred by reporting the location of monitored objects is also greatly
reduced especially when the group density of monitored objects is high. In addition,
the adaptive data aggregation range improves the prediction hit rate. In [22], the
authors proposed a novel data mining algorithm named TMP-Mine with a special
data structure named TMP-Tree for efficiently discovering the temporal movement
patterns of objects. They proposed novel location prediction strategies that utilize
the discovered temporal movement patterns to reduce the prediction errors. Through
empirical evaluation on various simulation conditions and real dataset they also show
that TMP-Mine and the proposed prediction strategies deliver excellent performance
in terms of scalability, accuracy and energy efficiency. The work in [16] proposed
a heterogeneous tracking model (referred to as HTM), to efficiently mine object
moving patterns and track objects. Specifically, they use a variable memory Markov
model to exploit the dependencies among object movements. Furthermore, due to
hierarchical nature of HTM, multi-resolution object moving patterns are provided.
The proposed HTM is able to accurately predict the movements of objects and thus
to reduce the energy consumption for object tracking. The work presented in this
paper is closest to the work in [21, 22, 16] where we propose data mining algorithm
to discover the temporal movement patterns of object in WSNs.

In the context of these related works, we should emphasize that our attention is
primarily focused on mining the movement patterns associated with time intervals
in object tracking. We analyze these sensor stored data and extract the temporal
movement patterns of object after sensor nodes detection, and capture and store
timestamped coordinate information about the moving object.

3 PROBLEM FORMULATION TERMS

We consider sensor nodes to be spread randomly across a geographical area and
collaborate among themselves to form a random WSN. The assumptions about the
WSN are the following:

1. All sensors have the same characteristics.

2. Sensors are randomly distributed across the area of interest.
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3. All sensors have the capability to capture information about any moving object
in their sensing range. The information includes the approximate x, y coordi-
nates, and the timestamp. This assumption followed based on the system model
proposed by Chin-Lung [24]. The effect of sampling rate and the object veloci-
ty depends on the underlying algorithm which estimates object location. The
dataset used in our algorithm consists of x and y coordinates of the event point,
along with the timestamp. Each sensor may have a number of such data points
recorded in its local memory.

4. Time synchronization is critical for distributed systems, and it is particularly
important for WSNs that are used for gathering data corresponding to an event.
Without a global agreement on time, data from different sensors cannot be
matched. In our algorithm, we implicitly assume that the node clocks are syn-
chronized.

No specific assumptions are made about the target movement pattern. However,
we assume that the targets originate outside the sensing region and then move inside.
Also, the aggregated data are reported to the end user.

3.1 Local Hypothesis (LH)

We define the Local Hypothesis as a set of three or more points, satisfying the
following criteria:

1. Taking sets of three points or more, they should lie on the same line in the same
direction.

2. The points in the LH should be in ascending timestamp manner.

The angle between the two points p1 and p2 can be computed by the following
equation:

Angle(p1, p2) = arctan[(Ycord(p2)− Ycord(p1))/(Xcord(p2)− Xcord(p1))] (1)

LH is considered as a straight line, starting at the first point (FP ), and ending at
the last point (LP ) with a specific angle. For that, we consider the structure of LH
as LH = (FP, LP, angle), [10, 11].

3.2 Global Hypothesis (GH)

A GH is considered as a structure that contains a set of LHs. GH is formed when
different LHs are merged in an ascending manner according to their timestamps.
We keep track of GH direction by updating the PointChangeList, which includes
the points at which the GH changes its direction. The GH starts at the first point
of the first attached LH and ends at the last point of the last attached LH. We
define the length of GH to be the number of LHs considered during forming GH.
We define the GH structure as GH = (Start Point (SP ), 〈PointChangeList〉, End
Point (EP )) [10, 11].
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4 ALGORITHM OUTLINES

In this section, we outline our proposed algorithm to discover global temporal pat-
terns. First the useful sets of points (local hypotheses) are extracted from the local
points stored at the sensor nodes, then from these sets of points we extract the most
useful points (Global hypotheses). Second, we elect a set of sensor nodes to work as
CHs; these CHs form a backbone of the WSN. Summarized GHs are aggregated
over the backbone till the end user gets the global summarized GH. The outline of
the whole mechanism is as follows:

4.1 Step 1: Forming the Local Hypotheses

When an object moves in the range of a sensor node, it records details of the object
and arranges them in ascending order of their timestamps. We determine the angles
between the pi (i=1), and pi+1, and between pi+1, and pi+2. If the computed angles
are not equal, we skip the first point of the three points, and start from the second
one. Otherwise the LH is established by setting up the first point to FP , the
third point to LP , and the angle between the second and the third points to LH
angle. Further points may be added to the current LH, by taking the next point pj
(j = i + 3, . . . , N), where N is the number of points in the database. If (pj−1, pj)
angle is equal to the LH angle, we update LP to pj.

The procedure to generate the local hypotheses LHs is as follows:

1. Sort your data in ascending order as per their timestamps,

2. Let i = 1,

3. While (i < N)

(a) Compute the angles between pi, pi+1, and pi+1, pi+2,

(b) If the angles between the three points are the same,

i Establish LH by setting up pi to FP , and pi+2 to LP of the LH,
ii For every next point pj (j = i+ 3 to N),

A Compute the angle between pj, and last added point to the current
LH (pj−1),

B If the computed angle equals to the previous one in 3(a),

• Update LP to pj ,

C Else start creating a new LH by setting i = j, and go to 3,

iii End for

(c) Else i = i + 1 and go to 3,

4. End while.

5. End Procedure.
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4.2 Step 2: Computing the Global Hypothesis

In this step, each sensor extracts the most important points among the set of LHs.
Each sensor computes its GH by merging its LHs, using the following procedure:

1. Arrange your LHs in ascending manner as per their last point timestamps,

2. Set PointChangeList to Φ,

3. Set the FP of the first LH as the start point of the GH,

4. For every next LH,

(a) If the angle of the current LH is not equal to the angle of the previous LH,

i Add the FP and the angle of the current LH into PointChangeList of
the GH,

5. End for

6. Set the LP of the last taken LH as endpoint of the GH,

7. End procedure.

4.3 Step 3: CHs Election and Backbone Creation

In this step, every sensor node broadcasts the endpoint timestamp of its GH to its
neighboring nodes. The sensor node that possesses the maximum endpoint time-
stamp considers itself as root node (SRoot) and volunteers itself as the CH and sets
its RootId, and ParentId. SRoot initiates the WSN clustering process by finding
the sensor (say Sj) with minimum timestamp from its members and urges it to be
a member of its cluster. Sj updates its RootId to the supporter RootId, and its
ParentId to the supporter Id. Then, Sj volunteers itself as a CH and forms a new
cluster with neighboring nodes that are not members in any other cluster.

SRoot
tmax

Sj

tj

Sj+1

tj+1

t1

t2

t5

t4

t3

Fig. 1. Clustering processes

Figure 1 shows how the election process occurs in our mechanism; the black
nodes are the elected CHs while the gray nodes are the cluster members. SRoot pos-
sesses the maximum timestamp in the WSN for that it initiates the clustering process
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and forms a cluster as shown by gray nodes around SRoot. SRoot finds that tj is the
minimum timestamp from the received timestamps (t1, t2, t3, t4, t5, tj) and sends
message to Sj to form a new cluster. Sj sets its ParentId to the Id of SRoot and
its RootId to the RootId of SRoot and volunteers itself as a CH. In a similar way,
Sj supports Sj+1 that has the minimum timestamp received by Sj.

After broadcasting the GH endpoint timestamp of every sensor, the election
process of CHs can be done by the following procedure at every sensor Si:

1. arrange the received GHs according to their endpoint timestamps in ascending
manner,

2. if you have the largest timestamp in the WSN

(a) set yourself as SRoot node for the WSN,

(b) set your RootId and ParentId to your Id,

(c) volunteer yourself as CH by broadcasting declaration message,

(d) find the sensor node that reports minimum timestamp (say Sj),

(e) initiate clustering process by transmitting support message to Sj.

3. end if

4. if you receive support message,

(a) set your ParentId to the Supporter Id,

(b) find the sensor node that reported minimum timestamp (say Sj),

(c) if your timestamp is greater than the timestamp of Sj

i volunteer yourself as CH by broadcasting declaration message,
ii transmit support message to Sj.

5. end if

6. if you are not cluster member node AND a declaration message has been re-
ceived, join the cluster by transmitting confirmation message to the CH.

7. end if

8. end Procedure

By the end of step 3, the skeleton of the WSN is formed and the backbone is the
volunteered CHs. Global summarized GH is formed by merging all the summarized
GHs at the CHs. The last CH at the backbone reports the global summarized GH
to the end user.

4.4 Step 4: Computing Summarized GH and Reporting the Results

In this step, we aggregate the generated GHs to get the global summarized GH.
This will be done in two levels, the first level will be between the sensor nodes and
their CH, while the second one will be among the CHs.
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At the cluster members level each CH forms its summarized GH by merging
the received GHs.

At the CHs level the generated GHs at each CH will be aggregated till we obtain
the global summarizedGH. At this level, lowerCH which has minimumGH.EP
timestamp will send its GH to the next cluster head. The next CH merges the
received GH into its GH to form a new GH and then sends this new GH to its
next CH and so on till we get the global summarized GH at the last CH. The
last CH will report the GH to the end user.

The following procedure shows how the merging operation of two GHs can be exe-
cuted at any sensor node.

1. Set the minimum SP (SP with minimum timestamp) of the two GHs, to the
SP of the new GH.

2. Set the union of PointChangeLists of the two GHs to the PointChangeList of
the new GH, arrange them according to their timestamps.

3. Set the maximum EP (EP with maximum timestamp) of the two GHs end-
points, to the EP of the new GH.

4. End Procedure.

For more clarification consider the following network.

SRoot
tmaxSj+1

S1
S 0
tmin

Sj

Cluster Member

Cluster Head

Fig. 2. Network Backbone and aggregation levels

In Figure 2, the gray nodes represent cluster members while the black nodes
represent CHs. Each black node aggregates the GHs from its gray nodes to form
the summarized GH. The next level of aggregation process begins from node S0

that has tmin toward SRoot that has tmax, where at each CH except the first one
a new summarized GH is formed by merging the received GH with its GH. This
merging process will be continued till SRoot merges its GH with the received GH
from Sj+1, and reports the result to the end user.
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5 SIMULATION RESULTS

We analyze the performance of our algorithm via simulation using NS2. The WSN
model for simulation consists of randomly placed sensor nodes in a constant square
area (300× 300m2). In our simulation, we focus on measuring the energy consump-
tion as performance between our approach and the direct communication architec-
ture (DC).

In order to measure the energy dissipation of sensor nodes, we use the same en-
ergy parameters and radio model as discussed in [8], wherein energy consumption is
mainly divided into two parts: receiving and transmitting messages. The transmis-
sion energy consumption needs additional energy to amplify the signal depending
on the distance to the destination. Thus, to transmit a k-bit message a distance d,
the radio expends will be,

ETx(k, d) =

{

kEelec + kǫfsd
2 d < (ǫfs/ǫmp)

kEelec + kǫmpd
4 d ≥ (ǫfs/ǫmp)

(2)

and to receive this message, the radio expends will be

ERx(k) = k · Eelec. (3)

Simulated model parameters are set as: Eelec = 50 nJ/bit, ǫfs = 10 pJ/bit/m2,
ǫmp = 13

10 000
pJ/bit/m4 and the initial energy per node = 2 J. We study the effect

of the number of sensor nodes and the transmission radius parameters on the WSN
energy dissipation.

The first part of our simulation shows the effect of increasing sensing range on
the WSN energy dissipation of our approach and DC approach. We run the test
with 300 sensor nodes, and increase the sensing range from 30m to 60m in increment
of 5m. Figure 3 shows that the total energy consumption in our approach is much
less than the consumption energy of the DC approach. This could be due to the
increase of the probability of neighbors of each sensor node and to the decrease of
the number of CHs.

In the second part of our simulation, we measure the effect of number of sensor
nodes on the energy dissipation of nodes. We fix the sensing range of the sensor
nodes at 50m and the communication range to be approximately twice of the sensing
range. The number of sensor nodes varies from 100 to 500 in increment of 100 sensor
nodes. Figure 4 shows that the energy consumption in our approach is less than that
of the DC. This could be due to the fact that in our approach each node maximizes
its local computations and minimizes the exchanged information.

The simulation results show that the performance of our approach performs well
and can achieve remarkably low energy consumption. In addition, our results show
that the algorithm works effectively irrespective of the number of sensor nodes, i.e.
our approach is scalable for increasing the number of sensor nodes.
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Fig. 3. Impact of sensing range
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6 COMMUNICATION REQUIREMENTS

In this section, we present the communication requirements of our proposed me-
chanism. Since the computation cost at each sensor node is small as compared to
the communication cost of two sensors, the communication requirement comes from
the number of exchanged messages. In our algorithm, there are four steps to be
preformed till the creation of global summarized GH. We analyze each one of these
four steps in terms of the number of exchanged messages as follows:

1. Forming LHs and GHs: The computations of forming LHs and GHs are
locally performed, so that no exchanged messages are needed.

2. CHs election: If we assume that m is the total number of sensors that store
object data, and l is the number of elected CHs, the exchanged messages for
this step will be as follows:

• m messages are required to the GHs,

• l messages are required for the volunteered CHs,

• m− l confirmation messages from neighbors (cluster members) to their CH,
and

• l support messages from prior CH to the next one.

3. Computing summarized GH and reporting the results: The exchanged
messages for this step will be as follows:

• l messages are required for communication at the CH level till the global
summarized GH is obtained.

Therefore, the total number of messages for our algorithm will be:

Total Number of Exchanged Messages = 2m+ 2l ∈ O(m). (4)

7 CONCLUSION

In this paper, we have proposed an algorithm for target tracking by discovering
temporal patterns from a set of distributed sensor databases containing temporal
data. The concept of maximizing the computations at the local site and minimiz-
ing the exchange of information between the sensor nodes helps reduce the load on
the overall WSN; this formed the crux of our algorithm. In our work, we consid-
ered the problem of mining temporal data in distributed datasets. We worked with
sensor nodes which are capable of capturing and storing approximate coordinate
information about a moving object. These sensor nodes are placed randomly and
our algorithm is used to discover the nonlinear trajectory of the moving object. We
considered this equivalence to mining of global spatiotemporal patterns from geo-
graphically distributed datasets. Since there is only one database scanning required
in the beginning, the complexity of our algorithm is drastically reduced.
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