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Abstract. There are many architectures for RSA hardware implementation which
improve its performance. Two main methods for this purpose are Montgomery and
RNS. These are fast methods to convert plaintext to ciphertext in RSA algorithm
with hardware implementation. RNS is faster than Montgomery but it uses more

area. The goal of this paper is to compare these two methods based on the speed
and on the used area. For this purpose the architecture that has a better per-
formance for each method is selected, and some modification is done to enhance
their performance. This comparison can be used to select the proper method for
hardware implementation in both FPGA and ASIC design.
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1 INTRODUCTION

RSA [1] is the most widely used public-key cryptosystem. An RSA operation is
a modular exponentiation like c = ae mod N , which requires repeated modular
multiplications. In this formula ‘a’ is plaintext or ciphertext and less than N . For
security reasons RSA operand size needs to be 512-bits or more in length, hence
high data throughput rates are difficult to achieve.

The Montgomery multiplication algorithm [2] is an efficient method for modular
multiplication with an arbitrary modulus, particularly suitable for implementation
on general-purpose computers. The method is based on an ingenious representation
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of the residue class modulo N, and replaces division by N operation with division
by power of 2. This operation is easily accomplished on a computer or hardware
design since the numbers are represented in binary form. This algorithm is the
basic building block for the modular exponentiation operation, which is required
in the Diffie-Hellman [3] and RSA public-key cryptosystems. Various architectures
attempted to improve its performance [4, 5, 6].

Main operation of Montgomery multiplier is modular addition that consumes
time for propagating carry through many bits. For this reason one can use Carry
Save Adder (CSA) for avoiding long carry propagation [7].

Like Montgomery, RNS is another method for implementing RSA with paral-
lel architecture. So the processing speed is increased, while it uses more area in
hardware implementation.

Residue Number System (RNS) has long been considered an alternative to
weighted (binary) representation in digital signal processing [8], public key cryp-
tography and especially in RSA implementations [9, 10, 11]. RNS can be used to
represent numbers using independent residues of manageable word length, as well as
to exploit the independence of these residues in order to facilitate parallel computa-
tion of public key cryptosystems, as these typically require modular multiplication
of very large integers.

In RNS, numbers are represented according to a base β = (m1, m2, . . . , mk) that
all of the moduli are prime of each others, gcd(mi, mj) = 1, i 6= j, where k is the
number of elements in this base and is called the size of base. An integer ‘a’ is rep-
resented by the sequence (a1, a2, . . . , ak) of positive integers, where ai = a mod mi,
i = 1, . . . , k. The Chinese Remainder Theorem (CRT) ensures the uniqueness of
this representation within the range 0 ≤ a < M , where M =

∏k
i=1 mi[12]. The

proof of this theorem can be used to convert back the numbers from its residue
representation:

a =
k∑

i=1

aiMi

∣
∣
∣M−1

i

∣
∣
∣
mi

mod M (1)

where Mi =
M
mi

and
∣
∣
∣M−1

i

∣
∣
∣
mi

is the inverse of Mi modulo mi.

The most important advantage of RNS is that addition, subtraction and multi-
plication are very simple and can be implemented in constant time on a parallel ar-
chitecture. If a and b are given in their RNS form (a1, a2, . . . , ak) and (b1, b2, . . . , bk),
the result of the mentioned operations are

a± b =
(

|a1 ± b1|m1
, . . . , |ak ± bk|mk

)

(2)

a× b =
(

|a1 × b1|m1
, . . . , |ak × bk|mk

)

. (3)

The disadvantages of RNS representation are twofold. First, one can not easily
figure out a(a1, a2, . . . , ak) is greater than b(b1, b2, . . . , bk) or vise versa, and whether
the overflow has occurred during the computation or not. Thus, division is difficult
in this representation.
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The above mentioned facts are not a drawback for cryptographic implemen-
tations including public key cryptography. In public key cryptography most of
the algorithms perform the computations in a finite field or ring, which eliminates
the overflow problem. Moreover, they do not require comparisons. Modular reduc-
tion (the computation of (a mod N), multiplication (ab mod N) and exponentiation
(ab mod N) are the most important operations. They can be efficiently computed
without division using Montgomery’s algorithm.

The moduli in the form of 2n + 1 and 2n − 1 are frequently used in RNS [13]
because the subtraction, addition and multiplication can be performed simply in
these residues. Also calculating residue of a number in these moduli is simple,
in 2n − 1 [14] and in 2n + 1 if exploiting the diminished-1 representation [15], by
a simple addition the result can be obtained. Modular multiplication is the one of
the operations that uses the RNS for increasing its speed.

If the numbers were in the diminished-1 representation, with Wallace tree [16]
and CSA architecture [17], the modular multiplication in modulo 2n+1 can be done
in the most efficient method [17]. Also for modular multiplication in modulo 2n− 1
this architecture can be used without conversion to diminished-1.

In this paper, to compare these two methods of RSA implementation the best
of their implementation, according to their performance, is selected and some mo-
dification is done to enhance their performance.

This paper is organized as follows: In Section 2, the Montgomery algorithm and
its radix-2 version are described. In Section 3, our modified version of Montgomery
algorithm to enhance its performance is proposed. Section 4 discusses the five-to-two
architecture of Montgomery multiplier that has the best-reported performance. The
modified version of Montgomery multiplier that uses five-to-two architecture with
its results is presented in Section 5. Proposed RSA architecture and the results
are presented in Section 6. Section 7 briefly describes the Bajard RNS method for
modular multiplication. RSA implementation with Bajard method is summarized
in Section 8. Section 9 does some modification in Bajard algorithm to improve
its performance. A main processing unit for RNS implementation is proposed in
Section 10. The result of RSA implementation with RNS is shown in Section 11.
Section 12 compares two methods based on the used area and the processing speed.
Finally the paper is concluded in Section 13.

2 MONTGOMERY MODULAR MULTIPLICATION

Let the modulus N be an n-bit integer number, i.e. 2n−1 ≤ N < 2n, and let r be
2n [18]. The Montgomery multiplication algorithm requires that r and N be prime
of each other, i.e., gcd(r, N) = gcd(2n, N) = 1. This requirement is satisfied if N is
odd. In order to describe the Montgomery multiplication algorithm, first define the
N -residue of an integer a < N as a′ = ar mod N . Given twoN -residues a′ and b′, the
Montgomery product is defined as the N -residue c′ = a′b′r−1 mod N , where r−1 is
the inverse of r modulo N , i.e., it is the number with the property r−1r = 1 mod N .
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The resulting number c′ is the N -residue of the product c = ab mod N , since

c′ = a′b′r−1 mod N = ar br r−1 mod N = cr mod N. (4)

In order to describe the Montgomery reduction algorithm, an additional quan-
tity, N ′, is needed which is the integer with the property, rr−1 − NN ′ = 1. The
integers r−1 and N ′ can both be computed by the extended Euclidean algorithm [19].
The computation of Monpro(a′, b′) is achieved as follows:

Monpro(a′,b′)
t = a′b′;
u = (t+ (tN ′ mod r)n)/r;
if u ≥ N then return u−N else return u;

Output of this algorithm is a′b′r−1 = ar br r−1 = abr mod N . So if its arguments
were a and b, this output was abr−1 mod N .

The following exponentiation algorithm is one way to compute x = ae mod N
by using Montgomery multiplication algorithm [5, 18, 20, 21]. n is the number of
exponent bits. Note that Monpro(x′, 1) = x′1r−1 = xrr−1 = x mod N .

ModExp(a, e,n)
a′ = ar mod N ;
x′ = 1r mod N ;
for i in n− 1 downto 0 loop

x′ = Monpro(x′, x′);
if ei = 1 then x′ = Monpro(x′, a′);

end loop;
x = Monpro(x′, 1);
return x;

The radix-2 version of Montgomery multiplication algorithm [22] that calculates
the Montgomery product of a and b is summarized in the pseudo code below.

Montgomery Multiplication(a,b,N)
S[0] = 0;
for i in 0 to n− 1 loop

qi = (S[i]0 + aib0) mod 2;
S[i + 1] = (S[i] + aib+ qiN) div 2;

end loop;
return S[n];

a and b must be equal to or less than 2N and the output is ab2−n mod N . Note
that r in this algorithm is equal to 2n.

This algorithm is more suitable for hardware implementations [23, 24, 25] be-
cause it uses modulus and division by 2 that could be implemented easier. In this
algorithm arguments can be larger than N and equal to or less than 2N [22, 23, 26]
but when it is used for RSA these arguments shall never be larger than N due to
its property [20, 27].
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The critical delay of this algorithm occurs during the calculation of the S values
given by the three inputs addition S[i+ 1] = (S[i] + aib+ qiN).

The carry propagation resulting from the very large operand additions is the
main contributing factor for the delay.

3 SIMPLE RADIX-2 MONTGOMERY MULTIPLIER

As mentioned, calculation of summation is the critical delay of radix-2 Montgomery
multiplier. Using the CSA architecture can eliminate this delay but one parameter
of this delay is to calculate qi and multiply with N and then to add the result to
summation of the two other parameters.

In this algorithm in order to calculate qi, first bit of previous result is added by
aib0. So if one can make b0 equal to zero this step can be removed. Assuming b as
2b can do this, because the first bit of 2b is zero and aib0 is equal to zero. This as-
sumption for some systems such as RSA can be used because inputs of Montgomery
algorithm can be larger than N and if b is less than N (for some systems) then 2b
is less than 2N and satisfies the Montgomery multiplier requirement.

The algorithm required one extra clock cycle by adding one bit to b. So new
algorithm can be rewritten as follows [28]:

New Montgomery Multiplication(a,b,N)
S[0] = 0;
B new = 2b;
for i in 0 to n loop

S[i + 1] = (S[i] + aiB new + S[i]0N) div 2;
end loop;
return S[n+ 1];

New multiplier assumes that the last bit of a andN is zero so an in this algorithm
is zero. For the result only first n bits of S[n+ 1] should be returned.

The modified algorithm uses 2b instead of b as input and with one extra division
by two, the result is a 2b 2−(n+1) = a 2b 2−12−n = ab2−n mod N .

This is the required result. So this algorithm can be used instead of Radix-2
Montgomery multiplier in exponentiation algorithm without any change in that
algorithm.

For instance the new algorithm computes Montgomery multiplication (a)1101×
(b)1001 mod 1111 = 1100 as follows:

S[0]=0
B new=10010

i = 0 S[1] = 00000 + 1× 10010 + 0× 1111 div 2 = 01001
i = 1 S[2] = 01001 + 0× 10010 + 1× 1111 div 2 = 01100
i = 2 S[3] = 01100 + 1× 10010 + 0× 1111 div 2 = 01111
i = 3 S[4] = 01111 + 1× 10010 + 1× 1111 div 2 = 11000
i = 4 S[5] = 11000 + 0× 10010 + 0× 1111 div 2 = 01100
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4 FIVE-TO-TWO CSA ARCHITECTURE

The main calculations of CSA are

sum = x1 XOR x2 XOR x3 (5)

carry = (x1 AND x2) OR (x1 AND x3) OR (x2 AND x3). (6)

The sum of bit vectors sum and carry is equal to the sum of the three input bit
vectors x1, x2 and x3. The benefit of this architecture is that no carry propagation
is needed and therefore fast summation is possible.

An outline diagram of five-to-two CSA operation [7, 20] is shown in Figure 1.
Montgomery algorithm can be changed for this architecture as follow:

Five-to-two CSA Montgomery Multiplication(a1, a2,b1,b2,N)
S1[0] = 0;
S2[0] = 0;
for i in 0 to n− 1 loop

qi = (S1[i]0 + S2[i]0 + (ai(b10 + b20))) mod 2;
S1[i+ 1], s2[i+ 1] = CSR(S1[i] + S2[i] + ai(b1 + b2) + qiN) div 2;

end loop;
return S1[n], s2[n];

CSA ARRAY

CSA ARRAY

IN1 IN2 

n n

n+1 n+1

n

n

CSA ARRAY

n+1 n+1

n

K-bits Register

n+1 n+1

n+1 n+1

CARRYSUM

CLK RST IN3 IN4 IN5 

Fig. 1. Block diagram of five-to-two CSA

Note that the input operands a and b and the output product S are represented
in carry save format as a1 and a2, b1 and b2, and S1 and S2, respectively. CSR
stands for carry save representation.
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Barrel Register Full Adder (BRFA) can be used to determine ai as shown in
Figure 2. So there is no need to compute full addition of the input operands a1 and
a2 [29].

a1[k-2] ............ a1[1] a1[0]a1[k-1]

a2[k-2] ............ a2[1] a2[0]a2[k-1]
Full adder

Carry reg.
ai

Cin

CoutSum

Fig. 2. Barrel register full adder diagram

For this architecture at the beginning of each multiplication one extra clock
cycle is required to reset the signal S1[0] and S2[0] to zero. Thus this algorithm can
be executed in only n+ 1 clock cycles.

5 IMPLEMENTATION OF MODIFIED MONTGOMERY

MULTIPLICATION ALGORITHM

To implement the new algorithm, CSA architecture is used. The delay of calculat-
ing qi and then multiplying with N due to modified algorithm is removed. The five
to two CSA algorithm can be rewritten as follows [28]:

Five-to-two CSA New Montgomery

Multiplication(a1, a2,b1,b2,N)
S1[0] = 0;
S2[0] = 0;
for i in 0 to n loop

Si0 = (S1[i]0 + S2[i]0) mod 2;
S1[i+ 1], s2[i+ 1] = CSR(S1[i] + S2[i] + ai(b1 + b2) + Si0N) div 2;

end loop;
return S1[n+ 1], s2[n+ 1];

In this implementation calculation of ai(b10 + b20) is removed but some extra
memory must be used to store one added bit; but, for a1 and a2 there is no need to
this extra memory because one can change BRFA to calculate an as zero for output.

The block diagram for the new algorithm implementation is shown in Figure 3.
In this figure S10 and S20 stand for S1[i]0 and S2[i]0 respectively in the algorithm.

In this architecture, when calculating S1 + S2 + ai(b1 + b2), the result of
N AND (S10 XOR S20) is prepared and there is no delay to wait for its results.
In previous implementation S1[i]0 XOR S2[i]0 XOR (ai AND (b10 XOR b20)) must
be calculated and then AND with N , that has more delay.

This architecture needs one clock for resetting S1[0] and 4, also one extra clock
cycle for internal loop. Thus this algorithm can be executed in n+ 2 clock cycles.
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CSA ARRAY

CSA ARRAY

S1 S2 

n n

n+1 n+1

ai

n

n

CSA ARRAY

n+1 n+1

n

K-bits Register

n+1 n+1

n+1 n+1

CARRYSUM

CLK RST 

b1

n

ai b2

n

N

n

S1 0
S2 0

Fig. 3. Block diagram of five-to-two CSA for new algorithm

For I/O interface of both implementations, the block diagram shown in Figure 4
is used. So all reported results include these I/O registers and additional circuits.
In this architecture the inputs are registered into the microchip at a rate of 32 bits
per clock cycle. Likewise, the outputs are clocked out of the chip 32 bits per clock
cycle. This is due to the limited number of I/O pins available.

For comparing the two algorithms, they are implemented by VHDL language
and synthesized by the Leonardo Spectrum 2002 tool for both ASIC and FPGA
technologies. For ASIC synthesis, CMOS 0.6 library and for FPGA synthesis, Xilinx
Virtex2 series are used.

Tables 1 and 2 provide results of these implementations for CMOS 0.6 library.
Tables 3 and 4 show these results for FPGAs.

Bit Length (n) Clock Speed (MHz) Area (Gates) Throughput Rate (Mb/s)

512 101.5 14 312 101.30

1 024 122.1 28 613 121.98

Table 1. Results of ASIC synthesis of Montgomery multiplier (CMOS 0.6 library)

It should be noted that for calculating throughput rate, for standard Mont-
gomery multiplier n + 1 is used and for new Montgomery multiplier n + 2 clock
cycles are used.
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Input Registers

32

a1

32

a2

32

b1

32

b2

32

N

Montgomery
Multiplier

1024 1024 1024 1024 1024

Output Registers

1024 1024

32 32

S1[n] S2[n]

CLK Reset 

Fig. 4. I/O interface for implementations of Montgomery multiplication algorithm

Bit Length (n) Clock Speed (MHz) Area (Gates) Throughput Rate (Mb/s)

512 146.7 1 4318 146.13

1 024 139.2 28 618 138.93

Table 2. Results of ASIC synthesis of new-Montgomery multiplier (CMOS 0.6 library)

The tables show that the new algorithm has better performance than the stan-
dard algorithm. For instance for ASIC design of 512 bits length, there are only 6 ex-
tra gates for area but throughput rate is increased to 44.25%. For FPGA design the
results and performance improved, because the area is decreased too and this is due
to its structure. For instance, for 512 bits the results area decreased (2 slices) and
also throughput rate is increased (45.98%). So it is obvious that this new algorithm
has greater performance in FPGA designs.

The advantage of the new algorithm can be categorized as follows:

1. Higher performance: For FPGA design it used less area and has higher frequency.
For ASIC design its area increased few gates only but its throughput increased
substantially, so it has better performance.

2. There is no need to change the algorithms or systems that use Montgomery
multiplier because their inputs and outputs remain unchanged.

Xilinx Device Bit Length (n) Clock Speed (MHz) Area (Slices) Throughput
Rate (Mb/s)

XC2V1500 512 49.3 3 127 49.20

XC2V3000 1 024 56.1 6 249 56.05

Table 3. Results of FPGA synthesis of Montgomery multiplier (Xilinx virtex2 library)
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Xilinx Device Bit Length (n) Clock Speed (MHz) Area (Slices) Throughput
Rate (Mb/s)

XC2V1500 512 72.1 3 125 71.82

XC2V3000 1 024 79.2 6 243 79.05

Table 4. Results of FPGA synthesis of new-Montgomery multiplier (Xilinx virtex2 library)

3. This algorithm can also be used for sequential algorithms or software imple-
mentations, because one of its steps has been removed and thus it can be run
faster.

6 RSA HARDWARE IMPLEMENTATION

WITH MONTGOMERY MULTIPLIER

An RSA operation is a modular exponentiation with operands satisfying the con-
ditions stated previously. A well known and widely used modular exponentiation
algorithm is the square and multiply algorithm given below [22, 23, 24, 25], which
computes M = cd mod N . dk is the bit length of the exponent d and montmult
refers to radix-2 Montgomery multiplication algorithm.

Modular Exponentiation(c,d,N)
K = 22n mod N ;
P [0] = montmult(K, c,N);
R[0] = montmult(K, 1, N);
for i in 0 to dk loop

P [i+ 1] = montmult(P [i], P [i], N);
if d[i] = 1 then R[i+ 1] = montmult(R[i], P [i], N);

end loop;
M = montmult(1, R[dk], N);
returnM ;

By using the new five-to-two CSA multiplier architecture to calculate the mont-
mult stages of this algorithm, this algorithm can be rewritten as follows:

New Modular Exponentiation(c,d,N)
K = 22n mod N ;
P 1[0], P 2[0] = 5to2 new montmult(K, 0, c, 0, N);
R1[0], R2[0] = 5to2 new montmult(K, 0, 1, 0, N);
for i in 0 to dk loop

P 1[i+ 1], P 2[i+ 1] = 5to2 new montmult(P 1[i], P 2[i], P 1[i], P 2[i], N);
if d[i] = 1 then

R1[i+1], R2[i+1] = 5to2 new montmult(R1[i], R2[i], P 1[i], P 2[i], N);

end loop;
M1,M2 = 5to2 new montmult(1, 0, R1[dk], R2[dk], N);
M = M1 +M2;
return M ;
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An analysis of the total number of clock cycles required for a full RSA operation
is given in Table 5.

Type of
Operation

Corresponding Algorithm Calculation Number of Clock Cycles

pre-
processing

P 1[0], P 2[0]

R1[0], R2[0]
n+ 2

For Loop
P 1[i+ 1], P 2[i+ 1]

R1[i+ 1], R2[i+ 1]
dk(n+ 2)

post-
processing

M1,M2 n+ 2

Final Ad-
dition

M n+ 2

Total Number of Clock Cycles (n+ 2)(dk + 3)

Table 5. Clock cycles to compute RSA

Pre and post processing are required to convert the operands in the algorithm to
and from Montgomery format. The final addition operation makes use of the BRFA
component and uses n + 2 cycles for calculation; but if montmult is used for this
purpose [30] this number is reduced to n/3 + 2. This proposed architecture is used
to implement RSA using new Montgomery multiplier and the result was as shown
in Tables 6 and 7.

Bit Length (n) Clock Speed (MHz) Area (Gates) Throughput Rate (Mb/s)

512 74.1 38 283 0.29

1 024 70.0 77 711 0.14

Table 6. Results of ASIC synthesis of proposed architecture for RSA (CMOS 0.6 library)

Xilinx Device Bit Length (n) Clock Speed (MHz) Area (Slices) Throughput
Rate (Mb/s)

XC2V3000 512 72.0 9 047 0.28

XC2V6000 1 024 79.5 18 008 0.15

Table 7. Results of FPGA synthesis of proposed architecture for RSA (Xilinx Virtex2
library)

In this implementation the length of exponent is half of the operand size. For
example for operand size of 1024 bits, the exponent gets 512 bits length.

7 BAJARD RNS MODULAR MULTIPLIER

The Bajard method for RNS implementation is the fastest method so far [9]. This
is a general method and is independent of selecting a modulus, but most of the
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RNS implementations and particularly the RSA implementation by RNS used the
modulus in the form of 2n + 1 and 2n − 1. So it can be modified to achieve more
performance by using these moduli.

In the Bajard method, Montgomery modular multiplication algorithm is used
for modular multiplication (or modular exponentiation) and implemented by residue
number system. This method is introduced in [9] and summarized in this section.

This method uses two RNS bases of size k, β = (m1, . . . , mk) and β ′ = (mk+1,
. . . , m2k). All of the mi are prime of each other and the relationship M ′ ≥ M
exists with the assumption that M =

∏k
i=1mi and M ′ =

∏2k
i=k+1mi should take

place. Since this is based on Montgomery algorithm, the outputs are in the form
of abM−1 mod N and like Montgomery method, multiplication by M gives favorite
result, which is ab mod N . The Bajard RNS algorithm is as follows:

The RNS Montgomery modular multiplication algorithm
Inputs: Two RNS bases β = (m1, . . . ,mk) and β′ = (mk+1, . . . ,m2k)
such that M =

∏k
i=1 mi < M ′ =

∏k
i=1mk+i and gcd(M,M ′) = 1;

a redundant moduli mr, gcd(mr,mi) = 1, i = 1 . . .2k;
a positive integer N represented in both RNS bases such that,
0 < (k + 2)2N < M < M ′ and gcd(N,M) = 1, gcd(N,M ′) = 1;
two positive integers a, b represented in both RNS bases with ab < MN .
Outputs: A positive integer r̂ represented in both RNS bases,
such that r̂ = abm−1 mod N and r̂ < (k + 2)N .

MM(a, b,N) :
1− q ← (a × b)× (−N−1) in β
2− [q in β]→ [q̂ in β′](First base extension)
3− r̂ ← (a× b+ q̂ ×N).M−1 in β′ andmr

4− [r̂ in β]← [r̂ in β′](Second base extension)

Instructions in steps 1 and 3 can be performed in parallel by full RNS operations.
As a consequence the complexity of the algorithm clearly relies on the two base
extensions on steps 2 and 4.

If the number of multiplications was the criterion for speed, two modular multi-
plications in line 1 and three multiplications in line 3 are needed. Also if the number
of memory for saving constant values was a criterion for area, one memory in line 1
for saving the values of −N−1 in each modulus and two memories in line 3 for saving
the values of N and M−1 in each modulus are needed.

RSA cryptosystem requires modular exponentiation, so one can use this algo-
rithm and reuse its output each time as its input until the desired exponent is
achieved.

The instruction in line 2 (first base extension) consists of converting q obtained
in its RNS form (q1, . . . , qk) in the base β to its RNS representation in base β ′. For
this purpose the following relations are used. In these relationships qi represents
q mod mi.

σi = qi ×
∣
∣
∣M−1

i

∣
∣
∣
mi

mod mi, i = 1, . . . , k (7)
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q̂j =

∣
∣
∣
∣
∣

k∑

i=1

|Mi|mj
× σi

∣
∣
∣
∣
∣
mj

, j = k + 1, . . . , 2k (8)

So σi should be first computed and then used in next relation. In this step
a modular multiplication is needed for calculating σi and k modular multiplications
for q̂j. Furthermore it requires one memory for saving the value of M−1

i in each
modulo mi and one for saving Mi in each modulo mj.

In line 4 (second base extension) first the value of ξj must be computed from
the following relation:

ξj = r̂j ×
∣
∣
∣M ′−1

j

∣
∣
∣
mj

mod mj, j = k + 1, . . . , 2k (9)

and then the desired resultant value can be computed from:

r̂mi
=

∣
∣
∣
∣
∣
∣

k∑

j=1

∣
∣
∣M ′

j

∣
∣
∣
mi

× ξj − |α ×M ′|mi

∣
∣
∣
∣
∣
∣
mi

i = 1, . . . , k (10)

where α is computed from:

α =

∣
∣
∣
∣
∣
∣

∣
∣
∣M ′−1

∣
∣
∣
mr

×





k∑

j=1

∣
∣
∣M ′

j

∣
∣
∣
mr

× ξj − |r̂|mr





∣
∣
∣
∣
∣
∣
mr

(11)

For simplicity and ease of the calculation in the last equation, mr is usually
assumed as power of 2 such that mr ≥ k, k representing the number of moduli in
each base set.

8 BAJARD RSA IMPLEMENTATION USING RNS

Implementation of RSA with Montgomery modular multiplication algorithm is as
follows. The final result of this algorithm is c = ae mod N [5, 20].

RSA(a, e,N)
ā = ar mod N ;
c̄ = 1r mod N ;
for i in n− 1 downto 0 loop

c̄ = Monpro(c̄, c̄);
if ei = 1 then c̄ = Monpro(ā, c̄);

end loop;
c = Monpro(c̄, 1);
return c;

Monpro represents the Montgomery modular multiplication algorithm and r
represents the auxiliary moduli. The number of bits in N (or e) is shown in this
algorithm by n.
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The rule for this algorithm is that the input is converted to Montgomery rep-
resentation and then according to the number of bits of exponent the internal loop
is repeated in order to calculate the desired modular exponentiation and finally the
result of this loop is converted back to binary representation by the last Montgomery
modular multiplication.

Note that in this algorithm ‘a’ represents the plaintext that must be encrypted.
As mentioned before, RNS final result is a single modular multiplication where in
RSA a modular exponentiation is needed.

Since the Bajard RNS method is based on Montgomery algorithm, the previous
RSA algorithm can be used except for Monpro, the RNS Montgomery modular mul-
tiplication algorithm (MM(a, b, N)) must be substituted and redundant residue (r)
should be substituted by M (multiplications of modulus).

By this substitution the final result is less than (k + 2)N , since it must be
less than N so this difference must be corrected. The solution that is proposed by
Bajard [9] is that since this error is obtained by the calculation of the first base
extension approximately, for the last call of multiplication algorithm (that is used
for convert back to binary representation) this base extension should be calculated
exactly. The Mixed Radix System (MRS) [31] can be used for this exact base
extension. The relations of MRS are as below:

|q|mj
= |t1 + t2m1 + t3m1m2 + . . .+ tkm1 . . .mk−1|mj

. (12)

In other words in this system the weight of each number ti is 1, m1, m1m2, . . . ,
m1m2m3 . . .mk. The value of ti can be computed as follows:

t1 = q mod m1 = q1
t2 = (q2 − t1)c12 mod m2;
...
tk = (. . . ((qk − t1)ck − t2)c2k − . . .− tk−1)c(k−1)k mod mk mod m2;

cij represents m
−1
i mod mj and qi is the value from step 1 of the RNS algorithm

which is equal to qi = q mod mi.

9 MODIFIED BAJARD ALGORITHM

WITH IMPROVED PERFORMANCE

The Bajard algorithm uses less clock cycles and has more speed for calculation for
RNS implementation than any other methods. In this section Bajard algorithm
is used and optimized for RSA hardware implementation to reduce the number of
clock cycles and the area.

The values calculated during internal calculations that are not necessary for
RSA final results are combined with other calculations to reduce the calculation
time, as well as the area. For further clarity the optimizations for the main values
are presented as follows.
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9.1 Calculation of σi in the First Base Extension

As shown in the first base extension of the algorithm, it receives the value of q =
(a× b)× (−N−1) in the RNS representation in base β and calculates the value of q̂.
So in RNS algorithm the value of q is not required and can be combined with the
first base extension to reduce calculation cycles. The new relationship for σi is as
follows:

σi = qi ×
∣
∣
∣M−1

i

∣
∣
∣ mod mi =

(

a× b×
∣
∣
∣−N−1

∣
∣
∣
mi

)

×
∣
∣
∣M−1

i

∣
∣
∣
mi

mod mi

= (a× b)×
∣
∣
∣−N−1 ×M−1

i

∣
∣
∣
mi

(13)

In order to calculate a× b, then multiply by M−1
i , then multiply the final result

by −N−1 and assuming each multiplication requires one cycle, at least 3 cycles
are required. By combined relation, these cycles reduce to 2 cycles. As a re-
sult the speed is increased and area decreased, because in the new relation the
value of

∣
∣
∣−N−1 ×M−1

i

∣
∣
∣
mi

should be saved instead of saving two values
∣
∣
∣M−1

i

∣
∣
∣
mi

and

|−N−1|mi
.

9.2 Calculation of ξi

The values of ξj play an important role in the calculation of the final results. The
equations that are required to calculate ξj are listed below.

ξj = r̂j ×
∣
∣
∣M ′−1

j

∣
∣
∣
mj

mod mj (14)

r̂j = (a× b+ q̂j ×N)×M−1 mod mj (15)

q̂j =

(
k∑

i=1

|Mi|mj
× σi

)

mod mj (16)

If one starts with the first equation then the values are substituted and it implies
that:

ξj =
(

(a× b+ q̂j ×N)×M−1
)

×
∣
∣
∣M ′−1

j

∣
∣
∣
mj

mod mj

=
(

a× b×
∣
∣
∣M−1 ×M ′−1

j

∣
∣
∣
mj

)

+
(

q̂j ×
∣
∣
∣N ×M−1 ×M ′−1

j

∣
∣
∣
mj

)

mod mj

=
(

a× b×
∣
∣
∣M−1 ×M ′−1

j

∣
∣
∣
mj

)

+





∣
∣
∣
∣
∣

k∑

i=1

|Mi|mj
× σi

∣
∣
∣
∣
∣
mj

×
∣
∣
∣N ×M−1 ×M ′−1

j

∣
∣
∣
mj



 mod mj
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=
(

a× b×
∣
∣
∣M−1 ×M ′−1

j

∣
∣
∣
mj

)

︸ ︷︷ ︸

σj

+
k∑

i=1

(

σi ×
∣
∣
∣Mi ×N ×M−1 ×M ′−1

j

∣
∣
∣
mj

)

︸ ︷︷ ︸

δj

mod mj

In this relationship the first multiplication is named σj and the second one is
named δj . The calculation of σj and the calculation of σi can be computed in parallel;
as a result the computation time is reduced. Also the area is reduced due to combin-
ing the fixed values, as a result instead of saving four values |Mi|mj

,|N |mj
,|M−1|mj

and
∣
∣
∣M ′−1

j

∣
∣
∣
mj

just two values
∣
∣
∣M−1 ×M ′−1

j

∣
∣
∣
mj

and
∣
∣
∣Mi ×N ×M−1 ×M ′−1

j

∣
∣
∣
mj

should

be saved. Furthermore, instead of k+4 multiplication cycles (k multiplication cycles
for calculation of sigma for q̂j and 4 multiplication cycles for other calculations) only
k + 2 cycles (k multiplication cycles for δj and two cycles for σj) are required.

9.3 Calculation of |̂r|
mr

Since the value of |r̂|mr
is required for calculation of α, its value should be computed

during calculation of the other values. The formula for this computation is as follows:

|r̂|mr
= (a× b+ q̂ ×N)×M−1 mod mr (17)

q̂ can be computed by the relation q̂r =
∑k

i=1 |Mi|mr
× σi mod mr. So with

substitution in |r̂|mr
, the new formula is as follows:

|r̂|mr
=
(

a× b×M−1
)

︸ ︷︷ ︸

σr

+
k∑

i=1

σi ×
∣
∣
∣Mi ×N ×M−1

∣
∣
∣
mr

︸ ︷︷ ︸

δr

mod mr.

In this equation the first term is named σr and the second one is named δr.
The calculation of σr can be done while calculating σi. Due to this combining, the
number of multiplications is reduced from k+3 (k multiplications for calculation of
q̂r and 3 for |r̂|mr

calculation) to k + 1 (k multiplication cycles for δr and one for
σr calculation); furthermore the number of memory for saving the constant value is
reduced from 3 to 2.

After computing |r̂|mr
the value of α can be computed as follows:

α =
∣
∣
∣M ′−1

∣
∣
∣
mr

×





k∑

j=1

|M ′

j |mr
× ξj − |r̂|mr



 mod mr

=
k∑

j=1

ξj ×
∣
∣
∣M ′−1

×M ′

j

∣
∣
∣
mr

︸ ︷︷ ︸

α1

− |r̂|mr
×
∣
∣
∣M ′−1

∣
∣
∣
mr

mod mr

In this equation the first term is named α1 for individual calculations.
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9.4 Calculation of |̂r| in the Final Result

After the calculations of previous values now the final result or the output of algo-
rithm (r̂) is obtained. Due to removing some intermediate values for optimization,
the values of |r̂|mj

should be computed, and |r̂|mi
should be computed. As a result

the following relations can be used:

|r̂|mi
=

k∑

j=1

|M ′

j|mi
× ξj

︸ ︷︷ ︸

ρ

− |α ×M ′|mi
mod mi

|r̂|mj
= ξj × |M

′

j | mod mj .

The first term in |r̂|mi
is named ρ. The relation of |r̂|mj

is obtained from the

fact that the value of ξj is equal to r̂j ×
∣
∣
∣M ′−1

j

∣
∣
∣
mj

mod mj and as a result |r̂|mj

is produced by multiplying it with the value of |M ′

j|mj
. With this method one

redundant multiplication is added but due to reducing the multiplication cycles
obtained by other optimizations, this overhead can be omitted and overall reduction
in multiplication cycles is achieved.

If the numbers of clock cycles are mentioned, all calculations required for RNS
method can be categorized as follows:

1.

σi = (a× b)×
∣
∣
∣−N−1 ×M−1

i

∣
∣
∣
mi

mod mi , i = 1, . . . , k

σj = (a× b)×
∣
∣
∣M−1 ×M ′−1

j

∣
∣
∣
mj

mod mj , j = k + 1, . . . , 2k

σr = (a× b)×M−1 mod mr

2.

ξj = σj +
k∑

i=1

(

σi ×
∣
∣
∣Mi ×N ×M−1 ×M ′−1

j

∣
∣
∣
mj

)

mod mj

r̂mr
= σr +

k∑

i=1

σi ×
∣
∣
∣Mi ×N ×M−1

∣
∣
∣
mr

mod mr

3.

ρ =
k∑

j=1

|M ′

j |mi
× xij mod mi

α1 =
k∑

j=1

ξj ×
∣
∣
∣M ′−1

×M ′

j

∣
∣
∣
mr

mod mr
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4.

α = α1 − |r̂|mr
×
∣
∣
∣M ′−1

∣
∣
∣
mr

mod mr

5.

|r̂|mi
= ρ− |α×M ′|mi

mod mi

|r̂|mj
= ξj × |M

′

j |mj
modmj

In this categorization the relations in each category can be computed in parallel
because they are independent of each other. Due to equal number of multiplication
and summation in each category, the relations in one category are finished in the
same cycles and their results can be used in the next category.

It is obvious that in the first category 3 multiplications, in the second cate-
gory k multiplications and one addition, in the third category k multiplications,
in the fourth category one multiplication and one subtraction, in the fifth cate-
gory k multiplications and for |r̂|mi

a redundant subtraction are needed. Note that
k is the number of moduli in base β or β ′.

10 DESIGN OF THE MAIN RNS PROCESSING UNITS

WITH THE BEST PERFORMANCE

As mentioned before, the modulus in the form of 2n − 1 and 2n + 1 is more useful
and cost effective for RNS implementations. For selecting these moduli from the
set 2n1 − 1, 2n1 + 1, 2n2 − 1, 2n2 + 1, . . . , 2nL − 1, 2nL + 1 one should notice that all
of these moduli are prime of each other. For this purpose due to the proof that is
presented in [13] all the ni, i = 1, , L must be prime of each other; and for having
a similar modulus length, these parameters should be as close as possible.

The goal of this section is to improve the Bajard method for RSA hardware
implementation by using the above-mentioned moduli and implementing this im-
proved method by proper architectures for each main processing unit. In designing
each unit the performance is mentioned.

For ease of implementation and for speed improvement, modulus in the form of
2n− 1 is selected as first base set (M) and modulus in the form of 2n +1 is selected
as second base set (M ′). This assumption satisfies the relation M < M ′. Moreover,
by this selection the decision-making for hardware implementation of each step in
the RNS algorithm can be done easily.

10.1 2n + 1 Modular Multiplier

2n + 1 modular multiplication has the main role in RNS implementation but oper-
ations in these moduli are not as easy as those in 2n − 1 [14].
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The diminished-1 representation of numbers was proposed by Leibowitz [15], as
a convenient and efficient form for modulo 2n + 1 operations on binary numbers. If
d(a) is the diminished-1 representation of ‘a’ then:

d(a) = a− 1 mod (2n + 1). (18)

The advantage of this representation is that zero is uniquely identified by the
most significant bit (MSB = 1), for which all arithmetic operations are inhibited.

There are the following relationships for arithmetic operations within the repre-
sentation:

d(a+ b) = d(a)⊕ d(b) = d(a) + d(b) + 1 mod (2n + 1) (19)

d(a− b) = d(a)⊕ [−d(b)] = d(a) + d(b) + 1 mod (2n + 1) (20)

d

(
k∑

i=1

ai

)

=
k∑

i=1

⊕d(ai) = d(a1)⊕ . . .⊕ d(an)

= d(a1) + . . .+ d(an) + n− 1 mod (2n + 1). (21)

In these relationships, ⊕ represents addition and [−x] represents negative of
number x in diminished-1 format. d(b) represents the one’s complement of d(b) and
∑
⊕d(ak) used for summation of the numbers d(ak) in modulo 2n+1 in diminished-1

form.

In [17], by using the Wallace tree and diminished-1 representation, an efficient
method for modular multiplication modulo 2n+1 is presented. By using this method
there is no need to expand the adders to 2n bits for n bit numbers. The multipli-
cation is done by a series of addition that in each addition step, carry should be
complemented and used as a first bit for next addition step.

The formula for modular multiplication in diminished-1 form of two numbers a
and b modulo 2n + 1, which is used by this method, is as follows:

d(ba) =

(
n−1∑

i=1

⊕bid(2
ia)⊕ Z ⊕ d1(a)

)

+ 1 mod (2n + 1). (22)

The first term in parentheses should be done by diminished-1 addition and finally
the result should be incremented by one.

A constraint for this method is that it cannot produce a true result if one of
the operands was zero. Zero can be detected by testing the most significant bit
in diminished-1 representation so there is no need to add an additional hardware
module for finding whether an operand is 0.

In this formula Z represents the number of zeros from bit b1 to bn−1 and bar
represents the one’s complement of Z. d1(a) can be calculated by the following
formula:

d1(a) = b0d(a) + b0d(2a). (23)
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d(2ia) can be computed by the following relation:

d(2ia) = {an−i−1an−i−2 . . . a0an−1an−2 . . . an−i}. (24)

In other words, multiplication by 2i is accomplished by a cyclic shift of i bits to
the left with the shifted bits being complemented.

An instance of the architecture for this multiplier modulo 28 + 1 is shown in
Figure 5.
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Fig. 5. 28 + 1 modular multiplication architecture

In this figure each rectangle represents a full adder block. As can be seen, due
to using Wallace tree all additions are done by CSA architecture and there is no
carry propagation in adders.
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The additions that are taken in this multiplier are briefly shown in Figure 6.

Fig. 6. The additions that are taken in 28 + 1 multiplier

For converting a binary number to diminished-1, one can use the methods that
are proposed in [32]. In this paper, the selected methods are shown in the next
subsection.

10.2 Converting to Diminished-1 in 2n + 1

Since 2n = −1 mod (2n + 1), the residue operation is accomplished by a mod (2n +
1) = a mod 2n − a div 2n.

For calculating the remainder of a number in modulo 2n + 1, the quotient of
division with 2n (that may be necessary to calculate its remainder in modulo 2n)
is subtracted from the remainder of this division, in modulo 2n + 1. Suppose that
‘a’ has k, n-bit blocks; in order to calculate the remainder of modulo 2n + 1 these
relations are confirmed:

a = (ak−1, ak−2, . . . , a1, a0) (25)

R = a0 − (a1 − (a2 − . . .− (ak−2 − ak−1) . . .)) mod (2n + 1)⇒ (26)

R0 = a0 + a2 + a4 + . . . mod (2n + 1) (27)

R1 = a1 + a3 + a5 + . . . mod (2n + 1) (28)

R = R0−R1 mod (2n + 1). (29)

R can be acquired from R0 and R1 but calculation of d(R) or d(R0−R1) is the
main goal. Suppose that x = R0+1 and y = R1+1 and the relation of diminished-1
is taken; then:

d(x− y) = d(x) + d(y) + 1 = R0 +R1 + 1 = d(R0) + 1 + d(R1) + 1 + 1

= d(R0) + 1 + 2n − 1− d(R1)− 1 + 1 = d(R0) + d(R1) + 1

= d(R0−R1).
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So for calculation of d(R0 − R1) there is no need to calculate each d(R0) and
d(R1). Note that in this relation the fact that x is one’s complement and is equal
to 2n − 1− x, is used.

Finally for converting a number to diminished-1 in modulo 2n+1, first one must
calculate R0 and R1 by doing diminished-1 addition with the appropriate blocks
(note that there is no need to convert these blocks to diminished-1 and just suppose
that they are in diminished-1 representation and use diminished-1 addition rule for
them).

This is true if the number of blocks in R0 and R1 were equal because the
differences between diminished-1 and binary number are eliminated by subtraction.
For instance if R0 and R1 were not diminished-1 and it is supposed that they
are in diminished-1 representation, each of them is more than the desired number.
Therefore if each of them has k blocks then it has k values larger than desired and
by subtracting (R0−R1) these extra values are eliminated.

If they are not equal, a zero block must be added. Therefore the final method
can be summarized as follows:

1. Calculate the summation of odd and even blocks with diminished-1 rules and
CSA architecture.

2. Add the result of summation of even blocks with the one’s complement of the
result of the odd blocks.

3. Perform full addition in final result that is in CSA format.

Figure 7 shows architecture of 6 blocks. This architecture can be used for both
inputs. If there is an input less than 6 blocks all other blocks must be zero.

10.3 2n − 1 Modular Multiplier

In this section the architecture of 2n−1 multiplier is proposed by using the architec-
ture of 2n +1 modular multiplication. This architecture is much similar to previous
one but is simpler and uses less area. In this implementation Wallace tree is also
used.

The property of operations in modulo 2n − 1 [14] differ from 2n + 1 multiplier
as follows:

1. The output carry is used without any changes in the first bit of addition and no
complement is necessary.

2. In 2n− 1 modular multiplier, there is no need to know the number of zeros from
b1 to bn − 1. This block is removed from the architecture and as a result the
speed is increased.

3. There is no need to compute d1(a) and the bits of b are used instead.

4. It is not required to distinguish zero from the other numbers. The output re-
mains correct and produces zero number if each input was zero. So the hardware
for zero detection and producing the zero output for this case is removed.
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Fig. 7. Architecture for converting to diminished-1 for 6 blocks

With these differences one can discover that this multiplier has more processing
speed and less area than 2n + 1 multiplier. The architecture of this multiplier
modulo 28 − 1 is shown in Figure 8. In this figure there are two inputs – a and b.
The additions that are done in this multiplier are shown in Figure 9.

For converting to modulo 2n − 1 the methods in [33] can be used. The method
selected in this paper is summarized in the next subsection.

10.4 Converting to Modulo 2n − 1

This method is similar to converting to diminished-1 but some changes must be
made.

Since 2n = 1 mod (2n − 1), the residue operation is accomplished by

a mod (2n − 1) = a mod 2n + a div 2n. (30)
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Fig. 8. 28 − 1 modular multiplication architecture

Fig. 9. The additions that are taken in 28 − 1 multiplier
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Suppose that ‘a’ has k, n-bit blocks; in order to calculate the remainder of
modulo 2n − 1 the following relations are true:

a = (ak−1, ak−2, . . . , a1, a0) (31)

R = a0 + a1 + . . .+ ak−1 mod (2n − 1). (32)

It is obvious that there is no need to calculate the summation of odd and even
blocks separately. The addition is taken in mod 2n − 1 and not in diminished-1,
so the inverters of previous architecture can be removed. The architecture of this
method for 6 blocks is shown in Figure 10.

CSA ARRAY

BLOCK0BLOCK2BLOCK4

nnn

CSA ARRAY

BLOCK1BLOCK3BLOCK5

nnn

CSA ARRAY

CSA ARRAY
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Cn n

Modulo 2 n-1 Adder

n
Sn C

Modulo 2 n-1 Adder (Using Half Adder)

Cin=0

n

n

Cout

Fig. 10. Architecture for converting to modulo 2n − 1 for 6 blocks

10.5 2n + 1 Modular Adder

In this section the required architecture for 2n + 1 modular adder for RSA imple-
mentation in RNS is presented.

To use diminished-1 representation as input of this adder, the input has n + 1
bits for a number with n bits. The task of this block is to add the input number
with the value of internal register in modulo 2n + 1, to save the new result to this
register and to send it out.
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The internal register is set to zero when resetting this block. Zero in diminished-
1 represents the number 1, so the output is incremented by one. This fact changes
the number from diminished-1 representation to binary number.

One may think that this representation change makes an incorrect result, but as
can be seen, this change can be helpful for hardware implementations because the
addition modulo 2n + 1 is the last operation of the second base extension and the
result of these adders might be used as an input to system or sent out as a result.
Also if it is used as input, it goes to modulo 2n− 1 multipliers, so in both cases the
number should not be in diminished-1 representation.

In this modular adder architecture, number 0 should be discriminated by testing
the MSB, while it must not change the output value. This adder block is shown in
Figure 11. In this architecture the clock is stopped when a MSB = 1; this is done
by a simple circuit that controls the register from loading the new value. Two first
additions are used for diminished-1 summation and carry correction.

Internal Register
(n bits)

Full Adder (n bits)

Input (n bits)

Half Adder (n bits)

CLK Reset

Ouput (n bits)

Cout

Input(n+1)
[MSB]

Fig. 11. Modulo 2n + 1 adder architecture

10.6 2n − 1 Modular Adder

This adder is very similar to the previous one but this architecture does not use
diminished-1 representation, so there is no need to do carry correction that should
be done in diminished-1 addition by complementing the carry and use it as a first
bit of the addition.

A proposed architecture for this modular adder is shown in Figure 12. As shown,
there is no need to add a circuit to distinguish zero from other numbers and it can
be used like the other numbers.



Montgomery and RNS for RSA Hardware Implementation 875

Internal Register
(n bits)

Full Adder (n bits)

Input (n bits)

Half Adder (n bits)

CLK Reset

Ouput (n bits)

Cout

Fig. 12. Modulo 2n − 1 adder architecture

11 RSA HARDWARE IMPLEMENTATION WITH RNS

Tables 8 and 9 give the number of required multiplications and memories for our
improved method and for the Bajard method, respectively.

The number of needed multiplication

Calculation of the value: Bajard method Improved method

σi 3 2

ξj k + 4 k + 2

|r̂|mr
k + 3 k + 2

α k + 1 k + 1

Table 8. Comparison based on the number of modular multiplications

The number of needed memory

Calculation of the value: Bajard method Improved method

σi 2 1

ξj 4 2

|r̂|mr
3 2

α 2 2

Table 9. Comparison based on the number of memory

Note that the number of memory in Table 9 is shown for one modulus; if one
multiplies this value by the number of moduli that are used in RNS, the difference
between the Bajard method and the improved one is more evident.
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The results show that the number of multiplication is reduced by about 33% in
σi calculations and in other cases this reduction has been varied by the value of k
(number of moduli in RNS bases).

In many cases the number of used memories for saving the constant values is
reduced by about 50%. For instance, if the number of moduli was 10, instead of
saving 20 constants (2 constants for each modulus), 10 constants should be saved
(1 constant for each modulus) in the calculation, i.e., a reduction by 50%.

The improved method with the discussed processing unit is implemented for
RSA 1024 and synthesized with Leonardo Spectrum 2002 for CMOS 0.6 library.
The result is shown in Table 10. In this implementation the number of moduli was
10 in each base (k = 10).

Area (Gates) Clock Speed (MHz) Throughput Rate (Mb/s)

87 8908 3.29 0.23

Table 10. Result of synthesized improved RNS method

This implementation may not fit in one FPGA but if one wants to implement it
in a FPGA technology, he/she can use multiple FPGA.

The number of cycles for throughput calculation in the result table is achieved
with the following assumptions:

• Cycles for RSA: 14 395

• Cycles to convert the result back to binary form: 18

• Cycles for calculating the result modulo N (if needed): 10

So the total number of cycles is 14 423 and one can use this to calculate the
throughput rate.

12 COMPARISON BETWEEN TWO RSA IMPLEMENTATIONS

In this section two RSA implementations (RNS and Montgomery) are compared
with respect to their used area and processing speed. The Area × Time factor can
be used for comparing and selecting the proper method (as used in most papers).
One can find that time has straight relation with (1/Throughput), for this reason
the factor Area (1/Throughput) or in the general form Area (1/Throughput)i can
be selected for this comparison. The last factor can be used when calculation speed
is more important than used area. So no matter how this value was smaller, better
performance, less area and more throughput rate result.

For this comparison 1 024 bits version of each implementation is selected. For
clarity these values are shown in Table 11. Note that these implementations are
done with respect to the architectures that are discussed previously.

The calculated values for the Area (1/Throughput) are as follows: for Mont-
gomery the value is 555 078.6 and for RNS the value is 3 821 339.13. Since the
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Area (Gates) Throughput (Mb/s)

Montgomery 77 711 0.14

RNS 878 908 0.23

Table 11. The results of the two methods implementation

values have inverse relation with throughput, the Montgomery method has better
performance.

13 CONCLUSIONS

This paper presents two major methods for RSA implementation, namely Mont-
gomery and RNS. These two methods are most widely used for RSA hardware
implementations. RNS has faster processing speed than Montgomery but due to
its parallel architecture, it uses more area for hardware implementation. For com-
parison two of the best implementations of RNS and Montgomery are selected and
modified to enhance their performances.

In this modification, Montgomery is improved by about 45% in its throughput,
has less change in its area and RNS is improved by about 40% in its used area with
some changes in its throughput.

Finally the compared results help select the proper method for implementing
the RSA cryptosystem. The result shows that if throughput and the used area have
the same significance, Montgomery is the best choice but if throughput is more
important then the situation may change.

The results show distinguished differences between RNS and Montgomery im-
plementation. RNS has better performance if throughput has an edge over the area
by more than 5 times, but in most common RSA implementations due to limited
area and simplicity Montgomery is the favorite choice.
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