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Abstract. Clustering is a division of data into groups of similar objects. Aspect

mining is a process that tries to identify crosscutting concerns in existing software
systems. The goal is to refactor the existing systems to use aspect oriented pro-
gramming, in order to make them easier to maintain and to evolve. The aim of this
paper is to present a new hierarchical clustering based approach in aspect mining.
For this purpose we propose HAC algorithm (Hierarchical Agglomerative Clustering

in aspect mining). Clustering is used in order to identify crosscutting concerns. We
evaluate the obtained results from the aspect mining point of view, based on two
quality measures that we have previously introduced and a newly defined one. The
proposed approach is compared with other similar existing approaches in aspect
mining and two case studies are also reported.
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1 INTRODUCTION

1.1 Clustering

Unsupervised classification, or clustering, as it is more often referred to, is a data
mining activity that aims to differentiate groups (classes or clusters) inside a given
set of objects [25], being considered one of the most important unsupervised learning
problems. The inferring process is carried out with respect to a set of relevant
characteristics or attributes of the analyzed objects.

The resulting subsets or groups, distinct and non-empty, are to be built so that
the objects within each cluster are more closely related to one another than objects
assigned to different clusters. Central to the clustering process is the notion of degree
of similarity (or dissimilarity) between the objects.

Let X = {O1, O2, . . . , On} be the set of objects to be clustered. Using the
vector-space model, each object is measured with respect to a set of l initial at-
tributes A1, A2, . . . , Al and is therefore described by an l-dimensional vector Oi =
(Oi1, . . . , Oil), Oik ∈ ℜ, 1 ≤ i ≤ n, 1 ≤ k ≤ l. Usually, the attributes associated with
objects are standardized in order to ensure an equal weight to all of them [25].

The measure used for discriminating objects can be any metric or semi-metric
function d : X × X −→ ℜ+ (Euclidian distance, Manhattan distance, Hamming
distance, etc).

1.2 Aspect Mining

Aspect Oriented Programming (AOP) is a relatively new paradigm that is used to
design and implement crosscutting concerns [31]. A crosscutting concern is a feature
of a software system that is spread all over the system, and whose implementation is
tangled with other features’ implementation. Logging, persistence, and connection
pooling are well-known examples of crosscutting concerns. In order to design and
implement a crosscutting concern, AOP introduces a new modularization unit called
aspect. At compile time, the aspect is woven to generate the final system, using
a special tool called weaver. Some of the benefits that the use of AOP brings
to software engineering are: better modularization, higher productivity, software
systems that are easier to maintain and to evolve.

Aspect mining is a relatively new research direction that tries to identify cross-
cutting concerns in already developed software systems, without using AOP. The
goal is to identify them and then to refactor them to aspects, to achieve a system
that can be easily understood, maintained and modified.

Crosscutting concerns in non AO systems have two symptoms: code scattering
and code tangling. Code scattering means that the code that implements a cross-
cutting concern is spread across the system, and code tangling means that the code
that implements some concern is mixed with code from other (crosscutting) con-
cerns.
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1.3 Related Work

Although aspect mining is a relatively new research domain, many aspect mining
techniques have already been proposed. In the following we present a short overview
of the existing aspect mining techniques.

Marin et al. [1] have proposed an aspect mining technique that uses the fanin
metric [33]. Their idea is to search for crosscutting concerns among the methods
that have the value of the fanin metric greater than a given threshold.

Breu and Krinke [17] have proposed an aspect mining technique based on dy-
namic analysis. The mined software system is run and program traces are generated.
From program traces, recurring execution relations that satisfy some constraints are
selected. Among these recurring execution relations they search for aspect can-
didates. In [8] this approach is adapted to static analysis. In this approach the
recurring execution relations are obtained from the control flow graph of the pro-
gram.

Tonella and Ceccato [21] have also proposed an aspect mining technique based
on dynamic analysis. An instrumented version of the mined software system is run
and execution traces for each use case are obtained. Formal concept analysis [29] is
applied on these execution traces and the concepts that satisfy some constraints are
considered as aspect candidates.

Tourwé and Mens [22] have proposed an aspect mining technique based on iden-
tifier analysis. The identifiers associated with a method or class are computed by
splitting up its name based on where capitals appear in it. They apply formal
concept analysis on the identifiers to group entities with the same identifiers. The
groups that satisfy some constraints and that contain a number of elements larger
than a given threshold are considered as aspect candidates.

Bruntink et al. [18, 15] have studied the effectiveness of clone detection tech-
niques in aspect mining. They did not propose a new aspect mining technique, but
they tried to evaluate how useful clone detection techniques are in aspect mining.

Shepherd et al. [20] have proposed an aspect mining technique based on clone
detection. They search for code duplication in the source code using the program de-
pendency graph. The obtained results are further analyzed to discover crosscutting
concerns.

Breu and Zimmermann [5] have proposed an history based aspect mining tech-
nique. They mine CVS repositories for add-call transactions on which they apply
formal concept analysis. Concepts that satisfy some constraints are considered as-
pect candidates.

Sampaio et al. [13] have proposed an aspect mining technique to discover aspect
candidates early in the development lifecycle. They use natural language processing
techniques on different documents (requirements, interviews, etc.) to discover words
that are used in many sentences. The words that have a high frequency and have
the same meaning in all the sentences are considered aspect candidates.

There are just a few aspect mining techniques proposed in the literature that
use clustering in order to identify crosscutting concerns [7, 10, 14, 16].
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He and Bai [7] have proposed another aspect mining technique based on dy-
namic analysis. They also obtain execution traces for each use case, but they apply
clustering and association rules to discover aspect candidates.

Shepherd and Pollock [16] have proposed an aspect mining tool based on cluster-
ing. They use hierarchical clustering to find methods that have common substrings
in their names. The obtained clusters are then manually analyzed to discover cross-
cutting concerns.

In [10] a vector space model based clustering approach in aspect mining is pro-
posed. This approach is improved in [14], by defining a k-means based clustering
algorithm in aspect mining (kAM ).

A part of a formal model for clustering in aspect mining is introduced in [12] and
some quality measures for evaluating the results of clustering based aspect mining
techniques are presented.

An evolutionary approach in aspect mining is introduced in [2] and two genetic
clustering algorithms used to identify crosscutting concerns are proposed.

To our knowledge, there are no other techniques proposed in aspect mining,
besides the ones described above.

The main contributions of this paper are:

• To introduce a new hierarchical agglomerative clustering algorithm in aspect
mining.

• To evaluate the obtained results from the aspect mining point of view, based on
two quality measures previously introduced in [12] and a newly defined one.

• To provide a comparison of our algorithm with other existing similar approaches.

The paper is structured as follows. Section 2 defines the problem of aspect min-
ing as a clustering problem. A new hierarchical agglomerative clustering algorithm
in aspect mining (HAC ) is proposed in Section 3. An experimental evaluation of our
approach, based on some quality measures, is presented in Section 4. We also pro-
vide a comparison of the proposed algorithm with other similar approaches. Some
conclusions and further work are outlined in Section 5.

2 CLUSTERING APPROACH IN ASPECT MINING

2.1 Theoretical Model

In this section we present the problem of identifying crosscutting concerns as a clus-
tering problem.

Let M = {m1, m2, . . . , mn} be an object oriented software system to be mined,
where mi, 1 ≤ i ≤ n is a method from a class of the system. We denote by n (|M |)
the number of methods in the system.

We consider a crosscutting concern C as a set of methods that implement this
concern, i.e., C ⊂M , C = {c1, c2, . . . , ccn}. The number of methods in the crosscut-
ting concern C is cn = |C|. Let SC = {C1, C2, . . . , Cq} be the set of all crosscutting
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concerns that exist in the system M . The number of crosscutting concerns in the
system M is q = |SC|. Let NC = M \ (

⋃q
i=1 Ci) be the set of methods from the

system M that do not implement any crosscutting concerns.

Definition 1 (Partition of a software system M). The set K = {K1, K2, . . . , Kp}
is called a partition of the system M = {m1, m2, . . . , mn} iff 1 ≤ p ≤ n, Ki ⊆
M,Ki 6= ∅, ∀1 ≤ i ≤ p, M =

⋃p
i=1 Ki and Ki ∩Kj = ∅, ∀i, j, 1 ≤ i, j ≤ p, i 6= j.

In the following we will refer to Ki as to the ith cluster of K and to K as to a set
of clusters.

In fact, the problem of aspect mining can be viewed as the problem of finding
a partition K of the system M .

2.2 Identification of Crosscutting Concerns

We propose the following steps for identifying the crosscutting concerns that have
the scattered code symptom:

Computation – Computation of the set of methods in the selected source code,
and computation of the attribute set values, for each method in the set.

Filtering – Methods belonging to some data structures classes like ArrayList, Vec-
tor are eliminated. We also eliminate the methods belonging to some built-in
classes like String, StringBuffer, StringBuilder, etc.

Grouping – The remaining set of methods is grouped into clusters using a clus-
tering algorithm CA. The clusters are then sorted by the average distance from
the point 0l in descending order, where 0l is the l dimensional vector with each
component 0 (l is the number of attributes characterizing a method).

Analysis – The obtained clusters are analyzed in order to discover which clusters
contain methods belonging to crosscutting concerns. We analyze the clusters
whose distance from 0l point is greater than a given threshold.

3 A NEW HIERARCHICAL AGGLOMERATIVE CLUSTERING

APPROACH IN ASPECT MINING

In this section we propose a new hierarchical agglomerative clustering algorithm in
aspect mining (HAC ). This algorithm is used in the Grouping step of the crosscut-
ting concerns identification process presented in Subsection 2.2.

In our approach, the objects to be clustered are the methods from the software
system, X = {m1, m2, . . . , mn}. The methods belong to the application classes or
are called from the application classes.

Based on the vector space model, we will consider each method as an l -dimensio-
nal vector: mi = (mi1, . . . , mil). We have considered two vector-space models:
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• A method m is characterized by a 2-dimensional vector {FIV, CC}, where FIV
is the value of the fan-in metric [33] and CC is the number of calling classes.
We denote this model byM1.

• A method m is characterized by an l-dimensional vector {FIV, B1, B2, . . .Bl−1},
where l−1 is the number of classes from the software system S (called application
classes), FIV is the value of the fan-in metric and Bi is the value of the attribute
corresponding to the application class ACi (1 ≤ i ≤ l − 1), as follows:

Bi =











1 if m is called from at least one method belonging to
application class ACi

0 otherwise.

We denote this model byM2.

In our approach we will consider that the distance between two methods mi and
mj is expressed using the Euclidian distance, as:

dE(mi, mj) =

√

√

√

√

l
∑

k=1

(mik −mjk)2.

We have chosen Euclidian distance as distance metrics for expressing the dis-
similarity between two methods based on the study from [11]. In this paper we
have analyzed the influence of several distance metrics (Euclidian, Manhattan and
Hamming) for different clustering algorithms in aspect mining. It was experimen-
tally concluded that Euclidian distance is the most appropriate for clustering based
aspect mining.

The clustering approach that we propose in this section is based on hierarchi-
cal agglomerative clustering [26], that is why in the following we briefly present
hierarchical clustering.

3.1 Hierarchical Clustering

Hierarchical clustering methods represent a major class of clustering techniques [26].
There are two types of hierarchical clustering algorithms: divisive and agglomerative.

Given a set of n objects, the divisive (top-down) methods start from one cluster
containing all n objects and split it until n clusters are obtained.

The agglomerative (bottom-up) methods begin with n clusters (each cluster
containing a single object), merging them until a single cluster is obtained. At each
step, the two most similar clusters are chosen for merging.

The agglomerative clustering algorithms that were proposed in the literature
differ in the way the two most similar clusters are calculated and the linkage-metric
used (single, complete or average) [28].
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The reasons for choosing a hierarchical clustering approach in this paper are:

• Some researchers consider that hierarchical clustering algorithms are typically
more effective in detecting the true clustering structure of a data set than par-
titional clustering algorithms [23].

• To avoid the main disadvantages of the partitional clustering algorithms. In
partitional clustering the user usually needs to specify some input parameters
in advance (the number of clusters – in k-means or k-medoids clustering [26],
a threshold for point density in clusters – for density based clustering [25])
and the algorithms give no guarantee for an optimal solution because of their
dependance on some initial settings (centroids, medoids, etc.).

• We have introduced in [14] a partitional clustering algorithm in aspect mining
and, now, we aim to determine if a hierarchical clustering approach is more
appropriate in aspect mining than a partitional one.

3.2 HAC Algorithm

In this subsection we present a new Hierarchical Agglomerative Clustering algorithm
in aspect mining (HAC ). We will use this algorithm for obtaining a partition of the
software system M .

HAC is based on the idea of hierarchical agglomerative clustering, but stops
when a given number of clusters is reached. In order to obtain the number of
clusters to be determined, HAC uses an heuristic. This heuristic is particular to
aspect mining and provides a good enough choice for the number of clusters.

The main idea of HAC ’s heuristic for choosing the number k of clusters is
to determine k representative methods (called medoids) from M , performing the
following steps:

(i) The initial number k of clusters is n (the number of methods from the system).

(ii) The method chosen as the first medoid is the most “distant” method from the
set of all methods (the method that maximizes the sum of distances from all
other methods).

(iii) For each remaining methods (that were not chosen as medoids), we compute the
minimum distance (dmin) from the method and the already chosen medoids.
The next medoid is chosen as the method m that maximizes dmin and this
distance is greater than a given positive threshold (distMin). If such a method
does not exist it means that m is very close to its nearest medoid nc and should
not be chosen as a new medoid (from the aspect mining point of view m and nc
should belong to the same (crosscutting) concern). In this case, the number k
of clusters will be decreased.

(iv) The step (iii) will be repeatedly performed, until k medoids will be reached.

We have to notice that step (iii) described above assures, from the aspect mining
point of view, that near methods (with respect to the given threshold distMin) will



888 G. Czibula, G. S. Cojocar

be merged in a single (crosscutting) concern, instead of being distributed in different
(crosscutting) concerns.

We mention that at steps (ii) and (iii) the choice could be a non-deterministic
one. In the current version of HAC algorithm, if such a non-deterministic case exists,
the first selection is chosen. Improvements of HAC algorithm can tackle these kinds
of situations.

We have chosen the value 1 for the threshold distMin. The reason for choosing
this value is based on the following intuition: if the distance between two methodsmi

and mj is less than or equal to 1, we consider that they are similar enough to be
placed in the same (crosscutting) concern. In our opinion, from the aspect min-
ing point of view, using Euclidian distance as metrics and the vector space models
proposed above, the value 1 for distMin makes the difference between a crosscut-
ting and a non-crosscutting concern. Our intuition for choosing the value for the
threshold distMin was also experimentally confirmed. In the future we plan to
find the most appropriate value for the threshold distMin using supervised learning
techniques [4, 32] and to give a rigorous proof for our selection.

The linkage metric between clusters used in HAC is complete-link [26].
Below we give the HAC algorithm.

Algorithm HAC is

Input:

- the set M = {m1, . . . , mn} of methods from the software system to

be mined;

- the metric dE between methods in a multidimensional space;

- distMin > 0 the threshold for merging the clusters.

Output:

- K = {K1, . . . , Kp} the partition of methods in M.

Begin

k ← n //the initial number of clusters

i1 ← argmaxi=1,n

{

∑n
j=1,j 6=i dE(mi, mj)

}

//the index i1 of the first medoid is chosen

nr ← 1 // the number of already chosen medoids

While nr < k do

D ← {j | 1 ≤ j ≤ n, j /∈ {i1, . . . , inr}, d = minl=1,nr {dE(mj , mil)} ,
d > distMin}

If D = ∅ then

k ← k − 1 //the number of clusters is decreased

Else

nr← nr + 1 //another medoid is chosen

inr ← argmaxj∈D {minl=1,nr−1{dE(mj, mil)}}
EndIf

EndWhile

For i ← 1 to n do

Ki ← {mi} //each method is put in its own cluster
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EndFor

K ← {K1, . . . , Kn} //the initial partition

clusNo← n //the number of clusters

While clusNo > k do //the desired number of clusters is not reached

//the most similar clusters are chosen for merging

(Ki, Kj)← argmin(Ki∗ ,Kj∗ )maxm
′
∈Ki∗ , m

′′
∈Kj∗
{dE(m

′

, m
′′

)}
Knew ← Ki ∪Kj

//the most similar clusters are merged

K ← (K \ {Ki, Kj}) ∪ {Knew}
EndWhile

//K is the output partition of the software system M
End.

4 EXPERIMENTAL EVALUATION

In order to evaluate the results of HAC algorithm from the aspect mining point of
view, we use two quality measures defined in [12] and a newly defined one (Subsec-
tion 4.1).

These measures will be applied on two case studies, the obtained results being
reported in Subsection 4.3. Based on the proposed measures, HAC algorithm will
be compared with other existing similar approaches.

4.1 Quality Measures

In this subsection we present three quality measures. These measures (DISP, ACC
and PAM ) evaluate a partition from the aspect mining point of view.

DISP and PAM are measures already defined in [12], but ACC is newly defined.
In the following, let us consider a partition K = {K1, . . . , Kp} of a software

system M = {m1, m2, . . . , mn} and SC = {C1, C2, . . . , Cq} the set of all crosscutting
concerns from M (Subsection 2.1).

Such a partition can be obtained using a clustering algorithm, as kAM or HAC.
Definitions 2, 3 and 4 introduce evaluation measures for a partition of a software

system from the aspect mining point of view.

Definition 2 (Dispersion of crosscutting concerns – DISP [12]). The dispersion of
the set SC in the partition K, denoted by DISP(SC,K), is defined as

DISP(SC,K) =
1

q

q
∑

i=1

disp(Ci,K). (1)

disp(C,K) is the dispersion of a crosscutting concern C and is defined as:

disp(C,K) =
1

|DC |
, (2)
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where
DC = {k|k ∈ K and k ∩ C 6= ∅}. (3)

DC is the set of clusters that contain elements which are also in C.

In our view, DISP(SC,K) defines the dispersion degree of crosscutting concerns
in clusters. For a crosscutting concern C, disp(C,K) indicates the number of clusters
that contain elements belonging to C.

Lemma 1. If K is a partition of the software system M and SC is the set of cross-
cutting concerns in M , then inequality (4) holds:

0 < DISP(SC,K) ≤ 1. (4)

Proof. Because ∀Ci ∈ SC, Ci is a subset of M (Ci ⊂ M), and K is a partition of
M , there must be at least one cluster KCi

∈ K such that Ci ∩KCi
6= ∅. It follows

that:
DCi
6= ∅ (5)

From (5) and the definition of DCi
(3), we have:

∅ ⊂ DCi
⊆ K. (6)

From (6) it follows that:

1 ≤ |DCi
| ≤ |K|, ∀Ci ∈ SC. (7)

From (7) and (2) we have:

q
∑

i=1

1

|K|
≤

q
∑

i=1

disp(Ci,K) ≤
q

∑

i=1

1

⇒
1

|K|
≤ DISP(SC,K) ≤ 1. (8)

Inequality (8) implies (4), so Lemma 1 is proved. 2

Remark 1. Larger values for DISP indicate better partitions with respect to SC,
meaning that DISP has to be maximized.

Definition 3 (ACCuracy of a clustering based aspect mining technique – ACC).
Let T be a clustering based aspect mining technique.

The accuracy of T with respect to a partition K and the set SC, denoted by
ACC(SC,K, T ), is defined as:

ACC(SC,K, T ) =

∑q
i=1 acc(Ci,K, T )

q
. (9)
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acc(C,K, T ) is the accuracy of T with respect to the crosscutting concern C
and is defined as:

acc(C,K, T ) =















|C ∩KC |
|C|

, if KC is the first cluster in which C was

discovered by T
0, otherwise.

(10)

We consider that a crosscutting concern C was discovered in a cluster KC if
C ∩KC 6= ∅, i.e., C has methods in cluster KC .

For a given crosscutting concern C ∈ SC, acc(C,K, T ) defines the proportion of
methods from C that were discovered by T .

In all clustering based aspect mining techniques, only a part of the clusters are
analyzed, meaning that some crosscutting concerns or parts of them may be missed.

Lemma 2. If K is a partition of the software system M and SC is the set of cross-
cutting concerns in M , then inequality (11) holds:

0 ≤ ACC(SC,K, T ) ≤ 1. (11)

Proof. From (10) we have that:

∀C ∈ SC, 0 ≤ |C ∩KC | ≤ |C|. (12)

From (12) it follows that:

0 ≤ acc(C,K, T ) ≤ 1. (13)

From (13) and (9) we have:

0 ≤ ACC(SC,K, T ) ≤ 1 (14)

and Lemma 2 is proved. 2

Remark 2. Larger values for ACC indicate better partitions with respect to SC,
meaning that ACC has to be maximized.

Definition 4 (Percentage of analyzed methods for a partition – PAM). [12] Let us
consider that the partition K is analyzed in the following order: K1, K2, . . . , Kp.

The percentage of analyzed methods for a partition K with respect to the set
SC, denoted by PAM(SC,K), is defined as:

PAM(SC,K) =
1

q

q
∑

i=1

pam(Ci,K). (15)
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pam(C,K) is the minimum percentage of the methods that need be analyzed in
the partition K in order to discover the crosscutting concern C, and is defined as:

pam(C,K) =
1

n

sC
∑

j=1

|Kj | (16)

where sC = min{t | 1 ≤ t ≤ p and Kt ∩ C 6= ∅} is the index of the first cluster in
the partition K that contains methods from C.

PAM(SC,K) defines the percentage of the minimum number of methods that
need be analyzed in the partition in order to discover all crosscutting concerns that
are in the system M . We consider that a crosscutting concern was discovered the
first time a method that implements it was analyzed.

Lemma 3. If K is a partition of the software system M and SC is the set of cross-
cutting concerns in M , then inequality (17) holds:

|K1|

n
≤ PAM(SC,K) ≤ 1. (17)

Proof. ∀Ci ∈ SC we have that 1 ≤ sCi
≤ p. It follows that:

|K1| ≤

sCi
∑

j=1

|Kj| ≤ n, ∀i, 1 ≤ i ≤ q. (18)

From (18) and (16) we have:

|K1|

n
≤ pam(Ci,K) ≤ 1 ∀i, 1 ≤ i ≤ q. (19)

From (19) it follows that:

q ·
|K1|

n
≤

q
∑

i=1

pam(Ci,K) ≤ q. (20)

From (20) and (15) we have:

|K1|

n
≤ PAM(SC,K) ≤ 1. (21)

So, Lemma 3 is proved. 2

Remark 3. Smaller values for PAM indicate shorter time for analysis, meaning
that PAM has to be minimized.

Based on the quality measures defined above, the comparison of the results
obtained by different aspect mining techniques can be made from three different
criteria:
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Partitioning: the degree to which each crosscutting concern is well placed in the
partition (using measure DISP).

Selection: how well the clusters to be analyzed are chosen (using measure ACC ).

Ordering: how relevant is the order in which the clusters are analyzed (using mea-
sure PAM ).

In order to compare two partitions obtained by clustering algorithms in aspect
mining from the aspect mining point of view, we introduce Definition 5. The defini-
tion is based on the properties of the quality measures defined above and considers
all the three criteria presented above.

Definition 5. If K1 and K2 are two partitions of the software system M , SC is
the set of crosscutting concerns in M and T is a clustering based aspect mining
technique, then K1 is better than K2 from the aspect mining point of view iff the
following inequalities hold:

DISP(SC,K1) ≥ DISP(SC,K2), ACC(SC,K1, T ) ≥ ACC(SC,K2, T ),

PAM(SC,K1) ≤ PAM(SC,K2).

For the above definition we can remark the following:

Remark 4. If at least one of the inequalities from Definition 5 is not satisfied, we
cannot decide which of the partitions K1 or K2 is better from the aspect mining
point of view (considering all the three criteria simultaneously).

Remark 5. However, the importance of the above mentioned comparison criteria
may depend on the user of the aspect mining technique. In our view, the most
important criterion is Selection (how many crosscutting concerns were discovered),
followed by Partitioning (how well the crosscutting concerns are grouped) and the
last one is Ordering (how quickly the crosscutting concerns are discovered).

4.2 Case Studies

Many software applications have been used as case studies in aspect mining. Most
of them are publicly available so that everybody can use them (PetStore, Tomcat,
JHotDraw v5.4b1 [30], Eclipse v3.2, Carla Laffra’s implementation of Dijkstra algo-
rithm [34]), and a few are not publicly available. The complete list of aspect candi-
dates obtained by an aspect mining technique for a particular case study is publicly
available only for a few case studies: PetStore, Tomcat and JHotDraw obtained by
Fan-in, and JHotDraw and Laffra’s Dijkstra obtained by Dynamo-Execution traces.
Laffra’s Dijkstra is a small application and we have considered that the results men-
tioned in the papers [10, 21] are enough. That is why we have chosen JHotDraw
and Laffra’s Dijkstra as case studies for our evaluation.

In the following we will briefly describe JHotDraw and Laffra’s Dijkstra case
studies considered for evaluating the results of HAC algorithm.
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Laffra’s Dijkstra. The first case study is a Java applet that implements Dijkstra
algorithm in order to determine the shortest path in a graph [34]. It was developed
by Carla Laffra and it consists of 6 classes and 90 methods.

The set of crosscutting concerns used for the evaluation of this case study is the
union of those obtained by Tonella and Ceccato reported in [21], and those obtained
by us and reported in [10]. The crosscutting concerns discovered by Tonella and
Ceccato and reported in [21] are (un)locking of GUI and those discovered by us
in [10] are exception handling and consistent behaviour.

JHotDraw v5.2. The second case study is a Java GUI framework for technical
and structured graphics, developed by Erich Gamma and Thomas Eggenschwiler, as
a design exercise for using design patterns [30]. It consists of 190 classes and 1 963
methods. We did not include the classes from the test package in our experiments.

The set of crosscutting concerns used for the evaluation of this case study is:
Consistent behaviour, Composite, Observer, Command, Contract Enforcement, Dec-
orator, and Change Monitoring. The set of crosscutting concerns and their im-
plementing methods was constructed using the results reported by Marin et al.
in [19].

4.3 Results

In this subsection we give a comparative analysis of the results obtained by HAC
algorithm with the results obtained by existing similar approaches.

After an in-depth analysis of the existing aspect mining techniques (Subsection
1.3) we have concluded the following:

• Some techniques are dynamic and they depend on the data used during execu-
tions [7, 17, 21].

• For most of the techniques [17, 7, 16] only parts of the results are publicly
available.

• Most of the existing aspect mining techniques have an associated tool. However,
few tools are publicly available so that other people can use them.

• There is no case study used by all these techniques and there is no complete
case study available, i.e., for which all existing crosscutting concerns are re-
ported.

• Although measures are essential when evaluating the results obtained by dif-
ferent aspect mining techniques, they were not used very often. Some mea-
sures have been used to evaluate the results obtained by aspect mining tech-
niques [6, 9, 15]. In most cases, the measures used are applicable only to those
particular aspect mining techniques.

Considering the above and the fact that the quality measures that we have pre-
sented in Subsection 4.1 are particular to clustering based aspect mining techniques,
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we have focused our evaluation only on aspect mining techniques which use cluster-
ing [2, 7, 14, 16]. Shepherd and Pollock have proposed in [16] an aspect mining tool
based on clustering that does not automatically identify the crosscutting concerns.
The user of the tool has to manually analyze the obtained clusters in order to dis-
cover crosscutting concerns. This is another reason for which we did not include
this approach in our evaluation.

He and Bai ([7]) have proposed an aspect mining technique based on dynamic
analysis and clustering that also uses association rules. They first use clustering to
obtain crosscutting concern candidates and then use association rules to determine
the position of the source code belonging to a crosscutting concern in order to ease
refactoring. The technique proposed by the authors cannot be reproduced, as they
do not report neither the clustering algorithm used, nor the distance metric between
the objects to be clustered. Also, the results obtained for the case study used by
the authors for evaluation are not available. For these reasons, we cannot provide
a comparison with this technique.

An evolutionary clustering approach for identifying crosscutting concerns was
proposed in [2]. The worst-case time complexity of the genetic clustering algo-
rithm introduced in [2], named GAM, is O(NoOfRuns ·NoOfGenerations · (NoOf−
Individuals2 +NoOfIndividuals(n+n · p+ p2 · l)), where NoOfRuns is the number of
executions of the algorithm in order to validate its results, NoOfGenerations is the
number of generations to be created, NoOfIndividuals is the number of individuals
in a generation (population), p is the number of clusters to be obtained, n is the
number of methods from the software system to be mined, and l is the dimension of
the vector space model used for characterizing a method. This time complexity is
too large and the algorithm does not scale for medium and large software systems.
As can be seen in Tables 1 and 2 the values of the quality measures for GAM al-
gorithm are not better than those obtained by HAC algorithm. That is why this
algorithm is not suitable for aspect mining.

Algorithm Case study Model DISP ACC PAM

GAM JHotDraw M1 0.424 0.293 0.144

GAM JHotDraw M2 out of time

GAM Laffra M1 0.666 0.583 0.199

GAM Laffra M2 out of time

Table 1. The values of the quality measures for GAM algorithm

Consequently, considering the above, the results obtained by HAC are com-
pared only with the results obtained by kAM algorithm presented in [14] using the
measures introduced in Subsection 4.1.

In Table 2 we present the comparative results after applying HAC and kAM
algorithms, for the vector space models M1 and M2 (Section 3), with respect to
the quality measures described in Subsection 4.1, for the two case studies described
in Subsection 4.2.
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Algorithm Case study Model DISP ACC PAM

HAC JHotDraw M1 0.452 0.319 0.070

HAC JHotDraw M2 0.422 0.278 0.0812

kAM JHotDraw M1 0.441 0.278 0.073

kAM JHotDraw M2 0.422 0.278 0.0819

HAC Laffra M1 0.75 0.666 0.124

HAC Laffra M2 0.75 0.666 0.160

kAM Laffra M1 0.75 0.666 0.168

kAM Laffra M2 0.75 0.666 0.148

Table 2. The values of the quality measures for HAC and kAM algorithms.

From Table 2 we observe, based on Definition 5, that:

• For JHotDraw case study, HAC algorithm provides better results than kAM
algorithm from the aspect mining point of view, for both vector space models
M1 andM2.

• For Laffra case study, HAC algorithm provides better results than kAM algo-
rithm from the aspect mining point of view, for vector space model M1. For
vector space modelM2 the values of the quality measures DISP and ACC are
the same for both algorithms, but the value of PAM is slightly greater for HAC.
This means that the obtained partitions by both algorithms are the same, but
the time needed for the manual analysis of the results is slightly greater for HAC.
However, considering Remark 5 from Subsection 4.1, the Ordering criterion has
the lowest importance compared to the Partitioning and Selection criteria.

• HAC algorithm with vector space modelM1 is the best from the aspect mining
point of view (Definition 5) for both case studies.

Based on the above analysis, we can conclude that vector space model M1 is
more appropriate for clustering based aspect mining, but it can be improved in order
to illustrate the code tangling symptom, too.

In our view, the vector space model used for clustering in aspect mining has
a significant influence on the obtained results.

5 CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new hierarchical agglomerative clustering approach
in aspect mining that uses a newly defined algorithm, HAC.

We have evaluated the obtained results from the aspect mining point of view
based on three quality measures.

We have given a definition in order to compare two partitions from the aspect
mining points of view. Based on this definition, we have shown that HAC algorithm
provides better partitions than kAM algorithm [14] and that vector space modelM1

is more appropriate for clustering based aspect mining.
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Further work can be done in the following directions:

• To use other approaches for clustering that were proposed in the literature (such
as search based clustering [27], or fuzzy clustering [3]).

• To apply this approach for other case studies like JEdit [24].

• To identify a choice for the threshold distMin that will lead to better results.

• To improve the results obtained by HAC, by improving the vector space model
used for clustering in aspect mining.
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Use of Clone Detection for Identifying Crosscutting Concern Code. In: IEEE Trans-
actions on Software Engineering, Vol. 31, 2005, No. 10, pp. 804–818.

[16] Shepherd, D.—Pollock, L.: Interfaces, Aspects, and Views. In: Proceedings of
Linking Aspect Technology and Evolution (LATE) Workshop, 2005.

[17] Breu, S.—Krinke, J.: Aspect Mining Using Event Traces. In: Proceedings of Inter-
national Conference on Automated Software Engineering (ASE), 2004, pp. 310–315.

[18] Bruntink, M.—van Deursen, A.—Tourwé, T.—van Engelen, R.: An Eva-
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