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Abstract. For a given regression model, each individual prediction may be more or
less accurate. The average accuracy of the system cannot provide the error estimate
for a single particular prediction, which could be used to correct the prediction

to a more accurate value. We propose a method for correction of the regression
predictions that is based on the sensitivity analysis approach. Using predictions,
gained in sensitivity analysis procedure, we build a secondary regression predictor
whose task is to predict the signed error of the prediction which was made using the
original regression model. We test the proposed methodology using four regression
models: locally weighted regression, linear regression, regression trees and neural
networks. The results of our experiments indicate significant increase of prediction
accuracy in more than 20% of experiments. The favorable results prevale especially
with the regression trees and neural networks, where locally weighted regression
was used as a model for predicting the prediction error. In these experiments the
prediction accuracy increased in 60% of experiments with regression trees and in
50% of experiments with neural networks, while the increase of the prediction error
did not occur in any experiment.
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1 INTRODUCTION

When using supervised learning for modeling data we aim to achieve the best pos-
sible prediction accuracy for the unseen examples which were not included in the
learning process [1]. For evaluation of the prediction accuracies, the averaged ac-
curacy measures are most commonly used, such as the mean squared error (MSE)
and the relative mean squared error (RMSE). Although these estimates evaluate
the model performance by summarizing the error contributions of all test examples,
they provide no local information about the expected error of individual predic-
tion for a given unseen example. To provide information of individual prediction
accuracy/error, reliability estimates are of a greater use.

Reliability. In engineering, reliability is defined as the ability of a system or a com-
ponent to perform its required functions under stated conditions for a specified
period of time [3, 2]. In machine learning, we can define reliability as a qualita-
tive property or ability of the system which is related to a critical performance
indicator (positive or negative) of that system, such as accuracy, inaccuracy,
availability, downtime rate, responsiveness, etc. Since reliability is in most cases
defined qualitatively, the reliability estimate is therefore an estimate for quanti-
tative measuring of reliability. According to the particular field of use, a reliabi-
lity estimate can therefore be an accuracy estimate, error estimate, availability
estimate, etc.

Having information about single prediction reliability available provides two
important benefits in the risk-sensitive areas where acting upon predictions may
have critical consequences (e.g. medical applications, stock market, navigation,
control applications). First, such estimates can provide the degree of confidence
in predictions, which is relevant for experts to easier decide whether to trust the
prediction or not. Second, if reliability estimate is quantitatively related to the
prediction error of individual examples, one could use such information to aim
at correcting the prediction to the more accurate value.

Motivation. In our previous work [4] we used the sensitivity analysis technique
to develop reliability estimates (estimates of prediction error in our context).
We defined these estimates using repetitive modification of the learning set (ex-
panding with an additional learning example) with the goal to observe how the
prediction of a regression model for a particular example changes with respect
to this influence. In such manner we obtained for each example its initial pre-
diction and many sensitivity predictions (one for each controlled modification of
the learning set), which we afterwards used to define our reliability estimates.
Some of the defined reliability estimates empirically showed strong correlation
to the prediction error.

Since sensitivity predictions, as results of the sensitivity analysis, have shown to
be a good tool for prediction error estimation, in the present work we aim at
discovering whether it is possible to use these predictions directly for correcting
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the regression predictions. We propose an approach that beside an initial regres-
sion model (primary model, used for predicting) uses an additional, secondary
model, with the task of only predicting the signed prediction error of the primary
model, based on the attributes defined using the sensitivity predictions. We use
the predicted correction to correct the initial predictions and compare whether
we statistically gained an improvement with the correction.

The paper is organized as follows. Section 2 summarizes previous work from related
areas of individual prediction reliability estimation and Section 3 summarizes our
previous work which is further extended in this paper. In Section 4 we describe the
proposed method and explain our experimental protocol. We describe the testing
and interpret the results in Section 5. Section 6 provides conclusions and ideas for
further work.

2 RELATED WORK

In the related work, most effort has been put into improving the accuracy of re-
gression models, and very little into subsequent correction of computed predictions.
For our contribution, the most relevant related work is the field of individual pre-
diction reliability estimation, since it provides estimates of individual prediction
error/accuracy, which can be utilized for the purpose of correcting the initial pre-
dictions. In the following we shortly present some important contributions in this
field and provide criteria for differentiation of their conceptual foundations:

1. Model-dependent reliability estimation is a mechanism which is implemented as
an extension of a particular predictive model. It exploits particular model cha-
racteristics (e.g. Lagrange coefficients in Support Vector Machine optimization
procedure, splits in regression trees) and are as such intended for use only with
those particular models. Examples:

• Gammerman, Vovk, and Vapnik [5] and Saunders, Gammerman and Vovk [6]
proposed an extension of Support Vector Machine (SVM), which produces
the reliability estimates of confidence (probability of the correct classifica-
tion) and credibility (1 – probability of the second most probable class) for
each prediction.

• The confidence values, implemented for ridge regression [7], implemented as
a further work of the former approach.

• Extension of the multi-layer perceptron with an additional output neuron,
intended to predict the variance in the neighborhood of the input example,
serving as reliability estimate [8].

• prediction intervals for the ensembles of neural networks [9, 10]. Being de-
fined as a degree of agreement between predicted value and example’s label
value, the prediction interval is therefore also an estimate of the individual
prediction reliability.
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2. Model-independent reliability estimation is an approach which uses an arbitrary
model and deals with it as with the black box (wrapper-like method). This
approach is more general than model-dependent approaches since it utilizes only
general parameters, available in the supervised learning framework. However,
its performance can depend on the properties of the used model. Examples:

• Local modeling of prediction error based on input space properties and local
learning [11, 12, 13, 14]. Most frequently the local cross validation is applied
to compute the prediction and the prediction error for the example of interest
using a local model.

• Transductive methods for estimation of classification reliability [16]. Trans-
duction is an inference principle that reasons from particular to particu-
lar [15] in contrast to inductive learning, which aims at inferring a general
rule from a finite set of data. Transductive methods may therefore use only
selected examples of interest and not necessarily the whole input space and
aim at modeling reliability information using selected examples.

• Use of sensitivity analysis for development of reliability estimates [4, 17] (our
previous work).

The work in this paper continues our previous work [4] of using sensitivity ana-
lysis for the purpose of estimating prediction error. Instead of defining reliability
estimates (our previous work), we directly use the building blocks of our former
reliability estimates (i.e. sensitivity predictions) and model the prediction error as
an independent regression task. We describe the relevant prerequisites from our
previous work in the next section.

3 ESTIMATION OF INDIVIDUAL PREDICTION RELIABILITY

USING THE LOCAL SENSITIVITY ANALYSIS

An approach which enables us to analyze the local particularities of learning al-
gorithms is the sensitivity analysis [18, 19, 20, 21], which aims at determining how
much the variation of input can influence the output of a system. The idea of putting
the reliability estimation in the context of the sensitivity analysis framework is there-
fore to observe the changes in model outputs (i.e. predictions) by modifying its input
(i.e. learning data set). Note that by influencing only the learning set and observing
model outputs, the sensitivity analysis approach utilizes regression model only as
its parameter and is therefore model-independent.

In the previous work [4] we defined the framework for locally modifying the
learning set in a controlled manner in order to explore the sensitivity of the regression
model in a particular part of the problem space. Lead by the conclusions of three
related research fields we utilized the following ideas:

• the sensitivity analysis approach allows us to observe the behavior of the regres-
sion model as the black box and therefore enables us to design an approach that
is independent of the regression model;



Correction of Regression Predictions Using the Sensitivity Analysis 933

• approaches which generate perturbations of learning data (bagging [22] and
boosting [23, 24, 25] are the best known in this field) do so to achieve greater
prediction accuracy or study the stability of predictive models [26, 27, 28].
This motivated us to combine perturbing with the sensitivity analysis frame-
work;

• the co-training approaches that use unlabeled data in supervised learning utilize
the additional unlabeled learning examples by labeling them using a predictive
model, which was built on labeled data, and including them into the learning
set. It was also shown that the unlabeled data can be used to improve the
performance of a predictor [29, 30]. Therefore it may be reasonable to use the
same approach for reliability estimation of individual examples by observing the
change in predictor’s performance.

For influencing the input of the system (i.e. regression model) we therefore ex-
panded the learning set with an additional learning example. By adding or removing
an example from the learning set, thus making a minimal change to the input of
the learning algorithm, one can expect that the change in output prediction for the
modified example will also be small. Big changes in output prediction that result
from making small changes in learning data may be a sign of instability in the ge-
nerated model. We assume at this point that the additional example will indeed
influence the prediction model to cause a change in the generated model, which is
a requirement for the applied sensitivity analysis approach to work. We base this
assumption on the fact that we evaluate the new prediction value in the same lo-
cal neighborhood as we influence with the additional example, and provide some
intuitive arguments in the following.

We expanded the learning set with additional example as follows. Let (x, ) be
the unseen and unlabeled example, for which we wish to estimate the reliability of
its prediction K (the initial prediction). K is computed using regression model M ,
therefore fM (x) = K. Since the learning example (x, ) is unlabeled, we first had
to label it prior to inserting it into the learning set. We labeled the example using
its initial prediction K, which was modified by some small value of δ:

y = K + δ. (1)

In previous work we defined δ which was proportional to known bounds of label
values. In particular, if the interval of learning examples’ labels is denoted by [a, b]
and if ε denotes a value that expresses the relative portion of this interval, then
δ = ε(b − a). The related works that provided ideas to expand the learning set in
such manner were:

1. Using the Minimum Description Length principle [31] as a general formalism
based on the probabilistic and information theory, we showed that it is possible
to obtain additional information if we expand the learning data set with an ad-
ditional example. We showed that most information is achieved if we expand
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the learning set with an example that is not well covered by the initial hypothe-

sis [4]. It is therefore advisable to use such label, which is different from the
covered predictor’s knowledge, i.e. the initial prediction itself (thus we modify
prediction K by some chosen δ).

2. By expanding of the initial learning set with an additional example we aim
at inducing a change in the output prediction for the particular example. To
achieve such change, a new learning example must be positioned into a problem
space in such way that it indeed affects the computation of the prediction for
that particular example. This will more likely be achieved, if the new example
is placed locally close to the particular example, since the local change will have
greater influence to local predictions than changes made farther in the problem
space. Note that it depends on the underlying regression model how the change
in prediction values will propagate through the problem space – the influence
may remain local or become global. However, since our approach is focused on
observing the influence of local changes to local outputs, it requires the influence
to be at least local, global influence thus represents no obstacle. This reasoning
is illustrated in Figure 1, which illustrates the influence of the additional learning
example in local area only.
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Fig. 1. The example of local impact to the change of regression model in two-dimensional
problem space, where x is the only attribute. The learning examples are denoted
with circles and the additional learning example is denoted with the cross. The top
curve shows how the initial model (bottom curve) changes if the additional learning
example is inserted into the learning set.

After selecting ε and labeling the new example, we expanded the learning data
set with example (x, y). We referred to the newly built model as the sensitivity

regression model M ′ and it’s prediction Kε of example (x, ) (fM ′(x) = Kε) as the
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sensitivity prediction. Since ε is the parameter of the procedure, by selecting different
values εk ∈ {ε1, ε2, . . . , εm} we iteratively obtained a set of sensitivity predictions

Kε1
, K−ε1

, Kε2
, K−ε2

, . . . , Kεm, K−εm. (2)

Before computing each sensitivity prediction, we always start by the original data
set; i.e., the examples are not incrementally added into the learning set, but added
as the query points of interest in the problem space. The described procedure is
illustrated in Figure 2.

initial model

learning examples
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example

initial
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sensitivity
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sensitivity model

learning examples

Kε

(x,K + δ)
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Fig. 2. The sensitivity analysis process. The figure illustrates the obtaining of initial pre-
diction (phase 1) and the sensitivity model with sensitivity prediction Kε (phase 2).

The obtained sensitivity predictions serve as output values in the sensitivity
analysis process. In the previous work we showed that the magnitudes of changes
in output Kε−K may be combined into reliability estimates and used as a measure
of model instability for a modified example. Instead of focusing on the reliabili-
ty estimates, proposed in the previous work, in this paper we focus on using the
magnitudes of changes in output for the correction of the initial predictions.

Additionally, we showed that more complex learning algorithms that partition
the input space (e.g. regression trees and neural networks) prior to modeling are
more interesting for the sensitivity analysis approach than the other more simple

algorithms (linear regression, locally weighted regression, etc.). Using such com-
plex regression learners, the additional example can namely cause different space
partitioning, leading to a considerably different hypothesis. This may also result
in a big difference between initial and sensitivity predictions, which indicates that
the initial hypothesis for tested example was unstable or unreliable. In our ex-
perimental work we therefore expect that the correction of regression predictions
will be more successful for complex regression models than for simple regression
models.
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4 CORRECTION OF INITIAL PREDICTIONS

The basic idea of the proposed system for the correction of the initial predictions is
to utilize an additional regression predictor (denoted by secondary predictor) which
learns on the outputs of the main regression predictor (denoted by the primary

predictor). The purpose of the secondary predictor is to predict the signed error of
the predictions, computed by the primary predictor, i.e. to compute the necessary
correction of the initial prediction.

For construction of the learning set for the secondary predictor we use the sen-
sitivity predictions (2), based on which we form the following differences between
the sensitivity predictions and the initial prediction:

Kε1
−K,K−ε1

−K, . . . , Kεm −K,K−εm −K. (3)

We formed the above differences, since they represent the prediction sensitivity
information which is independent of the particular prediction values. Since the
differences are signed values, it is reasonable to assume that they may include the
information about the direction and magnitude of the prediction error, making them
suitable for predicting the necessary prediction correction. We therefore build the
secondary predictor on the learning set, comprised by attributes (3) and the target
value C −K (signed prediction error of the primary predictor).

To assure the unbiasedness of the proposed system we used the cross-validation
procedure to process the original testing data sets (divide them to learning and
testing parts). In each iteration, the sensitivity predictions for all examples were
computed and the attributes for the secondary predictor were formed using only
the learning examples. After computing the secondary model, the predictions of
the signed errors C −K were computed for the test examples. After combining the
predicted signed error with the initial prediction K, we aim to achieve the corrected
prediction

K = K + (C −K). (4)

Having computed the initial prediction K and the corrected prediction K for all
examples, we compare their accuracies by calculating the relative mean squared error
(RMSE) for the whole data set. Both relative mean squared errors were statistically
compared using paired t-test. This procedure for correction of the initial prediction
and statistical evaluation is illustrated in Figure 3.

Since we assumed that the magnitudes of attributes 3 are proportional to the
predicted error, we may also expect that the secondary predictor will achieve bet-
ter results if one of the simple models is used (linear regression, locally weighted
regression). We therefore expect the experimental results to confirm our hypotheses
that the correction of regression predictions will work better for complex primary
predictor models (H1), while the simple models will be the most appropriate models
for the secondary predictor (H2).
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Fig. 3. The procedure for correction of the initial predictions using secondary regression
model and statistical evaluation of the results

5 EXPERIMENTAL RESULTS

The proposed method for the correction of regression predictions was tested on
10 standard benchmark data sets, which are used across the whole machine learning
community. Each data set is a regression problem. The application domains vary
from medical, ecological and technical to mathematical and physical domains. The
number of examples in these domains varies from 20 to over 6 500. Most of the data
sets are available from UCI Machine Learning Repository [32] and from StatLib
DataSets Archive [33]. All data sets are available from authors upon request. A brief
description of data sets is given in Table 1.

Data set # examples # disc. attr. # cont.attr.

auto price 159 1 14
autompg 398 1 6
housing 506 1 12
cos4 1 000 0 10

cpu 209 0 6
grv 123 0 3
photo 858 2 3
pwlinear 200 0 10
servo 167 2 2
wsc 198 0 32

Table 1. Basic characteristics of testing data sets

We experimented with four regression models: regression trees (abbreviated as
RT in the results), linear regression (LR), artificial neural networks (NN) and locally
weighted regression (LW). Since the choices of regression models for the primary
and the secondary predictor are independent, in our experimental work we test all
possible 16 (4x4) combinations of them. We denote various combinations of models
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by PP-SS, where PP and SS stand for the abbreviations of the primary and the
secondary regression model, respectively (e.g. RT-NN). Some key properties of used
models are:

• Regression trees: the mean squared error is used as the splitting criterion, the
value in leaves represents the average label of examples, trees are pruned using
the m-estimate [34].

• Linear regression: prediction with (n − 1)-dimensional linear hyperplane in
n-dimensional attribute space.

• Neural networks: multilayered feedforward artificial neural networks with back-
propagation [35], one hidden layer of neurons, the learning rate was 0.5, the
stoping criterion for learning is based on the change of MSE between two back-
propagation iterations.

• Locally weighted regression: local regression using a distance function with
Gaussian kernel for weighting the contributions of neighboring examples.

As described in Sections 3 and 4, we use a set of ε parameters to produce the
attributes of examples for the secondary predictor. We used five different values
of the ε parameter: E = {0.01, 0.1, 0.5, 1.0, 2.0}, thus defining 10 attributes for
secondary predictor. Since some of these attributes can be more descriptive for
predicting the signed error than the others, we approach this issue in two ways.
First, with exhaustive search of all possible attribute combinations we test how
the different attribute combinations influence the different results. Then, we test
a method for automatic selection of best attributes for the secondary predictor and
present its results.

5.1 Exhaustive Search for Optimal Set of Attributes

To test if the proposed system has the capability to correct the initial regression pre-
dictions at all and being faced with a difficulty which particular subset of attributes
to optimally choose, we tested the system first using all possible combinations of
attributes for the secondary predictor. In this way we focused on testing the systems
functionality and postponed the problem of selecting the optimal attributes to a later
time (see next subsection). Since the secondary predictor attributes are determined
by the choice of ε parameters, we repeated the experiment for every number (of maxi-
mum five) and every combination of ε parameters in set E = {0.01, 0.1, 0.5, 1.0, 2.0},
which gives 25−1 = 31 possible attribute sets for the secondary predictor (the power
of the power set without the empty set). For each combination of selected ε para-
meters we therefore included the attributes K −Kε and K −K−ε in the secondary
predictor learning set.

The results of described exhaustive search for the optimal attribute set are shown
in Table 2 (for locally weighted regression and linear regression as the primary pre-
dictor) and in Table 3 (for regression trees and neural networks). The results in
Table 2 confirm our findings from previous work that the simple regression models
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(locally weighted regression and linear regression) are not suitable for use with the
sensitivity analysis. Namely, among the experiments where the change of prediction
accuracy was significant, the table shows the prevalent number of experiments where
the RMSE increased.

In contrast to the above results, the results in Table 3 for more complex models
(models that partition the input space, i.e. regression trees and neural networks)
show the majority of achieved significant reductions of the RMSE and experiments
with mixed changes (mixed change means that the use of some attribute sets re-
sulted in reducing the RMSE, while the use of the other attribute sets increased
the RMSE). High number of achieved results (50% on the average with regression
trees and 63% on the average with neural networks) confirm our general expectation
that it is possible to employ the sensitivity analysis for correction of the regression
predictions.

The results also indicate that by selecting different attribute sets for the secon-
dary predictor, it is possible to achieve different results, without having a consistent
rule which values of parameters ε are the most suitable for defining the secondary
attributes. This motivates us to exploring the possibilities for automatical selection
of attributes, on which we focus in the following section.

5.2 Automatic Selection of Attributes for the Secondary Predictor

The results from the previous subsection showed that the proposed system is feasible
to achieve the reduction in RMSE by correcting the regression predictions. However,
we also concluded that there is no general rule in selecting the optimal sets of
attributes for the secondary predictor. In this subsection we focus on extending
the proposed approach with automatical selection of the best attribute set using
RReliefF estimate [36, 37].

After producing a set of attributes using all values of parameter ε, we select
only those attributes that have the value of RReliefF estimate greater than 0.0.
Namely, Kononenko [36] has shown that estimates of ReliefF for classification prob-
lems (RReliefF is an adaptation of ReliefF for regression) are highly correlated
with Gini index gain, which is a non-negative measure. In contrast to Gini index
gain which assumes the independence of attributes, ReliefF estimates the gain in
the context of other attributes. If the estimate is zero (or less than zero due to
variations in data distributions), the attribute has zero gain and is therefore use-
less.

Having applied automatical selection of the optimal attributes, we gained two
benefits. First, by limiting ourselves to the particular set of optimal attributes,
we do not need to exhaustively test the performance of all attribute combinations,
which reduced time complexity of testing. Second, the attribute selection using
ReliefF allows greater flexibility, since it evaluates the usefulness of attributesK−Kε

and K − Kε and includes them into the learning set of the secondary predictor
independently of each other. In the exhaustive search, these two attributes appeared
in the learning set at the same time, since the attributes for the secondary predictor
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LW LW-LW LW-LR LW-RT LW-NN LR LR-LW LR-LR LR-RT LR-NN

autompg 0.240 0.241 0.240 0.265 0.295 0.192 0.192 0.199 0.192 0.200
[45] [1] [1] [5] [345] [1] [2] [12]

autoprice 0.328 0.265 0.266 0.270 0.219 0.219 0.224 0.225 0.224 0.221
[5] [1] [5] [35] [1] [14] [45] [12]

cos4 0.835 0.842 0.831 0.874 0.873 1.012 1.044 1.011 1.045 1.052
[1] [1] [23] [345] [1] [1] [1] [1]

cpu 0.417 0.372 0.386 0.466 0.340 0.261 0.255 0.279 0.276 0.347
[15] [1] [3] [12345] [34] [125] [12] [4]

grv 0.568 0.545 0.552 0.571 0.536 0.400 0.416 0.420 0.420 0.401
[1] [1] [13] [123] [1] [1] [1] [34]

bhouse 0.492 0.467 0.481 0.482 0.525 0.291 0.271 0.279 0.272 0.299
[345] [1] [245] [12345] [5] [134] [35] [124]

photo 0.331 0.330 0.318 0.334 0.322 0.556 0.527 0.519 0.577 0.529
[1] [1] [1234] [125] [1] [2] [124] [25]

pwlinear 0.608 0.584 0.575 0.619 0.588 0.382 0.395 0.389 0.425 0.379
[1] [1] [135] [345] [1] [1] [1] [1]

servo 0.633 0.547 0.555 0.553 0.585 0.638 0.536 0.554 0.709 0.560
[145] [2] [3] [125] [1] [1] [3] [135]

wsc 0.956 0.969 0.979 1.108 0.959 0.988 1.001 0.991 1.195 1.004
[124] [1] [345] [3] [12] [1] [34] [12345]

positive 30% 30% 0% 10% 20% 10% 0% 10%
negative 0% 0% 30% 30% 30% 40% 30% 50%
mixed 0% 0% 0% 0% 0% 0% 0% 0%

Table 2. The lowest relative mean square error (RMSE) achieved with locally weighted

regression and linear regression as the primary regression predictors. The columns
denoted by the single regression model designation (LW and LR) display the RMSE
of the initial predictions of that model and the columns in PP-SS format display
the lowest RMSE achieved using primary predictor model PP and secondary pre-
dictor model SS. The numbers [n1 . . . nk] represent the consecutive numbers of
used ε parameters in E giving the attribute set with which the displayed result
was achieved. The cell shading indicates the results with significant changes in
RMSE (α ≤ 0.05). Light grey shading denotes the positive results (reduction of
RMSE), dark grey shading denotes the negative results (increase of RMSE) and
the medium grey denotes the mixed changes (the use of some attribute sets re-
sulted in reducing the RMSE, while the use of the other attribute sets increased the

RMSE).

were selected based on the values of parameter ε (to maintain time complexity). We
expect that this independent consideration of the two attributes may potentially
lead to even greater reduction of the RMSE.

The results for the described approach are shown in Table 4. The results show
that developed method managed to significantly reduce the RMSE in 36 tests,
while significant increase occurred only in 5 tests. The lowest number of signifi-
cant reductions of the RMSE in locally weighted regression and linear regression
again confirm that the use of sensitivity analysis approach is not appropriate for
these two methods. However, it can be seen from the comparison of Tables 2
and 4 that the automatic attribute selection using RReliefF managed to reduce
the RMSE in some experiments even further (e.g. domain grv, LW-LW models).
In addition, the proposed procedure in some cases managed avoid the attribute
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RT RT-LW RT-LR RT-RT RT-NN NN NN-LW NN-LR NN-RT NN-NN

autompg 0.207 0.178 0.165 0.177 0.189 0.148 0.141 0.144 0.139 0.145
[13] [23] [13] [35] [4] [13] [12345] [5]

autoprice 0.214 0.196 0.160 0.194 0.183 0.156 0.135 0.130 0.120 0.130
[245] [12345] [5] [2345] [1] [4] [4] [45]

cos4 0.243 0.173 0.211 0.207 0.175 1.033 1.016 1.010 1.076 1.088
[23] [25] [24] [235] [5] [5] [45] [4]

cpu 0.642 0.610 0.598 0.732 0.797 0.254 0.245 0.400 0.229 0.242
[14] [14] [2345] [1] [45] [2345] [1] [1]

grv 0.447 0.429 0.397 0.439 0.427 0.564 0.421 0.426 0.434 0.405
[1245] [1234] [12] [1345] [25] [1235] [15] [3]

bhouse 0.272 0.250 0.216 0.243 0.293 0.336 0.260 0.279 0.266 0.288
[1235] [24] [4] [134] [25] [1] [125] [5]

photo 0.179 0.167 0.170 0.205 0.187 0.490 0.387 0.441 0.395 0.396
[345] [3] [2345] [235] [3] [1] [4] [45]

pwlinear 0.254 0.235 0.204 0.287 0.219 0.169 0.162 0.151 0.202 0.166
[235] [3] [3] [35] [24] [13] [14] [5]

servo 0.400 0.383 0.367 0.244 0.356 0.215 0.200 0.172 0.282 0.207
[145] [5] [24] [1245] [4] [135] [5] [5]

wsc 1.211 1.053 1.003 1.570 1.000 1.660 0.988 1.014 1.117 0.978
[45] [5] [14] [145] [3] [145] [235] [345]

positive 20% 60% 10% 10% 80% 70% 40% 60%
negative 0% 0% 40% 30% 0% 10% 30% 10%
mixed 50% 0% 10% 40% 0% 10% 10% 0%

Table 3. The lowest relative mean square error (RMSE) achieved with regression trees

and neural networks as the primary regression predictors. The columns denoted
by the single regression model designation (RT and NN) display the RMSE of
the initial predictions of that model and the columns in PP-SS format display
the lowest RMSE achieved using primary predictor model PP and secondary pre-
dictor model SS. The numbers [n1 . . . nk] represent the consecutive numbers of
used ε parameters in E giving the attribute set with which the displayed result
was achieved. The cell shading indicates the results with significant changes in
RMSE (α ≤ 0.05). Light grey shading denotes the positive results (reduction of
RMSE), dark grey shading denotes the negative results (increase of RMSE) and
the medium grey denotes the mixed changes (the use of some attribute sets re-
sulted in reducing the RMSE, while the use of the other attribute sets increased the

RMSE).

set which resulted in the increase of the RMSE as well (e.g. domain autompg,
LW-RT).

Similar conclusions can also be drawn for experiments in which the regression
trees and neural networks were used as the primary regression model. The results
that stand out most with these two regression models are where the locally weighted
regression was used as the secondary regression model. In model combinations
RT-LW and NN-LW we namely managed to reduce the RMSE in 60% and 50%
of domains, respectively, while the increase of the RMSE did not occur in any
experiment.

We conclude that the results confirm both hypotheses: Best results were achieved
by using complex primary predictor models (regression trees and neural networks)
and by using a simple secondary predictor model (locally weighted regression).
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LW LW-LW LW-LR LW-RT LW-NN LR LR-LW LR-LR LR-RT LR-NN

autompg 0.240 0.240 0.238 0.254 0.281 0.192 0.191 0.198 0.202 0.203
autoprice 0.328 0.246 0.261 0.342 0.237 0.219 0.223 0.250 0.226 0.221
cos4 0.835 0.840 0.830 0.891 0.865 1.012 1.012 1.012 1.012 1.012
cpu 0.417 0.369 0.357 0.487 0.320 0.261 0.251 0.264 0.262 0.311
grv 0.568 0.537 0.554 0.569 0.545 0.400 0.410 0.411 0.430 0.400
bhouse 0.492 0.466 0.480 0.487 0.507 0.291 0.273 0.309 0.274 0.298
photo 0.331 0.330 0.318 0.351 0.325 0.556 0.526 0.519 0.579 0.525
pwlinear 0.608 0.580 0.573 0.626 0.597 0.382 0.394 0.387 0.423 0.384
servo 0.633 0.538 0.546 0.655 0.580 0.638 0.602 0.546 0.692 0.568
wsc 0.956 0.956 0.956 0.956 0.956 0.988 0.988 0.988 0.988 0.988
positive 40% 30% 0% 0% 10% 10% 0% 10%
negative 0% 0% 10% 10% 0% 0% 10% 10%

RT RT-LW RT-LR RT-RT RT-NN NN NN-LW NN-LR NN-RT NN-NN

autompg 0.207 0.178 0.191 0.196 0.202 0.143 0.138 0.136 0.154 0.147
autoprice 0.214 0.198 0.157 0.244 0.169 0.091 0.088 0.090 0.101 0.097
cos4 0.243 0.180 0.169 0.183 0.183 1.096 1.063 0.982 1.109 1.104
cpu 0.642 0.601 0.621 0.694 0.674 0.220 0.221 0.246 0.229 0.235
grv 0.447 0.424 0.410 0.437 0.430 0.712 0.398 0.403 0.484 0.401
bhouse 0.272 0.248 0.215 0.262 0.266 0.200 0.181 0.182 0.207 0.203
photo 0.179 0.168 0.170 0.175 0.179 0.685 0.382 0.388 0.418 0.411
pwlinear 0.254 0.236 0.305 0.239 0.220 0.156 0.152 0.155 0.179 0.155
servo 0.400 0.377 0.748 0.410 0.339 0.103 0.108 0.120 0.138 0.108
wsc 1.211 1.049 1.001 1.195 1.005 1.673 1.176 1.182 1.226 1.286
positive 60% 30% 10% 30% 50% 30% 20% 20%
negative 0% 0% 0% 0% 0% 10% 0% 0%

Table 4. Relative mean square error (RMSE) before (columns LW, LR, RT and NN) and
after the correction with the algorithm for automatical attribute selection for se-
condary predictor using RReliefF. The column names in PP-SS format denote the
abbreviations of the primary predictor model PP and the secondary predictor model
SS, respectively. Cell shading represents the p-values. The data with significance

level α ≤ 0.05 is marked by light grey (significant reduction of the RMSE) and dark
grey (significant increase of the RMSE) background. The columns emphasized by
rectangles denote the subsets of the results referring to our hypotheses.

6 CONCLUSION

In the paper we presented a new method for correction of regression predictions.
Our method is based on the sensitivity analysis, which is an approach that observes
a change of the model outputs depending on the change in its inputs. In our ap-
proach we use an additional regression model, which has a task of modeling the
signed prediction error for predictions, made by the main regression predictor. The
secondary predictor predicts the prediction error based on the attributes, which we
compute by the adapted sensitivity analysis procedure. By combining the initial
predictions and the predicted signed error we gained the corrected predictions and
statistically compared their accuracy to the accuracy of the initial predictions.

We performed the experiments using 4 regression models (regression trees, neu-
ral networks, linear regression and locally weighted regression) and by testing all
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16 combinations of model pairs for primary and secondary predictor. The experi-
ments with the exhaustive search for the secondary predictor optimal attribute set
showed that the proposed approach is capable of correcting the regression predic-
tions. They also confirmed our expectations based on our previous work that the
proposed methodology is not suitable for simple regression models (linear regression
and locally weighted regression) that do not partition the problem space prior to
performing data modeling.

The testing of the proposed method for selection of the optimal attributes using
RReliefF estimate showed that in most experiments the method successfully selects
the set of attributes which lead to the reduction of the initial prediction error. The
promising results showed the potential of using the proposed method with neural
networks and regression trees, where locally weighted regression is employed as the
secondary predictor model.

Besides extending and analyzing the performance evaluation of the proposed
method also with other regression models, the ideas for further work include com-
parisons with alternative techniques for prediction correction. The performance of
the proposed approach shall be compared to the predictor cascade, where the sec-
ondary predictor learns only from the initial predictions of primary predictions. The
idea for further work lies also in eliminating the need for the secondary regression
model by correcting regression predictions directly using the reliability estimates
from our previous work [4].
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