
Computing and Informatics, Vol. 30, 2011, 89–111

A FLEXIBLE APPROACH TOWARDS SELF-ADAPTING
PROCESS RECOMMENDATIONS

Thomas Burkhart

Institut für Wirtschaftsinformatik (IWi)
Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI)
Stuhlsatzenhausweg 3
66123 Saarbrücken, Germany
e-mail: burkhart@iwi.dfki.de

Christoph Dorn

Distributed Systems Group
Vienna University of Technology
Argentinierstr 8/184-1
1040 Vienna, Austria
e-mail: dorn@infosys.tuwien.ac.at

Dirk Werth, Peter Loos

Institut für Wirtschaftsinformatik (IWi)
Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI)
Stuhlsatzenhausweg 3
66123 Saarbrücken, Germany
e-mail: {werth, loos}@iwi.dfki.de

Revised manuscript received 22 October 2010

Abstract. A company’s ability to flexibly adapt to changing business requirements

is one key factor to remain competitive. The required flexibility in people driven
processes is usually achieved through ad-hoc workflows which are naturally highly
unstructured. Effective guidance in ad-hoc workflows therefore requires a simultane-
ous consideration of multiple goals: support of individual work habits, classification
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of unstructured messages, exploration of crowd process knowledge, and automatic

adaptation to changes. This paper presents a flexible approach towards the mapping
of unstructured messages onto processes as well as patterns for self-adjusting and
context-sensitive process recommendations based on the analysis of user behavior,
crowd processes, and continuous application of process detection. Specifically, we
classify users as eagles (i.e., specialists) or flock. The approach is evaluated in the
context of the European research project Commius.

1 INTRODUCTION

Today, enterprise competitiveness is primarily determined by an organization’s abi-
lity to adapt to dynamically changing environments. Keeping the pace with innova-
tions to maintain a competitive advantage requires rapid assembly of value chains
where multiple specialized companies cooperate in the production of increasingly
complex products. As a direct consequence, established work practices – especially
in people driven process environments – need to become flexible and adaptable.

Traditional workflow engines lack the required flexibility for reacting to ad-hoc
changes. Their rigid underlying process model would need to foresee all possible
variations, which becomes unfeasible even for simple processes. Support systems for
flexible processes (e.g., Caramba [7]) recommend users to follow a predefined process
path, but allow them to deviate from that process on demand (for an exhaustive
survey on flexible business support systems see [5]). This paper focuses on two major
challenges that remained mostly unaddressed: a) users in people-driven processes
require a combination of personalized recommendations, while exploiting the best
practices emerging from the overall user community; b) flexible processes need to
evolve across time to reflect the changes in working style, business constraints, and
impact of cross-organizational cooperation.

In this paper, we introduce two different types of process recommendations: pre-
and post-process step recommendations. Both types are connected with a hybrid
approach that combines user-centric process recommendations with crowd-based
process knowledge. Specifically, we provide recommendations learned from previ-
ous processes executed by that user and couple them with process decisions taken
from all users involved in that particular process type. Our main contribution is
a self-adjusting user classification model that determines whether a user engages in
individualized process adaptations (eagle) or whether the user follows a process step
sequence generally agreed upon by the crowd (flock). Monitoring and recommenda-
tion evaluation continuously adjusts this classification. The underlying ad-hoc pro-
cess engine allows any deviations from the modeled flow. These deviations feedback
into the process model, ultimately enabling process evolution through self-learning
of process patterns.

A motivating scenario sets the scene for our self-adjusting recommendation ap-
proach (Section 2). In Section 3, we continue with a brief discussion of the term
flexibility as applied in the domain of adaptive business processes, followed by re-
lated work focusing on flexible process support systems. Section 4 describes the
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process recommendation algorithm and feedback mechanism. Section 5 discusses
our advanced recommendation aggregation and user classification technique. We
evaluate our approach based on the scenario and our prototype implementation in
Section 6. Finally, Section 7 gives a short conclusion and an outlook on future work.

2 MOTIVATING SCENARIO

Within this paper, a common show-case will be used to point out different aspects
of the introduced approach. The scenario (Figure 1) focuses on a business process
describing the handling of incoming orders and the subsequent dispatching of the
ordered product. The model hereby represents all possible steps, while in certain
cases, not all steps might be mandatory. For this paper the analysis of incoming
events is not in the scope of this paper. Therefore we extinguish a prepend clas-
sification process of the incoming information (i.e. analysis of emails, documents,
etc.). In the scenario, an incoming order triggers the process. Subsequently, an or-
der confirmation is returned to the customer. Further, credit and inventory checks
confirm the credit-worthiness of the customer and the availability of the parts that
need to be assembled. In case some parts are not on stock, replenishment of these
items is triggered. As soon as the product is assembled, the shipment as well as the
corresponding invoice are prepared. The process ends with the dispositioning of the
ordered items.

The scenario describes a primarily people-driven workflow. A worker responsible
for an individual process instance reacts to some external events that are not under
his/her control. Besides the triggering of the process, the assembly and packaging
of the product are carried out by specific departments. The worker needs to wait
for the respective events before the process can continue. At first sight, the process
does not seem very ad-hoc. Individual workers, however, are free to choose in
between the desired selection and sequence of process steps. The main purpose of
the process description is obtaining a first, generic process that provides a rough
guide for most cases. As business requirements change due to internal forces (e.g.,
new products, different customer focus) or external forces (e.g., special treatment
of an important customer’s demand) individual workers adapt the order of steps as
they see fit. A worker, for example, can decide to ship the goods before completing
billing and invoicing. Our mechanism monitors such decisions and continuously
adapts to recommend the most suitable next steps.

3 RELATED WORK

3.1 Defining Flexibility in Business Processes

The term flexibility in the context of business processes comes with a multitude of
interpretations. An overview over the most established interpretations of flexibility
allows us to better compare our contribution to existing approaches.
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Fig. 1. Scenario: generic people-driven order process model (PM)

In the scope of this paper, we define process flexibility as the ability to adapt the
process flow on demand through adding, skipping, or sequence reordering of process
steps. This definition is closely related to the interpretation by Adams et al. [3] in
which processes simply provide a guideline while the appropriate way of handling
single tasks is chosen on an as-needed basis. In Reijers et al. [14], process models de-
fine the normal way of achieving a goal, but still offer the possibility to deviate based
on available case data. Sadiq et al. [15], on the other hand, describe flexibility as the
ability to deal with processes that are only partially defined at build-time. Soffer [17]
distinguishes between short-term flexibility (i.e., deviations from a given model) and
long-term flexibility (i.e. evolution of processes). Greiner and Rahm [10] limit the
definition to exception handling capabilities in case of unforeseen events or policy
changes. In contrast to the application specific perspectives, Adamides et al. [1],
define strategic flexibility which describes a company’s diversity of strategies and its
capability to switch between them.

3.2 Flexible Process Support Systems

Research on providing recommendations in flexible workflow systems focuses on mul-
tiple aspects. The major means of providing recommendations is done by guidelines.
A predefined process model assists a user in choosing how to proceed a workflow.
In more detail, such a guideline can exist merely of process parts (like presented
by Sadiq et al. [15]) and which thus does not require a complete process model.
Alternatively, guidelines can define what has to be done in each specific process
state but still not provide a complete process path [13]. Moreover, Adams et al. [2]
define each process step within such a guideline as a simple placeholder task which
is dynamically replaced by a context sensitive choice from an extensible catalog of
suitable workflow definitions during run-time. The actual selection process is ulti-
mately defined by so-called Ripple Down Rules [3]. In addition, recommendations
can be derived based on a rough task structure [8].

In contrast to these guideline approaches that are mainly based on predefined
process models and might not be instantiated at all, recommendations are based
on best-practices shared by users within a company [18]. Pesic et al. and
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van der Aalst [12, 11] provide recommendations based on past experiences and addi-
tionally on a specific process goal. This is achieved by comparing the current process
instance with past executions (logs), while preferring those executions that satisfy
the specified goal. A similar approach can be found in [16] where recommendations
are generated based on similar past process executions by considering the specific
optimization goals. Another approach is followed by Almeida and Casanova [4]
whose recommendations are based on an ontology and semantic rules that generate
possible process alternatives or suitable process steps if the execution of a work-
flow instance fails to proceed. Van der Feesten et al. [20] follows an approach in
which, based on the information available for a case, the next step to be performed
is determined using a strategy of e.g. lowest cost or shortest processing time.

While the previous approaches focus on concrete recommendations, the TIBCO
Software Inc. provides detailed process information and context to the user. Thus,
a user can identify which steps are required to achieve the process goal [19].

These flexible process support systems seem to be on the right track when com-
paring their capabilities to the stated definitions and statements concerning flexi-
bility. According to several surveys, however, actual implications of the ad-hoc
approach lack of a sufficient degree of process guidance during run-time due to their
overly extensive degree of freedom (cf. [5]).

4 PROCESS RECOMMENDATION

We assume an underlying process model (PM) consisting of a set of process steps
(S ⊆ P). Each process step S specifies one or more actions a all of which the user
needs to perform to complete the step. Multiple similar process steps exist when
different combinations of the same actions can be sensibly combined. (E.g., instead
of having one example process step S1 containing actions a1, and a2 or a3, we would
define S1 requiring a1 and a2 and a second process step S2 requiring a1 and a3.)

The process model initially defines only a sensible, general purpose order of
process steps which the user is free to follow or deviate from as circumstances require.
The true, underlying process model emerges only through observation of and learning
from the user’s decisions on the process step sequences.

A recommendation r consists of a process step S, and the recommendation
confidence w defined in the interval [0, 100], where 100 indicates absolute certainty.
Within a set of recommendations R given at a particular points within the scope
of a process P , the sum of confidence values will always add up to exactly 100
(
∑

wi = 100 ∀ ri ∈ R).
Our approach combines two types of recommendations to guide a user through

flexible, people-driven processes: pre-process step recommendations and post-process
step recommendations. These two complementary mechanisms are illustrated in
Figure 2 and work as follows:

Pre-Process Step Recommendations. Upon the occurrence of an external
event, the system autonomously matches the event onto a specific process step
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without further assistance and presents it to the user. In case of a mismatching,
the user has the possibility to manually correct the decision (see Section 4.1).
For example, in the scenario the system recommends Prepare Shipment rather
than Billing+Invoicing upon Product Assembled. The ultimate recommendation
depends on learned user preferences.

Post-Process Step Recommendations. Our mechanism includes recommenda-
tions beyond the immediate process step. Post process step recommendations as-
sume that the user carries out the immediate underlying process step and there-
fore gives suitable follow-up actions. This allows the user to perceive the pre-
process step recommendation in the context of subsequent necessary/optional
process steps, weighted with probabilities (see Section 4.2). In the scenario, a pre
process step recommendation of Prepare Shipment comes with a strong post pro-
cess step recommendation including Billing + Invoicing, weakly recommending
Regular Dispatch and Priority Dispatch.

Pre-Process Step Recommendations

User-interface

A

B

Incoming 

Event

Post-Process Step Recommendations

User-interface

B1

B2

B3

A

Fig. 2. Illustration of Pre- and Post-Process Step recommendations

While pre-process step recommendations occur always in the case of an external
event, post-process step recommendations are always based on an actual process
step. Both recommendation categories apply learning mechanisms to adapt and
improve results over time through observation of user actions. While pre-process
step recommendations learn only from explicit user correction, post-process step
recommendations learn from the implicit user decisions which process step to carry
out next. The following sections describe the two mechanisms in more detail.
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4.1 Pre-Process Step Recommendations

In case of an external event, e.g. an incoming order (cf. Figure 1), the system will
automatically match the event onto an executable process step without requiring any
assistance of the user. These implicit recommendations are generated through the
usage of process knowledge concerning the matching of an event onto a process step
in a specific context. This knowledge can be generated in two ways. The matching
can be done manually by a user during build-time. The second option consists in
the exploitation of process knowledge, collected by the observation of user behavior
in specific situations. Upon initial installation of the system, recommendations
will be mainly based on build-time configuration, while during its life-cycle, the
system will evolve and formulate recommendations mainly on conclusions of the
prior user behavior. A more detailed description of the mechanism behind such
implicit recommendations and the self-adjusting capabilities are shown in Figure 3.
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Fig. 3. Illustration of Role-Back functionality to handle pre-process recommendations

In case of the occurrence of a specific event, the system selects a corresponding
process step that seems most suitable and recommends it implicitly to the user. If
the user has the feeling that the presented process step is an incorrect matching
or another one would fit his/her needs in a better way, s/he has the opportunity
to make use of the “roll-back feature” allowing to change the process step during
run-time. The “roll-back” enables the user to alter the decision of the system and
manually connect an occurring event with a process step. As mentioned before,
the system exhibits simple self-adapting patterns to extend and adjust the initial
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process model. Therefore, the usage of the “roll-back” is tracked and processed for
future recommendations (cf. Figure 3).

If the user does not change the recommended step, the system assumes that his
implicit recommendation has been accepted and was correct. This acceptance is
also tracked and raises the rating of the specific matching, which leads to a higher
probability that this recommendation will be given again in future situations regard-
ing the same context. In contrast, if the roll-back functionality is used, the system
implies an incorrect recommendation, which consequently lowers the possibility of
the same recommendation in the specific context. In case of processes which repeat
on regular basis (e.g. order process, invoices, quote requests) the system will learn
over a certain period of time and adapt itself to a certain user behavior.

4.2 Post-Process Step Recommendations

The recommendation mechanism applies two related data sets: the process model
(PM, Figure 1) and the sequence graph (SG). Figure 4 a) displays the sequence graph
for the first steps of the scenario process. The sequence graph SG(S, E) comprises
nodes representing the individual process step S. A directed edge e ∈ E in SG
between two nodes A and B describes a temporal sequence that process step B
follows immediately after A. Whenever a user conducts process step B after process
step A we increase the edge value. The SG accumulates all individual process step
sequences for a particular process type.

It thus describes the likelihood (i.e., preference) of following a particular path
through the process. In Figure 4a, the arc thickness indicates this preference. The
sequence graph emerges from the process log sequences that are collected for each
executed process instance. When we subsequently apply existing process techniques
[9] on the sequence graph, we obtain the corresponding process model. It describes
the dependency between process steps such as joins, splits and sequential steps.

A
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a)  Sequence Graph (SG) b)  Candidates for A c)  Candidates for D

D

C A

B

E

D

C

G + ... G + ...
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Fig. 4. Sequence Graph (SG) excerpt of process step candidates: completed process steps
in dark gray, candidates in shaded blue, and inactive process steps in green

When a process is started, we derive a copy of the process model to track
process progress. We utilize the process to select the relevant process steps that are
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sensible to enact in the current process state. This is the task of the Process Instance
Manager (Figure 7). For each point in time, it keeps track of process steps that have
been completed, which are active (i.e., all process step preconditions are fulfilled,
but the step has not been carried out), and which steps need to be (de)activated.
For our recommendation purpose the Process Instance Manager provides a list of
process step candidates that are ready to be carried out.

The sequence graph then provides the information to establish which of the
possible process steps to carry out first. The algorithm in Listing 1 describes the
recommendation procedure in detail. The algorithm requires the sequence graph
(SG), process model (PM), and current (respectively just finished) process step (N)
as input.1

For our example process in Figure 1, we suppose the user has completed the order
confirmation process step A. The Process Instance Manager now identifies Check
Inventory B, Credit Check C, and Send Acceptance D from the PM as sensible next
steps (Figure 4 b). Subsequently, the SG weights these candidates according to the
edge values (e.g., here w(AB) = 70, w(AC) = 10, and w(AD) = 30).

Algorithm 1 selects all active process steps (lines 1 to 5) which at the current
process status include process steps B, C, and D. In lines 7 to 9, the algorithm
determines the likelihood that any of the candidates is an immediate successor of
the recently finished step A. For now we store merely the edge weight in the recom-
mendation set R. For now, we assume the algorithm finishes here and just return
the current content of R.

Suppose the user does not follow the top-rated recommendation B and selects
step D instead (Figure 4 c) and executes the associated actions. Now, a simple
recommendation based on the SG would suggest primarily to continue with the
process (G + . . .) and as second choice continuing to C (because arc DG yields
a higher edge weight than edge DC). A pre-selection of valid edges based on the PM,
however, identifies B and C as the only sensible next process steps as the process
model specifies steps B, C, and D in AND branches and thus will only activate G
once all three steps have been completed or explicitly skipped by the user.

Having only B and C in the candidate set Cand, lines 7 to 9 will process only the
edge towards C. We should not, however, focus only on recommending subsequent
process steps, as the user is free to select any process step. Lines 10 to 23 in
Algorithm 1 analyze the process for skipped and out-of-order process steps. Thus,
after finishing D (Figure 4 c), the algorithm also checks any preceding steps of D
that are still active (i.e., only C) and scores them according to outgoing weights
(i.e., w(CD)) – lines 10 to 14.

Finally, the algorithm also considers candidates that are not directly connected
to the last completed step (i.e., B). The SG will not exhibit an edge between two
nodes, if the corresponding sequence has never occurred in the logs before. It does

1 Note that the user can request a recommendation of a process step before finishing
the underlying process step already to obtain timely information on subsequently recom-
mended steps.
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not indicate, however, that the user is restricted to follow that sequence, but it will
not be recommended to him/her. Here lines 15 to 23 process candidates based on
their aggregated weight on their respective incoming edges (i.e., w(AB)). We limit
the incoming edges to those that originate at already completed process steps. We,
thus, prefer candidates that follow already completed steps and that are frequently
traversed as it is more likely that completed steps have produced a result that is
needed by the immediate successors, rather than somewhere later in the process.

Before the recommended process step in R are returned to the user, the steps’
weights are normalized to add up to 100. Then the steps are sorted to have the most
likely next step at first position in the set. In short, the sequence graph by itself
cannot give recommendations that respect control flow constraints. The process
model by itself, on the other hand, cannot provide suggestions on the order which
process step to carry out first.

4.3 User vs. Crowd-based Recommendations

The generic scenario process gives rise to distinctive process adaptations as required
by different environment needs. We observe the behavior of following three example
users. User 1 is responsible for normal customers that order standard products
which get automatically restocked once a certain threshold is undercut. Normal
customers receive their goods via regular shipping (Figure 5 a). User 2 serves to
premium customers that have a high order volume, pay on time and thus need not
go through a credit check. Premium customers receive priority shipment (J) to
deliver their ordered goods as fast as possible (Figure 5 b). User 3 handles special
cases. Being a new employee, s/he tends to forget certain process steps. Specifically,
s/he never returns order confirmations (D), and occasionally misses the preparation
of billing information (G).

A

C

G

F

H

A D

G

F

J

D

a) Sequence Graph User 1 b) Sequence Graph User 2

Fig. 5. Sequence graph for User 1 (handling standard orders) and User 2 (serving premium
customers)

Each individual user exhibits a very personalized process that deviates consider-
ably from the standard order process.2 While personalized recommendation would

2 Note that for collaborative processes (i.e., multiple interacting users) the personalized
process and respective recommendations cover only the part of the process in which the
user is involved in.
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Algorithm 1 Crowd-based Recommendation Algorithm A(SG, PM,N).

1: for all ProcessStep S ∈ PM do ⊲ Get list of process step candidates.
2: if state(S) == active then

3: Cand← S
4: end if

5: end for ⊲ Initialize process step ranking scores.
6: R← ∅
7: for all ProcessStep S ∈ Cand do ⊲ For all consecutive process steps of N .
8: R[S] = SG.getEdge(N, S).weight
9: end for

10: if hasActivePredecessors(S) then ⊲ If a preceding process step has been
temporarily skipped.

11: for all ProcessStep S ∈ Cand do ⊲ Extract incoming edge weight from
SG.

12: R[S] + = SG.getEdge(S,N).weight
13: end for

14: end if ⊲ For any other active process step that is not directly connected to N .
15: for all ProcessStep S ∈ Cand ∧R[S] == 0 do

16: wsum = 0
17: for all Edge e ∈ SG.getInEdge(S) do
18: if state(sourceNode(e)) == completed then ⊲ Count the edge weight

only if the predecessor step has been completed.
19: wsum + = e.weight
20: end if

21: end for

22: R[S] = wsum
23: end for⊲ Normalized candidates probabilities in R to obtain a total sum of 100
24: norm(R) ⊲ Sort candidates by probability in R descending
25: sort(R)
26: return R

yield highly relevant process step rankings, these recommendations cannot exploit
alternative activities when exceptions such as delayed shipping, or partial order
content is out of stock. Moreover, pure personalized recommendations will reinforce
inefficient or even incorrect sequences such as inadvertently skipping an important
process step. Crowd-based recommendations mitigate this shortcoming.

Crowd-based recommendations enrich the set of relevant possible process paths
through aggregation of the process experiences from multiple users. Personalized
processes capture the habits of an individual user. They are, however, limited
to process step sequences that a particular user has executed so far. Alternative
sequences that potentially reduce overall processing time remain unavailable. Also,
a personalized process cannot be applied for giving advice in exceptional situations
that have not been encountered by the user before.
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Figure 6 displays the aggregated process model for users 1, 2, and 3. To obtain
the aggregated process model, we combine all process step sequences from every
user executing the order process and generate one sequence graph. From this se-
quence graph, the process mining technique referenced above then generates the
corresponding crowd-based process model.
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Fig. 6. Crowd-based Process Model for User 1, 2, and 3

4.4 Overall Recommendation Cycle

A complete recommendation cycle is depicted in Figure 7. The cycle outlines how
process model, sequence graph, recommendations, roleback, and user actions are
connected. The exact mechanisms for aggregation user-centric and crowd-centric
recommendations is covered then in the subsequent Section 5.

An incoming request for recommendations triggers the recommendation mecha-
nism (1). When the request coincides with an external event (2), the Event Monitor
notifies the Process Instance Manager (3) to check which process steps should be
activated (4). The Process Recommender then selects a single process step (5) but
also keeps the alternatives to allow for simple role-back by the user. Steps 2 to 5
are skipped when no external event is present.

The process recommender then collects information from the process instance
manager (6a) and the sequence graphs (6b) to aggregate sensible upcoming process
steps. The process recommender retrieves this information from the SG or PM.
The recommender subsequently provides the user with the recommended process
steps (7).

The user checks the correctness of the pre-process step recommendation and
forces a role back when another process step is more suitable (8). This choice is
logged (9a) and post-process step recommendations are repeated (9b). The user
then carries out the immediate underlying process step and other recommended
steps which do not rely on external events. A process step is enacted by clicking,
for example, on a link on the user’s interface (10). Note that the user does not
explicitly agree or disagree with a recommendation. Instead, the system monitor
observes the user’s actions (11) to determine the true process progress. The system
monitor updates the process instance manager whenever a process step has been
completed (12). The process instance manager in turn updates the sequence graph
for each completed step (13). In regular intervals, the process miner mechanism takes
a sequence graph and generates an updated process model (14). We apply an aging
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mechanism to reduce the effect of old, potentially outdated, process sequences. For
every new incoming process sequence we remove the oldest sequence. We add role-
back preferences to the resulting process model to update event-to-process step
mappings (15).
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Fig. 7. Feedback cycle for personal and crowd-centric recommendations. The role-back
cycle is highlighted by dotted lines, while the process refinement cycle is given in
dashed lines.

The recommendation cycle provides recommendations based on personal and
crowd-centric PM and SG. To obtain both types of recommendations, for each pro-
cess the Process Instance Manager instantiates two instances of the PM and access
to two sequence graphs. One instance of the personal process model and correspond-
ing sequence graph delivers the recommended steps and order of steps based purely
on previous user actions. The other process model instance reflects the crowd know-
ledge. The crowd-based process model and sequence graph deliver best practices
recommendations derived from all users. Ultimately, the Process Instance Manager
keeps track of the process progress in both instances. When the logged user sequence
data is mined from time to time (step 14), this is done twice: once only based on
user log sequences and once taking all log sequences.

5 SELF-ADJUSTING RECOMMENDATION MODEL

Users receive recommendations derived from the personal PM and SG or the crowd-
centric PM and SG based on their classification as eagle or flock. This classification
is captured by the parameter α. It describes the user on a scale between 0 and 1,
where 1 denotes a user always adhering to his individual work style – the eagle. At
the other extreme end of the classifier (α = 0), a user follows generally applied work
practices – flock. We determine α for each user and process type as a user’s work
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style potentially deviates for each process type. The overall recommendation merges
user-centric and crowd-based recommendations according to the following formula:

Roverall = α · Ruser + (1− α) ·Rcrowd. (1)

When a user tends towards eagle we give more importance to the recommended
steps from the personal PM and SG and vice versa. To do so, we multiply the
recommendation weights wREC within Ruser with α and repeat the same for Rcrowd

with (1− α). Sorting the merged list provides the overall recommendation.

Suppose following simple example consisting of user- and crowd-based recom-
mendations: Ruser recommending S1, S3, S4 and Rcrowd recommending S2, S3, S5, S6.
We obtain following overall recommendation for α = 0.5 (Note that the weights for
S3 are aggregated.):

0.5 ·





S1 70
S3 15
S4 15



+ 0.5 ·









S2 80
S3 10
S5 5
S6 5









−→

















S2 40
S1 35
S3 12.5
S4 7.5
S5 2.5
S6 2.5

















(2)

In our example, we set α = 0.5 to denote a user that has not been classified
as eagle or flock yet. We reject a fixed configuration of the parameter α. Instead,
dynamic classification adjustment reflects a user’s adaptation to changing process
requirements and learning effects. To this end, we observe the user’s selection of
recommended process steps. We increase the value of α when the user carries out
a process step that originated from Ruser. Similarly, we reduce the value of α when
the user follows crowd-based recommendations. The four factors determining the
amount to which α is changed are:

(i) similarity of user-centric and crowd-based recommendations,

(ii) process success,

(iii) current value of α,

(iv) explicit user feedback via role-back.

5.1 Recommendation Similarity

We calculate the similarity of user-centric and crowd-based recommendations impli-
citly by comparing the actual user actions with both recommendations. We assume
that users deviate slightly from recommended process steps on a regular basis. Sup-
pose that the user-centric recommendation suggest process step S1(a1, a2) and the
crowd-based recommendation suggest process step S2(a2, a3). Due to unforeseen cir-
cumstances the user executed actions a2, and a4. Thus, we first combine the user’s
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actions (a2, a3) in an anonymous process step type and then compare that process
step with the given recommendations.

We determine the similarity of two process steps by observing the overlap of
common and individual actions. Specifically, we apply the weighted Jaccard simi-
larity measurement

simwJaccard(Sx, Sy) =

∑

a∈Sx∩Sy
wIDF (a)

∑

a∈Sx∪Sy
wIDF (a)

(3)

where wIDF (a) is the weight function describing the frequency of action a occurring
in a process step s. Here the weight function is the inverse document frequency
(IDF) of a. In our case, a document is a process step S where the words correspond
to the involved actions a. The overall document corpus is equivalent to the set of all
specified process steps mathcalP that occur in the underlying process model. The
weight for a particular action ai is defined as

wIDF (ai) = log
|S|

s : ai ∈ s
(4)

where |S| is the number of all process steps and s : ai ∈ s counts all process steps
that contain action ai. Actions that occur in most process steps will thus yield low
weight when comparing two process steps, while rare actions will yield a high weight.

The similarity of user actions and recommendation derive the recommendation’s
success. Each recommended process step is additionally weighted by the recommen-
dation’s weight. For an anonymous process step A we calculate:

succ(R,A) =

R
∑

i

simwJaccard(A, si) · wREC(si). (5)

The overall effect on α moving towards eagle or flock is then simply derived through
comparison of personalized and crowd-based recommendation success:

δ(A) = succ(Ruser, A)− succ(Rcrowd, A). (6)

5.2 Avoiding Classification Lock-In

An eagle remains locked-in in his classification when he repeatedly fails to suc-
cessfully complete a process but continues to receive exclusive personal recommen-
dations. In this case, we have to abandon the underlying classification. A user
is considered locked-in, when his/her average process success rate falls below the
average process success rate of the top 50% flock users. Specifically, we sort all
users (U) according to their current classification value α in ascending order and
select the process success rate psucc of all users having α equal or below the second
quartile. We set α = 0.5 for user u if s/he fails to meet the following threshold
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condition:

¯psucc(u) >
2 ·

∑

i
¯psucc(ui)

|U |
∀ui : αi ≤ Q2. (7)

This is expected to raise the number of successful processes as the user is presented
with process step alternatives s/he did not consider before. The user classification
might again deviate towards eagle again, but this time resulting in more sensible
process steps.

5.3 Accelerated Classification Divergence

When recommendations combine profile-based and crowd-based recommendation to
approximately equal extent, the top recommended process steps are potentially si-
milar or, on the other hand, completely contradicting. We apply a sigmoid function
to avoid remaining too long in the middle between eagle and flock (α ∼ 0.5). The
sigmoid function ensures that we can quickly move from the middle in both direc-
tions. However, we will only move if δ(A) ! = 0 (i.e., when there is a trend towards
eagle or flock); otherwise we remain with the previous α value. Based on δ(A) and
current classification value αt, we determine the new αt+1:

αt+1 =

{

min[max[(1 + e−10·(αt+δ(A))+5)−1, 0], 1] if δ(A) 6= 0,

αt if δ(A) = 0
(8)

where the Min and Max operators limit α to the interval [0, 1].

5.4 Explicit Role-Back

Feedback from role-back decisions are immediately available but only applied when
external events occur. For each process, we track which process step followed upon
occurrence of a particular event (this is stored in the Roleback Decision DB, Fi-
gure 8). Similar to the sequence graph, the database captures all experienced se-
quences of event x followed by a process step y from which we derive the dependency
probability p(eventx, stepy) by calculating #x followedBy y/#x occurred. Again
we track these dependencies for individual users and for all users separately.

Ultimately, we change α by the difference of the selection probabilities: when
personal and crowd-based probabilities differ strongly, also α is subject to a large
change.

δroleback(x, y) = [puser(x, y)− pcrowd(x, y)] · γ (9)

In case of a role-back, α is subject to a more significant update (γ = 0.5) since the
role-back indicated an incorrect recommendation. When no role-back occurs, alpha
receives only a minor update (γ = 0.05) as we assume the current configuration is
suitable.3

3 Suitable values of γ were determined through experiments.
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Fig. 8. Self-tuning of classification parameter α based on recommendation success and
role-back

5.5 Classification Self-Tuning Cycle

The complete classification self-tuning cycle consists of the Recommendation Success
Evaluation phase and the Recommendation Aggregation phase (Figure 8). For each
completed process step (1a) the User classification component retrieves the corre-
sponding personal and crowd-based recommendations (2a) from the Process Recom-
mendation DB. Alternatively, upon a role-back (1b) probabilities on the collected
role-back decisions for the corresponding external event are required to determine
the basic trend towards eagle or flock (2b). Next, we apply the recommendation
similarity comparison. Subsequently, we evaluate the user process success rate (3)
to check for classification lock-in. The User Profile DB manages classification values
for the various process types and the corresponding process success information. We
calculate the new classification value based on the previous value (4). The previous
value is neglected if the lock-in check triggers a classification reset. Finally, the new
classification value is stored (5).

The recommendation aggregation phase provides more details on how the Pro-
cess Recommender – first introduced in Figure 7 – merges personal and crowd-
based recommendations. Upon an incoming recommendation request (6), the rec-
ommender retrieves personal and crowd-based PM and SG (7). For each set, the
ranking algorithm in Listing 1 determines the top process step candidates. The two
sets are then aggregated applying the classification parameter (8). While the user
receives the merged recommendations (9a), the process recommender stores the two
output rankings of the recommendation algorithm separately (9b).
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6 EXPERIMENTS

6.1 Scenario Evaluation

We demonstrate the effect of user classification based on the motivating scenario,
in particular based on the behavior of the three user types. Figure 9 provides the
process recommendation evaluation results for 10 instances of the order process for
each user (dashed lines) and the corresponding effect on the user classification α
(full lines). We applied rapid aging in the experiment to visualize the convergence
towards eagle or flock more clearly (i.e., new process sequences have an early and
strong impact).
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Fig. 9. Classification change α (full lines) and user recommendation success δ (dashed
lines) for User 1, 2, and 3 across 10 time intervals

User 1 engages in order processes involving normal users; thus his/her individual
working style does not deviate much from the initial process model, and from the
emerging crowd-based process model either. Thus s/he takes up some crowd-based
recommendations but remains slightly with the personalized recommendations (i.e.,
δ on average between 0 and 0.1). We have a delayed convergence towards eagle;
however, deviations towards flock have no effect. User 2 displays also eagle behavior,
albeit diverges more quickly as his/her process for premium customers deviated more
clearly from the best practices.
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User 3 exhibits a typical learning behavior. As s/he realizes to execute process
step D, s/he strongly deviates from the personal recommendation, thus s/he be-
comes a flock member (interval t1 to t4). As his/her corrected behavior becomes
more present in the personal flow model, the differences between personal and crowd-
based recommendations decrease (t5 to t6) and his/her personal sequence preferences
start to show effect (t7 to t10). Multiple, sequential recommendation evaluations to-
wards eagle (δ > 0) cause his/her reclassification.

As users learn and adapt their behavior, new flow control structures emerge
from the crowd sequence graph. Once User 3 apprehends to always send order
confirmation, the evolved crowd-based PM (Figure 10) identifies process step D as
mandatory (and no longer optional).
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Fig. 10. Evolved Process Model for Users 1, 2, and 3

6.2 Prototype Evaluation

The recommendation approach introduced in this paper has been implemented as
a proof-of-concept within a software prototype of the European research project
Commius. The prototype connects to a standard email environment – intercepting
and analyzing email traffic – in order to detect process steps from the communication
behavior of a user.

The users apply the process configuration tool (Figure 11 left) to define a coarse-
grained structure of the desired process. Within Commius, process configuration
tool currently supports only simple sequential structure; however, the integrated
mining algorithm refines process model later as derived from user actions. When
the system recognizes this predefined process steps in the email traffic, it will auto-
matically enrich the corresponding emails with context sensitive information as well
as process recommendation concerning further steps [6]. Figure 11 (inset) displays
an example email enriched with pre- as well as post-process step recommendations.
The process step sequence with highest probability is provided on the right side
(here four subsequent process steps taken from the scenario). While hoovering over
the actual process step, a pop-up menu gives the user the opportunity to apply the
roll-back feature described in Section 4.1. Clicking on one of the provided links
would lead to a re-matching of the email to an other process step.

The aggregation of personal and crowd-based recommendations exhibits a dif-
ferent process step sequence than the originally modeled flow. User 3 has been
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classified as flock, thus the recommendation advises him/her to prepare order con-
firmation. The enhanced email also demonstrates the flexibility supported by our
prototype. In case the user prefers not to follow any of the given recommended
steps, s/he is free to select any other step from the underlying process. The popup
contains the probabilities how well the alternative process steps match the current
process context.

Fig. 11. Commius process modeling tool and email-based process step recommendation
(inset)

6.3 Results

The evaluation results are twofold. First, we achieved the successful application
of our approach in email-based process environments. Recommendation support is
directly integrated in the email client. Second, we demonstrated the user classifica-
tion mechanism based on three user types. Classification diverges quickly (User 1,
User 2), and displays the benefit of crowd-based process model to overcome erro-
neous process decisions (User 3) followed by subsequent reclassification.

7 CONCLUSION AND OUTLOOK

Recommendations for people-driven ad-hoc processes exhibit maximum effective-
ness when personal and crowd-based behavior is combined. Adding continuous
process detection and user classification ensure valid recommendations even in case
of process evolution. We introduced the concepts of eagle and flock to describe the
recommendation needs of distinct user types.

Future work will focus on evaluating the recommendations in real-world envi-
ronments within the scope of the Commius project. At the same time, we plan to
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integrate context constraints to distinguish between process sequences that depend
to a large degree on data input and/or specific environmental conditions. This will
allow to give even more targeted recommendations. In addition, we intend to in-
vestigate clustering techniques for discovering conflicting recommendations in the
crowd-centric process model.
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