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Abstract. This paper describes Graph Investigator, the application intended for

analysis of complex networks. A rich set of application functions is briefly described
including graph feature generation, comparison, visualization and edition. The
program enables to analyze global and local structural properties of networks with
the use of various descriptors derived from graph theory. Furthermore, it allows to
quantify inter-graph similarity by embedding graph patterns into low-dimensional
space or distance measurement based on feature vectors. The set of available graph
descriptors includes over eighty statistical and algebraic measures. We present
two examples of real-world networks analysis performed with Graph Investigator :
comparison of brain vasculature with structurally similar artificial networks and
analysis of vertices importance in a macaque cortical connectivity network. The
third example describes tracking parameters of artificial vascular network evolving
in the process of angiogenesis, modelled with the use of cellular automata.

Keywords: Complex networks, graph descriptor, graph matching, biological net-
work, graph pattern vector

Mathematics Subject Classification 2000: 68R10, 68T10, 68-04

1 INTRODUCTION

In this work we present Graph Investigator application, which provides convenient
and fully featured framework for network-oriented research and analysis. Compu-
tational investigation of networks plays fundamental role in various fields of con-
temporary basic and applied science, ranging from discrete mathematics to biology.
Ubiquity of graph patterns in nature motivates the development of graph models, re-
flecting relations between different objects and allowing for elucidation of principles
that govern complex systems [1]. Network approach to system analysis, represented
by the theory of complex networks, succeeded in uncovering universal rules exhibited
by plenty of social, technological and biological networks [2]. The quantitative re-
search of graph data requires development of robust algorithms and tools, intended
for graph feature extraction, graph matching and graph visualization.

The analysis of high-volume and rapidly growing datasets of biological networks,
derived from molecular or cellular scale, brings deep insight into basic mechanisms
of life. The molecular interaction networks epitomized by metabolic networks or
protein-protein interaction networks stores huge amount of data about cell func-
tional organization [3]. Research carried out on such networks allows for uncovering
evolutionary relations between organisms [4, 5] and elucidation of local structure
similarity across species [6]. Identifying fragments of networks vulnerable to single
or multi-target attack and investigation of network resistance to different damages
helps in designing new drugs and therapies [7, 8]. Graph-theoretical analysis of
brain functional and anatomical connectivity can be helpful for diagnosis of such
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diseases as schizophrenia [9, 10], epilepsy [11] or Alzheimer’s disease [12]. Networks
modeling vasculature or connections between neurons play significant role in un-
derstanding processes taking place in organs. Vascular networks analysis can have
great impact on advances of anti-angiogenesis therapy in cancer. Comparing blood
vessels in different tumors may test hypothesis about their similar growth pattern
and metastatic potential. Promising application of graph matching algorithms arises
as far as inter-regional variation of vasculature in tumor is considered. Quantify-
ing relations between vascular networks in different types of tumors can also bring
valuable conclusions.

The applications described above require robust tool capable of capturing va-
rious topological features of networks and allowing to perform inter-network com-
parisons on the basis of diverse criteria. Investigation of network topology using
graph descriptors can help understand the behavior of the whole system but also
evaluate models by comparing results of in-silico experiments with in-vivo ones.
The structure of network encodes a number of global and local information, which
can be extracted by dedicated measures and used in further analysis. Quantitative
evaluation of such network properties as connectivity, symmetry, ability to transfer
signals or to form node clusters can reveal qualitative features of underlying com-
plex system. In addition, local information e.g. vertex centrality or vertex clustering
coefficient enables to find subnetworks playing the most significant role in the whole
system and allows for grouping functionally similar nodes. The analysis of vertex or
edge-features distributions can also bring insight into system-level characteristics.

The aim of this work is to describe Graph Investigator – application designed to
perform all the above-mentioned analytic tasks. We introduce new software system
whose main features are rich functionality, platform-independence, effectiveness and
modern look. Our application has strong capability to explore network data origi-
nating from real-world experiments and artificial models, and we believe it to be
useful in biomedical areas.

The rest of this paper is organized as follows. In Section 2 we review different
network-analytic tools including applications and libraries and compare them with
our framework, explaining reasons for starting this work. Section 3 provides details
on computational methods and theory behind Graph Investigator, presenting avail-
able graph descriptors divided into two groups: general and algebraic. In Section 4
we describe features of our application, while Section 5 presents three typical use
cases involving biomedical data sets: brain vascular network, macaque cortical con-
nectivity network and vascular network in presence of tumor. Then, in Section 6
hardware and system requirements of Graph Investigator are specified. Section 7
explains how the program can be downloaded. Finally, we discuss conclusions.

2 RELATED WORK

Networks analysis software developed so far provide a variety of methods to investi-
gate large datasets. However, their practical use is often limited to the networks of



384 W. Czech, W. Dzwinel, S. Goryczka, T. Arodz, A. Z. Dudek

specific type, e.g. social networks. Consequently, the set of available descriptors is
domain-biased. Existing applications share many features, for instance most them
possess a visualization module. Besides, the set of available graph descriptors is
often modest, containing basic measures and lacking more specific ones.

A common example of large network analysis tool is Pajek [14], a Windows ap-
plication capable of visualizing graphs and performing statistical analysis of their
topology. Despite advantages such as stability and maturity, platform dependence
and closed code decrease flexibility of this application. The NetworkX Python pack-
age [13] provides a productive framework for the study of networks but requires
programming skills. The tools intended for statistical social networks analysis and
modelling are represented by StOCNET [15] or Visone [16] applications. StOCNET,
an open source Windows program, does not provide analytic tools from spectral
graph theory and its application to networks other than social is limited. Visone is
a closed source Java application with strong visualization capabilities. It allows for
computation of vertex metrics but more advanced features such as forming feature
vectors and embedding graph into pattern space are not available. From the per-
spective of spectral graph theory, investigation of networks structure can be carried
out using Spectral net [17] program. Unfortunately, this .NET application seems to
be no longer maintained. Commercial graph exploration software is exemplified by
NetMiner [18] or orgnet [19] frameworks.

Our motivation for starting implementation of Graph Investigator was to create
an application focused on computing rich set of both statistical and spectral graph
descriptors and capable of network feature generation for comparing real-world net-
works with some model network types. We decided to use Java programming lan-
guage to provide platform independence and to take advantage of robust graph
libraries as JUNG [20] and Prefuse [21]. The former provides number of algorithmic
tools while the latter is an advanced visualization framework.

3 COMPUTATIONAL METHODS AND THEORY

A wide variety of graph-analytic metrics available in Graph Investigator application
enables to perform an in-depth study of graph structure. In this section we briefly
present a subset of available descriptors (the rest being described in Appendix),
giving some explanations of their purpose. Categorization of the metrics can be
carried out in several ways. Here, we decided to make a distinction between de-
scriptors computed as permutation invariant function of local graph properties, and
vector descriptors obtained from spectral graph theory. The origins of the presented
metrics are diverse. Some of them, as the Wiener index, arise from the topological
studies of molecules [29, 32] while other derive from the analysis of social networks.

In this section we also describe spectral embedding – graph visualization me-
thod [38, 39] originating from spectral graph theory that can deliver much valuable
information about graph structure. At the end of the section we present some
general remarks concerning graph matching based on feature vectors.



Graph Investigator 385

3.1 General Graph Descriptors

Let us recall some basic notions from graph theory that will be used further in this
text. Graph G is defined as ordered pair G = (V, E), where V is a set of vertices and
E is a set of edges. An edge euv = {u, v} ∈ E is an unordered pair of vertices. The
vertices model objects while edges model relations between them. Two vertices u
and v are adjacent (u ∼ v) if they are joined by an edge. A sequence of vertices
such that from each vertex there is an edge to the next vertex in the sequence is
called a path. The length of the path is the number of edges it contains. The
distance between vertex u and v, denoted by d(u, v), is a length of the shortest
path between u and v. If a path between u and v does not exist then d(u, v) = ∞.
The set of vertices adjacent to vertex v, denoted by Nv, is called its neighborhood.
The degree (or valence) kv of vertex v is a number of edges which join v with its
neighbors. Graph G is connected if a path exists between each pair of vertices.

Clustering Coefficient. This graph descriptor measures neighborhood connec-
tivity used to indicate small-worldliness of a network [27]. The clustering coefficient
of vertex v defined as follows:

C(v) =
2|{eij}|

kv(kv − 1)
, (1)

where i, j ∈ Nv and eij = {i, j} ∈ E, is a ratio of number of connections between
neighbors of vertex v (denoted by |{eij}|) to number of links that could possibly exist
between them, i.e., kv(kv − 1)/2. Clustering coefficient quantifies local topology of
a graph, reflecting how close the neighborhood of a given vertex is to form a complete
graph. The clustering coefficient for a graph G with n vertices is an average of
clustering coefficients for each vertex.

C(G) =
1

n

∑

v∈V

C(v) (2)

The above formula is undefined for vertices of degree 1 or 0. In these cases C(v) is
usually set to 0, however, as pointed out in [28], such procedure may lead to biased
assessments of neighborhood clustering when undefined values dominate average.
Therefore, additionally we provide different graph clustering coefficient computed
using vertices with more than one neighbor [28]:

C ′(G) =
1

n′

∑

v∈V :kv>1

C(v), (3)

where n′ is the number of vertices of valence greater than 1.
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Wiener Index. Wiener index, proposed in [29], is a sum of lengths of the shortest
paths between every pair of vertices in a given graph G.

W (G) =
1

2

∑

u∈V

∑

v∈V

d(u, v) (4)

It is used in chemistry as a topological index of molecule, reflecting its branching
and correlated with its van der Waals surface. Wiener index reaches minimal value
1
2
n(n−1) for a complete graph and maximal value 1

6
(n3−n) for a path graph, where

n is the number of vertices. Using the latter formula we can normalize Wiener index
as follows

Wn(G) =
6W (G)

n3 − n
, (5)

obtaining Wn(G) ∈ [0, 1].

Subgraph Count. The kth-order Subgraph Count for a graph G, kSC(G), is
a number of connected subgraphs with k edges.

kSC(G) = |{H = (VH , EH) ⊂ G: |EH | = k ∧ diam(H) < +∞}| (6)

This descriptor shows how many specified subgraphs with k edges occur in the graph.
It can be normalized as follows

kSCn(G) =
kSC(G)
kSC(K)

, (7)

where K is a complete graph (clique) with n vertices. The common descriptors,
derived from generic SC descriptors are Platt Index [30] (l = 2) and Gordon-
Scantleburry Index [31] (l = 3). They reach their maximal values for cliques.

Betweenness Centrality. Centrality is a measure of relative importance of graph
vertex according to given criteria. Betweenness measures are a kind of central-
ity measures used often in the analysis of social or citation networks. They tend
to evaluate the influence of each vertex on spreading information over the graph.
Shortest-path betweenness is a widely used centrality measure defined as a fraction
of the shortest paths between pairs of vertices in a graph that pass through given
vertex [33, 34], i.e.,

BC(v) =
∑

s6=v 6=t∈V s6=t

σst(v)

σst

, (8)

where σst(v) is the number of the shortest paths from s to t which pass through v
and σst denotes the total number of the shortest paths from s to t. It measures to
what extent a given vertex is needed by other vertices to transfer information through
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the shortest paths. The betweenness centrality for a graph G with n vertices is an
average of betweenness centrality for each vertex.

BC(G) =
1

n

∑

v∈V

BC(v) (9)

Random Walks Betweenness Centrality. The shortest path betweenness de-
scribed above aims at evaluating the influence of each vertex on spreading informa-
tion over network through geodesic routes. This model assumes that information
does not move through other non-optimum paths, what in many cases is not true.
In [35], Newman proposed a general betweenness measure, which takes into account
all paths between any two nodes yet giving greater weight to shorter paths. This
betweenness can be defined either by an analogy to current flow in an electrical
network or by random walks. These two definitions are equivalent. In the first one,
we treat a graph as an electrical circuit with unit resistances on edges and average
the current flowing through given vertex out, involving all pairs of current-in and
current-out. In the latter definition, one calculates the mean number of passages the
random walker travelling between any pair of nodes makes through a given vertex.
The random walks betweenness centrality RWB(G) is an average of random walks
betweenness centrality for each vertex. The rest of available descriptors is described
in Appendix.

3.2 Algebraic Graph Descriptors

Spectral graph theory finds correspondences between structural properties of net-
works and algebraic properties of matrices representing graphs. The most common
matrix representation for graph G = (E, V ) is adjacency matrix defined as follows

Au,v =

{

1 if {u, v} ∈ E
0 if {u, v} 6∈ E,

(10)

nevertheless during generation of algebraic graph feature vectors we usually use
Laplace matrix or one of its variants such as normalized Laplacian. The Laplacian,
defined as L = D −A, where D denotes diagonal matrix of vertex degrees, is well
suited to graph analysis as it possesses only nonnegative eigenvalues [38]. This helps
to order eigenvectors and use them to generate features of the graph.

Heat kernel – the fundamental solution of heat equation associated with the
Laplacian (see Equations (11) and (12), φi denotes eigenvector associated with an
eigenvalue λi) allows for construction of valuable graph metrics that additionally
can be scaled by the time parameter [49, 50]. This enables to navigate between
local properties (low values of t) and global properties (high values of t) of graph.

∂ht

∂t
= −Lht (11)
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ht = exp(−Lt) =

|V |
∑

i=1

exp(−λit)φiφ
T
i (12)

Eigendecomposition and Singular Value Decomposition (SVD) of graph matrices
deliver many valuable information about graph topological properties. For instance,
the sum of 3rd powers of adjacency matrix eigenvalues can be used to compute
a number of triangles in graph [38]. The spectrum of Laplacian helps establish
a number of spanning trees, a number of connected components or estimate isoperi-
metric number of a graph [36]. Therefore the results of algebraic decomposition form
rich basis to generate graph descriptors. Graph Investigator allows for compuation
of various graph descriptors based on eigendecomposition of Laplace matrix or heat
kernel matrix (see Appendix).

3.3 Graph Spectral Embedding

Eigendecomposition of Laplacian matrix can be employed to visualize graphs. In
matrix representation we assume that vertices are ordered, therefore successive ele-
ments of selected eigenvector can be treated as scalars assigned to nodes. Taking
into account two eigenvectors, for each vertex we obtain 2D coordinates that can
be used to place it into 2D space. Next, we connect adjacent vertices with a line.
Using eigenvectors corresponding to two smallest non-zero eigenvalues, we can get
very useful visualization of graph, capable of amplifying its important features and
revealing hidden structural patterns [38, 39]. For planar graphs particularly, such
an embedding provides good coordinates for nodes.

4 PROGRAM DESCRIPTION

Graph Investigator is a program written in Java, available upon request (mailto:

czech@agh.edu.pl). It was designed to be extended easily, hence new functionality
e.g. new graph descriptors can be added without much effort. Provided that Java
Runtime Environment is installed, Graph Investigator can run on many different
platforms as Linux, Solaris or Windows.

The functionality of Graph Investigator is described below. First we present
graph data formats that can be used with our application. Then the basic analytic
tools are described. Next we report available visualization modules and finally we
show how to perform statistical analysis of vertex descriptors.

4.1 Input/Output

Graph Investigator can work with real-world or artificial networks. The latter can be
generated using the following models: Barabási-Albert [45], Eppstein power law [46],
Erdős-Rényi [54], Kleinberg small-world, Watts small-world, scale-free, clique model,
path model, star model and balanced tree model. Artificial networks are frequently



Graph Investigator 389

used for comparison with real-world data. Such analysis can reveal rules governing
creation of real-world networks. Graph Investigator accepts the following graph
input formats: simple list of edges (*.edgelist), Graph ML (*.xml), Amira skeleton
(*.am) [47], Pajek (*.net), edgelist (*.edge), adjacency matrix (*.mtrx) and binary
graph [55]. A detailed description of these file formats is available in application
documentation. A user can also save graph with the use of any of the above-
mentioned formats and perform command line format conversion for large sets of
input data. Uploaded networks are presented in the table (see Figure 1) with tooltips
providing general information such as number of edges and number of vertices.

4.2 Graph Descriptors

The analysis of network structure can be performed with the help of 87 scalar and
9 vector descriptors, presented in Section 3 and Appendix. Graph Investigator pro-
vides two modes of invariants computation: graph descriptors and vertex/edge de-
scriptors. Scalar metrics can be aggregated into one feature vector and used in this
form in further analysis (e.g. using Principal Component Analysis). Computation of
vertex-attribute-based statistical moments such as mean, standard deviation, skew-
ness and kurtosis is also provided. Graph Investigator enables to draw histograms of
edge/vertex/path descriptors. As shown in Figure 1, graph descriptors can be pre-
sented in a table while edge/vertex descriptors in a edge/vertex tooltip on a graph
picture. Values of vertex descriptors can be also shown in graph visualization win-
dow using predefined colormap (see Figure 1). Spectral mode enables to calculate
algebraic decompositions (Eigendecomposition, SVD) of several graph matrices such
as adjacency matrix, Laplacian or normalized Laplacian. It also provides compari-
son of spectral density functions for selected graphs. Additionally, application allows
for computation of descriptors based on heat kernel matrix [49]. Graph metrics can
be saved in CSV format (Comma Separated Values).

4.3 Visualization

Graph Investigator provides three modes of graph visualization: with force simu-
lation (see Figure 2 b)), using B matrix of graph [40] (Figure 1, B matrix internal
window) and using spectral embedding [38, 39] (see Figure 5). The parameters of
force simulation can be adjusted to obtain different graph views. The vertex or edge
descriptors are visualized as tooltips or colors on graph drawing. The graph can be
also edited by hand (edge or vertex addition/deletion) or using visual editor. The
results of graph visualization can be saved in the following graphic file formats: pdf,
svg, jpg, png.

4.4 Other Features

We provide unique feature for clustering visualization. The set of graphs represent-
ing certain real-world objects can be embedded into lower-dimensional space, where
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datapoints are visualized as mini-photos (photos representing objects are associated
to data as described in application documentation). The available dimensionality
reduction methods include Principal Component Analysis (PCA), Locally Linear

Embedding (LLE) [41], Isomaps [42], Kernel PCA [43], Locality-Preserved Maxi-

mum Information Projection (LPMIP) [44] and additionally the method of particles
in visual clustering [73].

Some additional features include: extracting greatest connected component, ex-
tracting all connected components, testing graph descriptors using random edit ope-
rations, adjacency matrix matching via Singular Value Decomposition.

Fig. 1. The main window of Graph Investigator. Left – graph panel with a table containing
loaded single-graph and multi-graph datasets. The main panel (right) shows internal
frames that allow for graph analysis and visualization.

5 USE CASES

5.1 Brain Vascular Network

The complex network discussed in this section represents brain cerebral micro-
vascularization, derived from 3D images acquired by confocal microscopy [22]. The
moisac of 3D images can be transformed into 3D skeleton using the algorithm in-
troduced in [22]. The skeleton, described by the set of points and curves, is read
by Graph Investigator and converted into graph with 2 206 vertices and 2 983 edges.
Spatial visualization of this brain vascular network is depicted in Figure 2 a). For the
sake of simplicity, in further analysis, we take into account the greatest connected



Graph Investigator 391

component (2 131 vertices and 2 846 edges) of obtained network. The Figure 2 b)
presents visualization of this component using force simulation (Graph Investiagtor).

a) b)

Fig. 2. Visualization of brain vascular network using Amira a) and Graph Investigator

with force simulation b). Picture a) reflects real locations of vessels in space, whereas
b) emphasizes topological features with endings (forks) and long paths better visible.

In Figure 3 the histogram of vertex degrees in vascular network is depicted. The
network has nearly uniform distribution of vertex degrees, nevertheless vertices with
number of neighbors greater than 3 also occur. The vertices of valence 3 dominate,
which is a typical feature of river networks or tree branches, that possess three-way
junctions (forks) most likely. A relatively high number of degree 1 vertices appears
due to boundary cut of images from confocal microscopy (see Figure 2 a)).
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Fig. 3. Brain vascular network degree histogram
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We compare the brain vascular network with two artificial networks of similar
size and type using subset of descriptors available in Graph Investigator. Our goal is
to determine if its structure is random, not revealing any patterns, or to uncover the
features that make vascular network different from resembling artificial networks.
First random graph was generated using Erdős-Rényi model [54] in which an edge
is established between each pair of vertices with equal probability r, being the para-
meter of the model. The density of Erdős-Rényi graph depends on r. An example of
such a graph for r = 0.01 and 60 vertices is depicted in Figure 4 b). Graphs obtained
using Erdős-Rényi model can be unconnected. In this case we add extra edges to
get connected network. The second model allows to generate irregular graphs [55],
in which average valence is bounded by parameter k. The graph is built on the
basis of fixed valence random graph by moving some part of edges to new locations.
Here we decided to replace 10% of edges selected with uniform probability. After
indicating edges to move, network vertices are permuted so that each vertex receives
new index i. For a given edge new endpoint i is chosen using probability function
α exp(−βi), where α and β depend on graph size and are normalized as described
in [55]. An example of irregular bounded valence graph is depicted in Figure 4 c)
(k = 3).

a) b) c)

Fig. 4. Examples of graphs from dataset used to test proximity of artificial and vascular
networks: a) fragment of brain vascular network (57 vertices), b) Erdős-Rényi graph
(r = 0.01, 60 vertices) c) irregular bounded valence graph (k = 3, 60 vertices)

A subnetwork consisting of 1 090 vertices and 1 438 edges was extracted from
brain vascular network by random selection of node and following breadth-first

traversal with depth limited to 15. Then, we created two networks of similar size
and density using Erdős-Rényi (r = 0.001) and irregular bounded valence models
(k = 3). The set of graph descriptors computed for three networks is presented in
Table 1.

We assumed that the size and average vertex degree are similar for all three
networks. As presented in Table 1 some descriptors differ slightly while the rest
capture features that separate analyzed graphs. For instance, normalized informa-
tion of vertex degrees (see Appendix) is similar for all graphs. Moreover, relative
differences in Randić connectivity index are also minor. It reflects that general con-
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nectivity and complexity understood as number of cliques, branches etc., is similar
for three considered networks (vascular network has slightly smaller structural com-
plexity). On the other hand, values of B index, normalized Wiener index, M1 Zagreb
index, normalized Platt index and standard deviation of degree distinguish vascular
network from artificial ones. These descriptors are similar for artificial networks
whereas vascular network is characterized by values approximately two times larger
or smaller. This indicates larger branching of vascular network, which seems to have
more forks and bifurcations. The distribution of vertex degrees in vascular network
is less wide than in case of artificial graphs. As far as distribution of clustering
coefficients and mM1 Zagreb index are considered, vascular network is more similar
to Erdős-Rényi graph than to irregular bounded valence graph. Yet, in terms of two
statistical metrics computed on the basis of vertices betweenness centrality (stan-
dard deviation and kurtosis) vascular network is closer to irregular bounded valence
graph.

To complete the comparison of the networks, we present their spectral embed-
dings (see Figure 5). The pictures of three graphs differ significantly. The vas-
cular network has good embedding with triangle-like spatial distribution of ver-
tices, whereas two other ones have great part of vertices placed in one central area.
The only common characteristic is three-directional stretching of vertex coordinates.
Vascular network is more two-dimensional in nature than two other ones (none of
them is planar).

a) b) c)

Fig. 5. Visualization of three networks using spectral embedding (eigenvectors associated
with two smallest nonzero eigenvalues of Laplacian): a) brain vascular network (1 090
vertices, 1 438), b) connected Erdős-Rényi network (r = 0.001, 1 028 vertices, 1 582
edges), c) irregular bounded valence network (k = 3, 997 vertices, 1 500 edges)

Our next step is to divide large vascular network into smaller subgraphs (possibly
overlapping in part) and to try to measure to what extent such a group of graphs
is structurally close to clusters of artificial networks. In this experiment we selected
two groups of random graphs from the database described in [55]: the set of 20
connected Erdős-Rényi graphs (60 vertices, r = 0.01, denoted by ER) and the set
of 20 irregular bounded valence graph (mean valence 3, denoted by BV). The group
of 19 graphs was generated on the basis of large brain vascular network by random
selection of core node and breadth-first traversal with limited depth. Only graphs
of the order greater than 50 were considered. No more than 30 vertices may overlap
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Descriptor Network
Vascular Erdős-Rényi Bounded

valence

Number of vertices 1 090 1 028 997

Number of edges 1 438 1 582 1 500

Diameter 30 15 18

Avg of Degree 2.639 3.078 3.01

StdDev of Degree 0.827 1.552 1.612

Kurtosis of Degree 0.411 0.260 40.699

Skewness of Degree −0.958 0.711 5.588

M1 Zagreb index 8 334 12 212 11 616

MM1 Zagreb index 293.04 266.96 163.23

B index 0.195 0.497 0.426

Avg of Clustering Coefficient 0.222 0.153 0.033

StdDev of Clustering Coefficient 0.381 0.358 0.177

Kurtosis of Clustering Coefficient 0.218 1.796 25.537

Skewness of Clustering Coefficient 1.406 1.943 5.224

Normalized Wiener index 0.013 0.006 0.007

Avg of Betweenness Centrality 7 163.1 2 846.6 3 205.6

StdDev of Betweenness Centrality 10 068.7 3 069.0 6 321.8

Kurtosis of Betweenness Centrality 22.208 3.863 60.535

Skewness of Betweenness Centrality 3.698 1.766 6.816

Avg of RW Betweenness Centrality 0.0243 0.0123 0.0153

StdDev of RW Betweenness Centrality 0.0167 0.0076 0.0128

Normalized information of vertex degrees 0.0004 0.0005 0.0005

Normalized Platt index 4.2e−6 8.4e−6 8.7e−6

Randics connectivity index 526.3 481.6 477.8

Normalized Gordon-Scantterburry index 6.5e−9 2.3e−8 2.9e−8

Table 1. Descriptors computed for three networks: vascular, Erdős-Rényi (r = 0.001) and

irregular bounded valence (k = 3)

between two different instances. This set of vascular network fragments is denoted
by FV. In the Figure 4, three selected instances (one for each group) are presented.
The averages of mean vertex degrees are as follows: FV 2.37, ER 2.32, BV 2.99.

On the basis of computed graph descriptors, we created multi-dimensional fea-
ture vectors to analyze structural proximity between groups of networks. Then,
the pattern vectors were embedded into 2D space using PCA (Principal Component

Analysis). We tested a number of combinations of descriptors, each time perform-
ing dimension reduction and evaluation of clusters separation using two validation
indices – Davies-Bouldin index and C index (in 2D). The best result for 4D fea-
ture vector composed of general graph descriptors: standard deviation of degree,
standard deviation of clustering coefficient, normalized Platt index and normalized
Wiener index (see Section 3.1) is presented in Figure 6 a). An example of 2D em-
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bedding using 2D spectral graph descriptor is depicted in Figure 6 b). This feature
vector consists of mean value and standard deviation of graph Laplacian matrix
spectrum (see Section 3.2). As we pointed out earlier (see Table 1), standard devia-
tion of degree separates vascular networks from Erdős-Rényi and irregular bounded
valence graphs, while standard deviation of clustering coefficient increases the dis-
tance between irregular bounded valence network and the rest.
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Fig. 6. Three groups of brain vascular networks embedded into 2D space (PCA) using two
feature vectors: a) 4D vector composed of standard deviation of degree, standard
deviation of clustering coefficient, normalized Platt index and normalized Wiener
index, b) 2D vector formed of mean value and standard deviation of Laplacian matrix
eigenvalues

Brain vascular network has specific structure distinguishing it from random
graphs created on the basis of artificial models. The distribution of its vertex de-
grees is nearly uniform, with small variance. We observe relatively high clustering
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coefficients, branching factors and average centralities of nodes. In case of two be-
tweenness centrality measures, the network mentioned obtained greatest average
values that indicate its efficiency in transporting blood both through shortest and
random paths. These topological features are correlated with circulatory system
function of delivering chemicals to tissues and are apparently the result of evolu-
tionary optimization.

5.2 Macaque Cortical Connectivity Network

In the previous section we described how Graph Investigator can be used to compare
networks by computing of general descriptors and forming feature vectors. Here, we
present an example of local structure analysis with vertex descriptors.

The network investigated in this section reproduces macaque cortical connec-
tivity within one brain hemisphere [23, 24, 25]. This dataset can be obtained from
CoCoMac database [56, 57]. The network has 95 vertices representing primate brain
areas and 1 522 edges reflecting their logical interrelations, acquired from experimen-
tal tracing studies (see Figure 7).

Fig. 7. Macaque brain cortical connectivity network (95 vertices, 1 552 edges).

We compute four types of descriptors assigned to vertices: degree, between-
ness centrality, random walks betweenness centrality and clustering coefficient (see
Section 3.1) to evaluate relevance of vertices in spreading information over the net-
work, and quantify its local topology. The histograms, depicted in Figure 8, reveal
non-uniform distribution of these metrics. As shown in Figure 8 a), vertices with
valence between 25 and 45 dominate. The distribution of betweenness centrality
(Figure 8 b)) is power-law-like with a great part of values lying below 0.02. In case
of degree and betweenness centrality measures (8 a), 8 b), 8 c)), the groups of vertices
with highest values separate well from the rest. In Table 2 we show brain areas that
obtained the highest ranks in terms of three considered descriptors.
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Fig. 8. Macaque brain cortical connectivity network – frequencies of vertex descriptors:
a) degree, b) betweenness centrality (30 bins), c) random walks betweenness centrality
(30 bins), d) clustering coefficient (30 bins)

The middle temporal area (see Figure 9) involved in motion perception and
depth discrimination [60] has the greatest connectivity and centrality, as it consti-
tutes a source of visual input for other areas. An interesting observation can be
made as far as 7 b) (Brodmann area 7) and MSTdp (medial superior temporal area)
areas are considered. Taking into account vertex degrees exclusively, the second
highest rank area is lateral subdivision of ventral intraparietal (sensitivity to the
speed and direction of motion [61]). Nevertheless, using random walks betweenness
centrality descriptor, which reflects vertex importance generalized over the whole
network, the second position is occupied by 7 b) – the area playing role in locating
objects in space. Also betweenness centrality ranks 7 b) higher than simple degree
descriptor. A similar pattern can be observed for MSTdp area, that acquired greater
importance using centrality measures. This area is involved in the analysis of optic
flow [62].

The three descriptors considered are strongly correlated (see Table 3) but they
bring information from different scales (local to global), what results in ranks re-
orderings. The brain networks both in micro and macro scale are often analyzed us-
ing small-world metrics such as clustering coefficient and the mean shortest path [58].
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Descriptor

Degree BCa RWBCb

Value Area Value Area Value Area

74 MTc 0.107 MT 0.139 MT

68 VIPld 0.086 46 0.122 7b

67 LIPve 0.083 7b 0.120 MSTdp

64 7af 0.059 VIPl 0.107 VIPl

63 7bg 0.057 MSTdp 0.106 LIPv

63 46h 0.057 LIPv 0.098 46

62 LIPdi 0.042 Id 0.095 7a

58 MSTdp 0.039 7a 0.093 LIPd

46 VIPmk 0.036 LIPd 0.074 VIPm

a betweenness centrality
b random walks betweenness centrality
c middle temporal area
d ventral intraparietal, lateral subdivision of VIP
e lateral intraparietal (ventral)
f visual area 7a
g Brodmann area 7
h visual area 46
i lateral intraparietal (dorsal)
j medial superior temporal area
k medial subdivision of VIP (ventral intraparietal)

Table 2. Highest values of three vertex descriptors: degree, betweenness centrality, random
walks betweenness centrality and respective brain areas. The labels of brain areas
are available in CoCoMac dataset. Decoding labels into full names was based on
information from [59].

Fig. 9. Middle temporal area visualized using CoCoMac-Paxinos-3D viewer
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The histogram depicted in Figure 8 d) shows that brain areas of macaque are highly
clustered.

H
H

H
H
HH

X
Y

Degree BC RWBC

Degree 1 0.712 0.782

BC 0.712 1 0.861

RWBC 0.782 0.861 1

Table 3. Kendall correlation coefficients between three vertex descriptors: degree, be-
tweenness centrality (BC) and random walks betweenness centrality (RWBC)

As shown in Table 2, computation of different topological descriptors can pro-
vide much information about functional organization of brain networks. Particu-
larly, betweenness centrality measures reflecting influence of selected brain areas on
spreading information over network captures subtle structural properties that may
be more useful than simple measures like degree.

5.3 Blood Vessels in Tumor

The use case presented in this section is based on simulation data obtained from
cellular automata model of tumor-induced angiogenesis [70]. We consider four sets
of evolving vascular networks obtained for different parameters of the model and
present how the properties of these networks change during simulation.

The model that generates the described networks consists of two interacting
parts: a transportation network (blood vessels) and consuming environment (tis-
sue) [70, 71]. The topology of the network changes in response to distribution of
TAFs (Tumour Angiogenesis Factors) epitomized by VEGF (Vascular Endothelial
Growth Factor) [72], which are produced by starving tumor cells in order to stimu-
late vessels growth. In turn, the vascular network delivers oxygen and nutrients to
the tissue forming a gradient which affects tumor cells. The tissue is modelled by
a mesh of cellular automata while the transportation network by a graph of cellu-
lar automata built over the CA mesh. The TAF concentration exceeding certain
threshold activates vessels to create sprouts that develop towards tumor tissue. The
vessel states evolve from immature to mature. Vessel maturity reflects its ability to
transport blood and form new branches.

The model is characterized by a number of parameters governing rules of vas-
cular network evolution. In this work we focus on three types of parameters that
control branching: TAF threshold Tc, baseline branching probability Pb and level
threshold multipliers that provide a functional relationship between TAF concentra-
tion and branching probability. Provided that TAF threshold in certain location is
exceeded, the relevant vascular cell can start branching with certain probability Pb.
This probability can be adjusted using two pairs of parameters: threshold T1, mul-
tiplier m1 and threshold T2, multiplier m2. If Tc > T1 then Pb is multiplied by m1

and if Tc > T2 then branching probability is set to m2Pb. The parameters above
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allows for increasing branching probabilities in case of high TAF concentrations, so
that branching activation function has more than one step (see Figure 10).

Fig. 10. Example of branching probability multipliers (m1 = 2, m2 = 4)

In creating angiogenesis models, an important goal is to measure how values of
parameters influence growth of vascular network. Graph descriptors are a main tool
in analyzing the changing topology of the growing network. We run 4 simulations
with different parameters (see Table 4). Next, for each simulation step we com-
pute graph descriptors measuring local structural properties of a generated network
(mean degree and clustering coefficient). As shown in Figure 11 a), after 40 steps
the sizes of networks start to grow exponentially with different rates influenced
by branching probabilities. The fastest growth is observed for set02, characterized
by highest branching probability for immature (young) cells. Comparing it to the
slowest growth for set04, which has the same Tcm value (TAF threshold for mature
vessels), similar Tci (TAF threshold for immature vessels) and parallel multipliers for
same thresholds it seems that among presented parameters Pbi (baseline branching
probability) affects growing rate to the greatest extent.

In Figure 11 we present graph size dependencies of several metrics. Our aim is to
investigate network evolution without explicit time reference and to focus on observ-
ing structural differences for networks of the same size. We investigate distributions
of two local vertex descriptors: clustering coefficient and degree (see Figure 11 b), c),
d)). We observe that clustering coefficient curves for set02 and set04 have similar
shape with decrease at the beginning (graph sizes 40–100), increase in the mid-
dle (characteristic point at 120 where they separate from the rest) and decrease in
the final phase. The decrease of clustering coefficient at the beginning reflects fast
path-like growth of vascular networks towards tumor (number of vertices of degree 2
increases, minor branching rate). For degree charts similar separation (set02 and
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set04 vs. set01 and set03) is observed (characteristic point at 120). It seems that
TAF threshold for immature vessels is the discrimination factor here, as its pos-
sesses similar value for set02 and set04 (0.4 and 0.5 respectively) and different value
for set01 and set03 (0.1). Relatively high values of Tci for set02 and set04 prevent
young immature cells (dominating at the beginning of simulation) from forming
branches. Nevertheless, a few sprouts created from mature cells can develop to-
wards tumor, extending vascular network size (graph sizes 40–100). Therefore after
passing through maturity age (approximate graph size 100), the number of mature

vascular cells increases rapidly, resulting in high branching rate (100–1 000). The
growth of sets 01 and 03 is more stable, however for all four sets we observe decrease
of clustering coefficient in the final phase. This effect is connected with reaching
boundaries of the tissue mesh and periodic boundary conditions.

The analysis illustrates how inspecting single network properties allows for
gaining insight into the processes governing the changing topology during network
growth. Comparing series of graphs with the use of descriptors allows for reveal-
ing network phase transitions and understating how the parameters affect network
structure. Also, the results can be used to select the most relevant parameters of
the model.

set 1 set 2 set 3 set 4
TAF threshold a(mature) Tcm 0.01 0.01 0.01 0.01
TAF threshold (immature) Tci 0.1 0.4 0.1 0.5

Branch probability (mature) Pbm 0.02 0.01 0.01 0.01
Branch probability (immature) Pbi 0.02 0.08 0.02 0.02

Level 1 threshold 0.6 multi 1 0.6 multi 2 0.6 multi 2 0.6 multi 2
Level 2 threshold 0.8 multi 1 0.8 multi 4 0.8 multi 6 0.8 multi 6

a TAF concentration is a real value between 0 and 1

Table 4. The parameters of angiogenesis model for 4 simulation runs (only parameters
that that vary over sets are presented)

6 DISCUSSION

Graphs are flexible and general data structures, but due to their combinational,
orderless nature graph comparison poses some intrinsic problems that cannot be
simply omitted during the development of new graph matching algorithms. First
and foremost, graphs are computationally cumbersome. Direct comparison of two
graphs requires enumeration of all sub-substructures and tackling with elements or-
der. The exponential cost of such procedure makes construction of efficient graph
metric infeasible. The more practical approach uses graph topological features as
a set of comparison criteria. The graph descriptors can be selected according to
their computational complexity and ability to retain information about graph struc-
ture. For instance, we can take into account densities of graphs, method of graph
generation, distribution of degrees or connectivity, etc. Different criteria may result
in different conclusions, therefore it is difficult to design graph matching method
which would be suitable for all cases. Hence, the selection of graph descriptors used
to compare graphs should be performed with respect to domain-specific knowledge.
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Fig. 11. The evolution of graph topology measures during angiogenesis simulation: a) si-
mulation step dependence of network size (logarithmic Y scale), b) graph size de-
pendence of clustering coefficient (logarithmic X scale), c) graph size dependence of
mean degree (logarithmic X scale), d) graph size dependence of standard deviation

of degree (logarithmic X scale)

Moreover, not the size of graph but distribution of its edges should be the main
discriminating factor. Values of useful graph descriptor should mainly depend on
the set of edges, not being dominated by the number of vertices.

Descriptors implemented in Graph Investigator can be grouped in terms of de-
pendence on the graph size or considering the level of their generality. Using first
criteria we can distinguish descriptors computed as statistical moments of certain
vertex attributes which are independent of graph size, and can be used to compare
networks with significantly different number of vertices. The examples of such de-
scriptors are clustering coefficient (Equation (2)) and betweenness centrality (Equa-
tion (9)). On the other hand, descriptors such as Platt index (Equation (7)) or
Wiener index (Equation (4)) depend on graph size (even after normalization), and
generally are intended for comparison of similar-sized graphs. The scalar descriptors
presented in Section 3.1 are more specific, in the sense that they capture well-defined
properties of the graph. The algebraic descriptors, especially multidimensional ones,
store many different topological features of graph but not in a straightforward way.
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The graph descriptors can be aggregated in the form of feature vectors and used to
embed graphs into metric space, where graph similarity/dissimilarity measures can
be computed easily e.g. as Euclidean distance.

The biological context of the presented examples does not constrain our program
to these types of applications. The rich set of implemented descriptors can be used
in any other field of research that generates networks.

7 CONCLUSIONS

Graph Investigator provides a variety of network analytic tools ranging from feature
generation to visualization. It enables to obtain distinctive insights into network
structure by employing numerous descriptors from graph theory. The program was
built with a special focus on biological networks as this kind of data grows constantly
and its analysis has a wide range of applications. We reported three typical use cases:
comparison of brain vascular network with artificial networks, analysis of vertices
importance in cortical connectivity network of macaque monkey and inspecting how
parameters of angiogenesis model affect structure of generated vascular networks.
We believe that graph-theoretical approach to biological data analysis may bring
many benefits, therefore developing software aimed at network exploration is a task
of great importance.

Graph Investigator was designed to be flexible and easily extended. Graph de-
scriptors can be added as plugins. The use of Java programming language provides
its portability and makes the development simpler and faster. Currently our appli-
cation is at beta stage, therefore all suggestions and contributions to its development
are welcome.

In the nearest future we plan to extend the set of available graph descriptors and
implement feature selection methods that allow for evaluation of different metrics
using selected criteria. We also consider adding graph kernel functions as robust
tool for non-linear analysis.
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Appendix

1 AVAILABLE DESCRIPTORS

Here we present the rest of network descriptors available in Graph Investigator.
The first table contains scalar descriptors assigned to graph. Next, we list vertex
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and edge descriptors intended for local topology analysis. Statistical moments of
these metrics can be used to generate general graph descriptors. Graph Investigator

enables to compute mean, standard deviation, skewness and kurtosis of vertex or
edge descriptors.

1.1 General Graph Descriptors

Descriptor Remarks

Randić Connectivity Index [51] χ(G) =
∑

(v,w)∈E(kvkw)
−1/2, |E|χ(G) 6 |E|

|V |−1

Connectivity measure derived from chemical
graph theory

General Connectivity Index [63] lχ(G) =
∑

Pl⊂G

(

∏

w∈VP
kw

)−1/2

,

where Pl denotes path of length l, and VP all ver-
tices that belong to this path

Zagreb Index M1 [52] M1(G) =
∑

v∈V (kv)
2

Zagreb Index M2 [52] M2(G) =
∑

e∈E we,
where we is the weight of edge e. For unweighted
graphs ∀e∈E we = 1

Modified Zagreb Index mM1 [64] mM1(G) =
∑

v∈V (kv)
−2

Modified Zagreb Index mM2 [64] mM2(G) =
∑

e∈E(we)
−1

Total Adjacency Index A(G) =
∑

v∈V kv = 2|E|

Modified Total Adjacency Index mA(G) =
∑

v∈V (kv)
−1

B Index [53] B(G) =
∑

v∈V
kv

dv
,

where dv is the vertex distance (see 1.2) for vertex
v

Density of edges Den(G) = 2m
n(n−1)

,

where m = |E|
Information of vertex degrees Ivd =

∑

v∈V (kv · log2 kv)
Reflects connectivity and topological complexity
in terms of number of branches, cycles, cliques
etc.

Radius of graph r(G) = minv∈V ev,
where ev is eccentricity (see 1.2) of vertex v

Graph diameter diam(G) = maxu,v∈V d(u, v),
Reflects density of graph connections, achieving
its maximal value for paths, and minimal for
cliques.

Total Walk Count [26] Counts all paths of all lengths in the graph and
depends on the size, cyclicity and branching of the
graph, quantifying property called labyrinthicity.

Efficiency [2] E(G) = 1
n(n−1)

∑

u,v∈V,u 6=v
1

d(u,v)
,

Measures the traffic capacity of a network and re-
flects its parallel-type transfer ability.

Heat Content, Heat Content Coef-
ficients, Heat Kernel Trace, Heat
Kernel Zeta Function [49]

Parameterized descriptors based on heat kernel
matrix.

1.2 Vertex Descriptors

Descriptor Remarks

Vertex distance Sum of distances between v and all other vertices
from graph G,
dv =

∑

w∈V d(v, w)
Eccentricity Maximum distance between vertex v and any of

the remaining graph vertices,
ev = maxw∈V d(v, w)
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Vertex B Index bv = kv

dv
,

where dv is vertex distance for vertex v

Randić Shortest Path Index mχ(G) =
∑

P∈Pm

(

∏

u∈V (P ) ku

)−1/2

,

where
Pm = {P (v,w) ⊂ G: d(P (v, w)) = m}

Page Rank [66] Vertex importance measure based on graph ran-
dom walks model. Determines probability of turn-
ing up in vertex v after long-time random walk

Hubs and Authorities measure [67] Evaluates authority of a vertex on the basis of link
structure

Local efficiency [2] Eloc(v) = E(Gv),
where Gv is a subgraph of neighbors of v and
E(. . .) is graph efficiency.

Closeness Mean distance to each other vertex.

1.3 Edge Descriptors

Descriptor Remarks

Edge connectivity EConn(e) = kv · kw
Range of edge [68] g(e) = dG′(v, w),

where G′ = (V,E\{e})
Edge frequency [69] The edge frequency for edge e, is a number of

shortest paths, which contain edge e

Edge betweenness Measures relative importance of an edge in
shortest-path transfer through graph edges.
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