
Computing and Informatics, Vol. 30, 2011, 205–224

LIBNMF – A LIBRARY FOR NONNEGATIVE
MATRIX FACTORIZATION

Andreas Janecek, Stefan Schulze Grotthoff
Wilfried N. Gansterer

University of Vienna, Austria
Faculty of Computer Science
Research Lab Computational Technologies and Applications
Lenaugasse 2/8
1080-Vienna, Austria
e-mail: {andreas.janecek, wilfried.gansterer}@univie.ac.at

Revised manuscript received 1 December 2010

Abstract. We present libNMF – a computationally efficient high performance li-
brary for computing nonnegative matrix factorizations (NMF) written in C. Various

algorithms and algorithmic variants for computing NMF are supported. libNMF is
based on external routines from BLAS (Basic Linear Algebra Subprograms), LA-
Pack (Linear Algebra package) and ARPack, which provide efficient building blocks
for performing central vector and matrix operations. Since modern BLAS imple-
mentations support multi-threading, libNMF can exploit the potential of multi-core
architectures. In this paper, the basic NMF algorithms contained in libNMF and
existing implementations found in the literature are briefly reviewed. Then, lib-
NMF is evaluated in terms of computational efficiency and numerical accuracy and
compared with the best existing codes available. libNMF is publicly available at
http://rlcta.univie.ac.at/software.

Keywords: Nonnegative matrix factorization, low-rank approximation, evaluation,
NMF library, NMF software

1 INTRODUCTION

Low-rank approximations of data (e.g., based on the singular value decomposition)
have proven very useful in various data mining applications. Nonnegative matrix fac-

206 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

torization (NMF, cf. [22, 27]) leads to special low-rank approximations which satisfy
non-negativity constraints. Non-negativity may improve interpretability and sparse-
ness of the low-rank approximations. In general, the NMF approximates a given
nonnegative matrix A ∈ R

m×n by two nonnegative factor matrices W ∈ R
m×k and

H ∈ R
k×n, where k ≪ min{m, n} is the rank of the approximation WH ≈ A. Al-

though the NMF is not unique and in general converges only to local minima, it has
been shown that even a relatively low approximation quality can achieve acceptable
classification accuracy in data mining applications [21].

The goal of this paper is to present and introduce a software library called lib-
NMF that provides efficient implementations of several NMF routines. It contains
various state-of-the-art NMF algorithms for computing NMF and methods for ini-
tializing the NMF factors W and H in order to speed up convergence. libNMF is
purely written in C and allows for manually setting every parameter relevant for
the calculation of NMF, but also offers default values for non-expert users. The lib-
rary calls external routines from the software libraries LAPack [1] and ARPack [24],
and is based on the BLAS (Basic Linear Algebra Subprograms). The routines use
double-precision floating-point arithmetic. For some algorithms, single-precision
versions are also provided. The documented source code of libNMF, some sets of
test data, and a detailed documentation of the library are publicly available at
http://rlcta.univie.ac.at/software.

Related work. In the last decade, many publications focused on improving,
adapting, extending and re-designing algorithms for computing NMF. Various codes
for computing NMF can be found in the literature. Table 1 provides a summary
of important sources of publicly available code for computing NMF. The majority
of available NMF code is written in Matlab. The function nnmf.m included in the
Matlab Statistics Toolbox [33] since Matlab’s R2008a release is probably one of the
most widely used NMF codes. This function implements two of the original NMF
algorithms – multiplicative update (MU) and alternating least squares (ALS) – in-
troduced in [22] and [27], respectively. Cemgil [5] provides a Matlab implementation
of variational Bayes for Kullback-Leibler divergence based NMF. Cichocki et al. [6]
provide Matlab toolboxes for computing NMF for signal processing and image pro-
cessing. Their algorithms comprise MU, exponentiated gradient, projected gradient
(PG), conjugate gradient, and quasi-Newton. The same authors provide Matlab
code in their book [7] about nonnegative matrix/tensor factorization. Another Mat-
lab NMF toolbox has been written by Hansen et al. [14]. This toolbox contains
a collection of existing NMF algorithms such as MU, ALS, and PG [25], as well as
a self-developed algorithm called ALSOBS. Like with ALS the negative elements are
set to zero but all other elements are adjusted using a method called optimal brain
surgeon (OBS, [15]).

Hoyer [16] provides a widely used Matlab package for performing a projected
gradient algorithm with sparseness constraints. Basic NMF is extended by includ-
ing an option for controlling the sparseness of the factors W and H explicitly. Kim

libNMF – A Library for Nonnegative Matrix Factorization 207

et al. [19] provide Matlab implementations of fast Newton-type NMF methods in
two versions: One based on an exact least squares solver for applications that re-
quire high accuracy, and an inexact implementation, which uses heuristics to solve
the least squares problem in order to reduce computational effort at each itera-
tion. The latter is better suited if computational efficiency is more important than
accuracy.

Another often cited Matlab package was written by Lin [25]. Two projected gra-
dient methods for NMF are proposed: the ALSPG method uses projected gradient
methods for solving the update steps of the ALS algorithm, and the second method
aims at directly applying projected gradients to NMF. Schmidt et al. [30] provide
Matlab codes for sparse NMF using least squares with block principal pivoting, as
well as Bayesian NMF.

Aside from Matlab, other NMF codes found in the literature are mainly written
in R, Python or C/C++. Gaujoux [10] provides a framework for several NMF
algorithms written in R, comprising several already published algorithms as well
as an initialization method for W and H, called NNDSVD [4]. Liu [26] provides
a similar framework in R, which is partly based on the codes available in [14]. Python
codes for computing NMF are available in [25] and [31].Moreover, an interesting
study investigating the performance of parallel NMF (written in Python) using
OpenMP for shared-memory multi-core systems and CUDA for many-core graphics
processors has been given in [2].

Dhillon et al. [8] provide a C++ library which contains several NMF algorithms
and exploits the performance gains provided by optimized BLAS routines. The
implemented algorithms comprise the basic MU algorithm (plus variants), variants
of the ALS algorithm, a hybrid form of ALS and MU, as well as two NMF algorithms
based on Bregman divergence as described in [8]. Green et al. [13] provide a C++
implementation of several NMF algorithms used for hierarchical clustering, and
Pathak et al. [28] provide a generic NMF framework for the ITK toolkit (http:
//www.itk.org) – an open-source development framework for image segmentation
and image registration programs. Wang et al. [34] provide C++ code for computing
least squares nonnegative matrix factorization (LS-NMF).

Despite the fact that there are a large number of available NMF codes, so far
there is no comprehensive, computationally efficient, well documented, and modular-
ly structured library for computing NMF, with options to load/save all data involved
in computing NMF, and with integrated initialization methods. The libNMF library
presented in this paper is meant to be a first step in this direction. libNMF is freely
available, computationally highly competitive with Matlab and other codes in high
level languages, and considerably faster than Matlab clones, or codes written in R
or Python. Compared to the C++ library [8], libNMF tends to be faster for com-
parable algorithms (similar performance for MU, significantly faster for ALS), and
important additional algorithms (such as ALSPG and PG) are included. A detailed
comparison of libNMF with the most competitive codes found in the literature is
given in Section 4.2.

208
A
.
J
a
n
ece

k
,
S
.
S
c
h
u
lze

G
ro
tth

o
ff
,
W

.
N
.
G
a
n
ste

re
r

Authors Ref. Language URL for software

The Mathworks [3, 33] Matlab http://www.mathworks.com/access/helpdesk/help/toolbox/stats/nnmf.html

Cemgil [5] Matlab http://www.cmpe.boun.edu.tr/~cemgil/bnmf

Cichocki et al. [6] Matlab http://www.bsp.brain.riken.jp/ICALAB/nmflab.html

Cichocki et al. [7] Matlab http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470746661.html

Hansen et al. [14] Matlab http://isp.imm.dtu.dk/toolbox/nmf/index.html

Hoyer [16] Matlab http://www.cs.helsinki.fi/u/phoyer/software.html

Kim et al. [19] Matlab http://userweb.cs.utexas.edu/users/dmkim/Source/software/nnma/index.html

Lin [25] Matlab/Python http://www.csie.ntu.edu.tw/~cjlin/nmf/index.html

Schmidt et al. [30] Matlab http://mikkelschmidt.dk/index.php?id=2

Gaujoux [10] R http://cran.r-project.org/web/packages/NMF/index.html

Liu [26] R http://cran.r-project.org/web/packages/NMFN/index.html

Battenberg et al. [2] Python http://www.eecs.berkeley.edu/~ericb

Schmitt et al. [31] Python http://www.procoders.net/?p=409

Dhillon et al. [8] C++ http://www.kyb.mpg.de/bs/people/suvrit/work/progs/nnma.html

Greene et al. [13] C++ http://mlg.ucd.ie/nmf

Pathak et al. [28] C++ http://www.insight-journal.org/browse/publication/152

Wang et al. [34] C++ http://www.biomedcentral.com/1471-2105/7/175

Table 1. Overview of publicly available NMF codes

libNMF – A Library for Nonnegative Matrix Factorization 209

Notation. In this article a matrix is represented by an uppercase italic letter
(example: A, B, Σ, . . .). A vector is represented by a lowercase bold letter (exam-
ple: u, x, q1, . . .). A scalar is represented by a lowercase Greek letter (example: λ,
µ, . . .). Matrix-matrix multiplications are denoted by “∗” and element-wise multi-
plications by “·”.

Synopsis. In Section 2 we review some basics of NMF and discuss important NMF
algorithms and variants. In Section 3 we introduce our libNMF library and discuss
the implemented routines for algorithms mentioned in Section 2. Experimental
evaluation of libNMF is summarized in Section 4, and in Section 5 we conclude our
work and summarize ongoing and future research activities in this area.

2 REWIEV OF NMF

The nonnegative matrix factorization (NMF, cf. [27, 22]) consists of reduced rank
nonnegative factors W ∈ R

m×k and H ∈ R
k×n with (problem dependent) k ≪

min{m, n} that approximate a given nonnegative data matrix A ∈ R
m×n: A ≈ WH.

The nonnegativity constraints require that all entries in A, W and H are zero or
positive. Although the product WH is only an approximate factorization of A of
rank at most k, WH is called a nonnegative matrix factorization of A. The non-
linear optimization problem underlying NMF can generally be stated as

min
W,H

f(W,H) =
1

2
||A−WH||2F , (1)

where ||.||F is the Frobenius norm (||A||F = (
∑

|aij |
2)1/2). Although the Frobenius

norm is commonly used to measure the error between the original data A and WH,
other measures are also possible, for example, an extension of the Kullback-Leibler
divergence to positive matrices [8], a convergence criterion based on the Karush-
Kuhn-Tucker (KKT) conditions [20], or an angular measure based on the angle θi

between successive basis vectors W
(t+1)
i and W

(t)
i [21]. A survey of distance mea-

sures for NMF can be found in [38]. Unlike the SVD, the NMF is not unique,
and convergence is not guaranteed for all NMF algorithms. If they converge, then
usually only to local minima (potentially different ones for different algorithms).
Fortunately, the data compression achieved with only local minima has been shown
to be of significant quality for many data mining applications [21, 17].

Due to its non-negativity constraints, NMF produces so-called “additive parts-
based” (or “sum-of-parts”) representations of the data (in contrast to many other
representations such as SVD, PCA or ICA). This is an important benefit of NMF,
since it makes the interpretation of the NMF factors much easier than for factors
containing positive and negative entries, and enables NMF a non-subtractive com-
bination of parts to form a whole [22]. For example, the features in W (called “basis
vectors”) may be topics of clusters in textual data, or parts of faces in image data.

210 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

Another favorable consequence of the nonnegativity constraints is that both factors
W and H are often naturally sparse.

Initialization. Algorithms for computing NMF are generally iterative and require
initialization of W and/or H. In the literature, random initialization of W and H

is mostly used. In this case it may be necessary to run several instances of the
algorithm. Moreover, algorithms based on random initialization are likely to suffer
from slow convergence. It has been shown that better initialization strategies can
lead to improvements in terms of faster convergence and faster error reduction.
Beside classical initialization strategies based on k -means clustering techniques [36,
37], there are initialization techniques based on two successive SVD processes called
NNDSVD (Nonnegative Double Singular Value Decomposition, [4]), and techniques
based on efficient feature subset selection techniques [17, 18].

2.1 Algorithms for Computing NMF

Most existing NMF algorithms in the literature can be assigned to one of three
general classes: multiplicative update (MU), alternating least squares (ALS) and
projected gradient (PG) algorithms. A review of these three classes can be found,
for example, in [3, 7, 25]. Pseudocode for the general structure of all NMF algorithms
is given in Algorithm 1.

Algorithm 1 – General structure of NMF algorithms.

given matrix A ∈ R
m×n and k ≪ min{m, n}:

for rep = 1 to maxrepetition do
W = rand(m, k);
[H = rand(k, n);]
for t = 1 to maxiter do
update W and H

check termination criterion
end for

end for

The variable maxrepetition specifies the number of repetitions of the complete
algorithm for the case of randomly initialized W and H. Most algorithms need fac-
tors W and H both pre-initialized, but some algorithms (e.g., the ALS algorithm)
only need one pre-initialized factor. In each repetition, NMF update steps are pro-
cessed iteratively until a maximum number of iterations is reached (maxiter). The
different update steps for the three basic NMF algorithms are briefly summarized
in the following. If the approximation error of the algorithm drops below a pre-
defined threshold, or if the change between two successive iterations is very small,

libNMF – A Library for Nonnegative Matrix Factorization 211

the algorithm may terminate before maxiter iterations are processed (for details, see
Section 2.2).

2.1.1 Multiplicative Update (MU) Algorithm

The update steps for the original MU algorithm given in [23] are based on the mean
squared error objective function. The update in each iteration consists of multiplying
the current factors by a measure of the quality of the current approximation. The
parameter ε in each iteration is often used to avoid division by zero. Following [29],
a typical value used in practice is ε = 10−9.

H(t+1) = H(t) ·

(

W (t)⊤ ∗ A
)

(W (t)⊤ ∗W (t)) ∗H(t) + ε
(2)

W (t+1) = W (t) ·

(

A ∗H(t+1)⊤
)

W (t) ∗ (H(t+1) ∗H(t+1)⊤) + ε
(3)

The divisions in Equations (2) and (3) are to be performed element-wise. Comments
about the convergence of the MU algorithm can be found, for example, in [3, 11, 25].

2.1.2 Alternating Least Squares (ALS) Algorithms

Alternating least squares algorithms have been used and improved in several studies
such as [20, 21, 27]. All ALS algorithms have in common that alternatively one
factor (either W or H) is fixed, and the other one is minimized under corresponding
constraints. In most algorithms, negative elements resulting in the process are set
to 0 to ensure non-negativity.

Basic ALS algorithm. The basic ALS algorithm only needs to initialize one
factor (W or H), the other factor is computed in the first iteration. In an alternating
manner, a least squares step is followed by another least squares step. Typical
implementations of ALS algorithms (see, for example, the implementation included
in the Matlab Statistics Toolbox [33]) proceed as follows:

First, solve for H(t+1) :
W (t) ∗H(t+1) = A (4)

such that f(W (t), H(t+1)) ≤ f(W (t), H(t)), and set all negative elements in H(t+1)

to 0. Then solve for W (t+1) :

H(t+1) ∗W (t+1) = A(t) (5)

such that f(W (t+1), H(t+1)) ≤ f(W (t), H(t+1)). Some studies, for example [11, 25],
have analyzed the convergence properties of ALS algorithms. It has been proven
that ALS will converge to a fixed point which may be a local extremum or a saddle
point (cf. [21]). The solution of Equations (4) and (5) can, for example, be computed
using a QR-factorization or an LU-factorization, or based on computing the pseudo
inverse of H and W .

212 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

Normal equations ALS algorithm. This variant of the ALS algorithm has
computational advantages over the implementation included in the Matlab Statistics
Toolbox [33] in some cases – especially if k ≪ min{m, n}. This variant which we call
NEALS (normal equations alternating least squares) changes Equations (4) and (5)
to:

(

W (t)⊤ ∗W (t)
)

∗H(t+1) = W (t)⊤ ∗ A, (6)
(

H(t+1)⊤ ∗H(t+1)
)

∗W (t+1) = H(t+1)⊤ ∗ A. (7)

In exact arithmetic, there is no difference between ALS and NEALS. NEALS has
some numerical disadvantages compared to ALS because of the squaring of the
condition numbers. However, in the given context NEALS can be very attractive
for various reasons:

1. Since in many cases we need to compute a low rank NMF with relatively small k,
the resulting normal equations are much smaller than the least squares formu-
lations of basic ALS.

2. The additional expense is the matrix multiplication required for forming the
normal equations. However, it is well known that this operation has a favorable
computation per communication ratio and thus can be well mapped onto modern
multi-core architectures.

3. The potential loss in numerical accuracy is usually not too severe, because the
computation of an NMF is only an approximation anyway.

2.1.3 Projected Gradient Algorithms

This third group of algorithms is based on the idea to take a step in the direction of
the negative gradient, the direction of the steepest descent (which can be computed
using the partial derivatives for H and W). An interesting study investigating
gradient descent algorithms was published by Lin [25]. In this paper, the author
proposed the use of a projected gradient bound-constrained optimization method
for computing the NMF in two situations: by solving the alternating nonnegative
least squares problems with projected gradient methods, and by directly minimizing
the objective function in Equation (1) using projected gradients.

ALS using Projected Gradient (ALSPG) Algorithm. Here, the projected
gradient is used to solve the nonnegative least squares problem discussed in Sec-
tion 2.1.2. Analogously to ALS, one factor (W or H) is updated while A and the
other factor are kept constant. The general update steps look as follows:

H(t+1) = H(t) − αH∇Hf
(

W (t), H(t)
)

(8)

W (t+1) = W (t) − αW∇Wf
(

W (t), H(t+1)
)

. (9)

αH and αW are step-size parameters which have to be chosen carefully in or-
der to get a good approximation (cf. the discussion in [25]). The partial deriva-
tives in Equations (8) and (9) are ∇Hf(W

(t), H(t)) = W (t)⊤(W (t)H(t) − A) and

libNMF – A Library for Nonnegative Matrix Factorization 213

∇Wf(W (t), H(t+1)) = (W (t)H(t+1) − A)H(t+1)⊤, respectively. Experiments in [25]
show that this method is computationally very competitive and in many cases has
better convergence properties than the standard MU approach.

Direct Projected Gradient (PG) Algorithm. In this algorithm projected gra-
dient methods are used to directly minimize the objective function in Equation (1).
From the current solution (W (t), H(t)), both matrices are simultaneously updated
to (W (t+1), H(t+1)) in the general form:

(W (t+1), H(t+1)) = (W (t), H(t)) − α(∇Wf(W (t), H(t)),∇Hf(W
(t), H(t))) (10)

2.2 Termination Criteria

Generally speaking, three termination criteria can be applied. The simplest con-
vergence criterion which is used in almost all NMF algorithms is to run for a fixed
number of iterations (cf. the parameter maxiter in Algorithm 1). Since the most
appropriate value for maxiter is problem-dependent, this is not a mathematically
appealing way to control the number of iterations, but applies when the required
approximation accuracy does not drop below a pre-defined threshold. Another
problem-dependent convergence criterion is the approximation accuracy of the NMF
objective function, which obviously depends on the size and structure of the data
but may be useful to compare the approximation accuracy of different algorithms.
As already mentioned, different convergence measures can be applied, such as the
Frobenius norm (see Equation (1)), Kullback-Leibler divergence, KKT, or angu-
lar measures. The relative change of factors W and H from one iteration to the
next iteration is the basis for another convergence criterion. If this change is below
a pre-defined threshold δ, the algorithm is terminated. Depending on the NMF
algorithm used, additional termination criteria may apply (e.g., time limit, change
of the projection norm for projected gradient methods, etc.).

3 LIBNMF

In this section we present the first public version (version 1.02) of our libNMF
library, summarize general characteristics, and discuss its usage. Then we focus on
the computational routines implemented in libNMF.

3.1 General Notes

We assume that matrices are stored in two-dimensional arrays. To simplify the
usage of Fortran high performance routines (e.g., from LAPack), arrays are logically
accessed in column-major order, which is how Fortran accesses two-dimensional
arrays. Unless stated otherwise, all routines use IEEE double precision floating-
point arithmetic.

214 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

3.1.1 External Libraries

libNMF utilizes routines from BLAS and LAPack. The NNDSVD initialization
(LIBNMF/nndsvd, cf. Section 3.2.6) requires computation of SVDs, which is done
using ARPack routines [24].

3.1.2 Subroutines

The BLAS, LAPack, and ARPack routines utilized by libNMF are listed together
with their functionality in Table 2.

Double precision BLAS routines

BLAS/daxpy calculating y = a ∗ x+ y

BLAS/dcopy copying a vector to another vector
BLAS/dgemm matrix-matrix multiplication
BLAS/dgemv matrix-vector multiplication
BLAS/dlamch determining machine precision epsilon
BLAS/dscal scaling a vector by a constant
Double precision LAPack routines

LAPack/dgeqp3 QR-factorization with column pivoting

LAPack/dgesv solving system of linear equations (LU)
LAPack/dlacpy copying a matrix to another matrix
LAPack/dlange calculating the Frobenius norm
LAPack/dorgqr generating economy sized explicit Q in QR factorization
LAPack/dtrtrs solving a triangular system

ARPack routines for LIBNMF/nndsvd

ARPack/dsaupd implicitly restarted Arnoldi iteration
ARPack/dseupd post-processing routine for large-scale symmetric

eigenvalue calculation

Table 2. BLAS, LAPack and ARPack routines used in libNMF

3.2 Computational Routines

The main routines included in version 1.02 of libNMF are discussed briefly in the
following. In the next versions additional routines will be added to libNMF in order
to cover a wider spectrum of different NMF algorithms.

3.2.1 LIBNMF/nmf mu

This routine implements the multiplicative update algorithm as described in Sec-
tion 2.1.1. Each matrix-matrix multiplication is calculated by calling BLAS/dgemm,
and all element-wise operations (·, +, and the division) are calculated in a for-loop.

With increasing number of iterations the number of very small positive and
zero entries increases in both factor matrices W and H. Performance tests showed

libNMF – A Library for Nonnegative Matrix Factorization 215

that this leads to an increase of runtime per iteration. Therefore small positive
entries (in the order of machine precision) are set to zero explicitly in every itera-
tion. Moreover, experiments showed that also an increasing number of zero entries
slowed down LIBNMF/nmf mu. This effect could be almost completely compensated
by checking whether the result will be zero and in that case directly setting it instead
of computing it.

The routine LIBNMF/nmf mu singleprec implements a single precision version
of LIBNMF/nmf mu, using the single precision versions of BLAS and LAPack routines
(i.e., BLAS/sgemm instead of BLAS/dgemm.)

3.2.2 LIBNMF/nmf als

This routine implements an ALS algorithm as described in Section 2.1.2. For
calculating H(t+1), first a QR-factorization (LAPack/dgeqp3) with column pivot-
ing of W (t) is computed, resulting in an explicit representation of R and an im-
plicit representation of Q. Then, the upper triangular sub-block of R ∈ R

k×k is
copied (LAPack/dlacpy) and an economy sized explicit Q ∈ R

m×k is computed
(LAPack/dorgqr). After calculating U = Q⊤ ∗ A ∈ R

k×n (BLAS/dgemm), the equa-
tion R ∗ H(t+1) = U is solved (LAPack/dtrtrs). Finally, the rows of H(t+1) are
permuted according to the pivoting of the factorization (BLAS/dcopy), and negative
entries are set to zero. Based on H(t+1), W (t+1) is calculated in the next step using
a QR-factorization with column pivoting of H(t+1)⊤.

3.2.3 LIBNMF/nmf neals

This routine implements the NEALS algorithm from Section 2.1.2. For calculating
H(t+1), first two auxiliary matrices are calculated (BLAS/dgemm): T1 = W (t)⊤∗W (t) ∈
R

k×k and T2 = W (t)⊤ ∗ A ∈ R
k×n. Then, an LU-factorization (LAPack/dgesv) is

used to solve the equation T1 ∗H
(t+1) = T2 for H

(t+1), and negative elements are set
to zero.

For calculating W (t+1), T3 = H(t+1) ∗ H(t+1)⊤ ∈ R
k×k and T4 = H(t+1) ∗ A⊤ ∈

R
k×m are calculated. Then the equation T3 ∗W

(t+1)⊤ = T4 is solved for W (t+1) using
an LU-factorization, and negative elements are set to zero.

3.2.4 LIBNMF/nmf alspg

This routine implements the ALSPG algorithm as proposed in [25]. Prior to the
iterative update steps initial gradients are calculated (using three BLAS/dgemm calls):

∇H = W (0) ∗ (H0 ∗H(0)⊤)− A ∗H(0)⊤ (11)

∇W = (W (0)⊤ ∗W (0)) ∗H(0) −W (0)⊤ ∗ A. (12)

Moreover, the norm of the initial gradients is calculated (LAPack/dlange), which is
used as an additional stopping condition for projected gradient algorithms (cf. Sec-
tion 2.2).

216 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

Update steps. In every iteration, first the new projection norm is calculated,
then W (t+1) and H(t+1) are updated alternately. Update steps are computed in a se-
parate routine called LIBNMF/pg subprob which is also used by the PG algorithm
(cf. Section 3.2.5), and briefly discussed in the following.

LIBNMF/pg subprob. First, two auxiliary matrices T5 = W⊤∗A and T6 = W⊤∗W
are calculated (BLAS/dgemm).Then, two nested loops are run. In the outer loop the
new gradient ∇ = T5 ∗H − T6 is calculated (LAPack/dlacpy, BLAS/dgemm). In the
inner loop the step-size parameters α and β are determined based on the change from
the current solution to the newly computed solution (LAPack/ dlacpy, BLAS/daxpy,
BLAS/dgemm).

3.2.5 LIBNMF/nmf pg

This routine implements the projected gradient algorithm as proposed in [25]. In
every iteration, gradients ∇H and ∇W are calculated similar to Equations (11)
and (12). In the first iteration the initial gradient (using LAPack/dlange), and H

(using LIBNMF/pg subprob) are calculated. In all iterations (including the first itera-
tion) the new projection norm is calculated andW (t+1) andH(t+1) are updated, again
using a step-size parameter which is calculated in an inner loop (LAPack/dlacpy,
BLAS/daxpy).

3.2.6 LIBNMF/nndsvd

As a first initialization strategy (cf. Section 2) for W and H we implemented the
Nonnegative Double Singular Value Decomposition (NNDSVD) technique as de-
scribed in [4]. It is based on two SVD processes – one approximating the data
matrix A (rank-k approximation), the other approximating positive sections of the
resulting partial SVD factors (BLAS/dgemm, ARPack/dsaupd, ARPack/dseupd).

4 EXPERIMENTAL EVALUATION

We performed detailed experiments to evaluate the performance of the routines
in libNMF. First, we briefly discuss the setup (data sets and hardware) used to
measure the runtimes. Then, we discuss some performance issues of existing NMF
codes found in the literature. Finally, we provide a runtime comparison of libNMF
with Matlab implementations of identical algorithms as well as with representative
NMF codes found in the literature written in different programming languages.

4.1 Experimental Setup

We used the p53 Mutants dataset from the UCI machine learning repository (pub-
licly available at http://archive.ics.uci.edu/ml). It consists of 16 772 instances
described by 5 409 attributes (including a binary class attribute which separates the

libNMF – A Library for Nonnegative Matrix Factorization 217

instances into two groups “actives/inactives”). 180 instances with missing values
were deleted and the remaining instances were separated into a training set consist-
ing of the first 75% active instances and the first 75% inactive instances, and a test
set consisting of the remaining 25% of each group.

Hardware. All runtimes were measured on a SUN FIRE X4600 M2 with 8 AMD
Opteron 8 356 quad-core processors with 3.2GHz, 2MB L3 cache, and 32GB of main
memory (DDR-II 666). CPUs are connected to each other by a HyperTransport link
running at 8GB/second.

Software. As already mentioned in Section 1, most of the available NMF codes are
written in Matlab.In the last years, the support of multithreaded computations for
several linear algebra operations included in Matlab has been improved, and Matlab
version 2010a shows noteworthy speedup in several cases (e.g., matrix multiply,
linear equations, etc. [32]) compared to older Matlab versions. Matlab efficiently
utilizes BLAS and thus also achieves a good performance for most NMF algorithms.

However, in many circumstances it may not be efficient or not feasible to use
a commercial software product like Matlab. Matlab clones, such as Octave, O-Matrix
or Scilab, are significantly cheaper or even free, but usually cannot compete with
Matlab in term of computational efficiency, number of available routines, sup-
port, usability, etc. NMF implementations in O-Matrix (http://www.omatrix.com)
showed competitive runtimes compared to current Matlab routines in our experi-
ments (e.g., the matrix multiply routine which is essential for NMF is even slightly
faster than with Matlab 2010a), but O-Matrix is only available for Windows. Scilab
(http://www.scilab.org) and Octave (http://www.gnu.org/software/octave)
are also available for Unix-like systems and can also be built with optimized BLAS
routines. However, experiments with Scilab and Octave on several machines with
the outcome that overall both programs could not compete with Matlab in terms of
runtime performance. Scilab also showed severe memory allocation problems when
large matrices were used. Moreover, for Scilab the Matlab files need to be converted
to Scilab files, which works smoothly for simple code-fragments but is often more
difficult for complex code.

Other available NMF codes are written in R [10, 26] or Python [31]. Several
benchmarks (e.g., http://mlg.eng.cam.ac.uk/dave/rmbenchmark.php) as well as
our own evaluation showed that R is generally slower than Matlab for matrix opera-
tions, which are an essential part of all NMF algorithms. Comparisons of runtimes
with Python codes from [31] are given in Section 4.2. The Python modules an-
nounced in [2] were not available at the time when this paper was written.

NMF codes written in C/C++ are among the fastest if they are based on BLAS
and LAPack routines. However, not all available C/C++ codes are directly com-
parable to libNMF. For example, [13] use NMF to compute an ensemble clustering
algorithm based on the symmetric NMF algorithm as proposed in [9]. Since this al-

218 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

gorithm works only for a symmetric matrix A and creates ensembles of NMF instead
of single factorizations the achieved runtimes are not directly comparable to libNMF.
The code from [28] was written to be used within an image processing toolkit, which
makes it difficult to compare it to libNMF. Moreover, it is not possible to compile
the code separately without linking the complete toolkit. The parallel code from [34]
is based on LAM/MPI and was intended for use on Beowulf clusters. We compiled
the desktop version of the code (which is also available), however, this version does
not support the linking of BLAS routines.

We report detailed runtime comparisons of libNMF routines with

• Matlab implementations, in particular of the algorithms implemented in [33]
(MU, ALS), in [25] (ALSPG, PG), of the NEALS algorithm as discussed in
Section 2.1.2, and of the NNDSVD initialization from Section 3.2.6. Moreover,
we measured the runtime needed to achieve a given accuracy for algorithms
from [14, 16, 20, 30], which are not yet implemented in libNMF.

• C++ implementations, in particular of the MU and the ALS algorithm im-
plemented in [8] compiled with Goto BLAS and the GNU Scientific Library
(http://www.gnu.org/software/gsl).

• Python implementations, in particular with the Python modules from [31] com-
piled with Atlas BLAS version 3.9.23.

4.2 Runtime Comparison

The runtime comparisons are split up into two parts. In the first part, we com-
pare the runtime of libNMF routines to implementations of identical algorithms
in Matlab (v2010a). In the second part, we compare libNMF routines to the best
algorithms/implementations found in the literature from a user’s point-of-view. In
this setting, the “best” routines are those which are able to achieve a given accuracy
in the shortest amount of time. In our experiments we experimented with Atlas
BLAS version 3.8.3 and development version 3.9.11 [35], and with Goto BLAS ver-
sion 1.13 [12]. Overall, Goto BLAS seemed to be faster, setting an emphasis on
parallel performance. Atlas BLAS 3.8.3 seemed to utilize multiple CPU cores con-
siderably less than Goto BLAS, which improved in the newer version (which features
a new multithreading implementation). However, all libNMF runtimes in this paper
are based on Goto BLAS v1.13. Goto BLAS utilizes all 32 cores available on our
system.

Speedup over Matlab 2010a. Figures 1 and 2 show the speedup of libNMF
routines over Matlab routines implementing identical NMF algorithms (i.e., the
results after each iteration are numerically identical, there is only a difference in
runtime) for varying rank k, using randomly initialized factors W and H. In order
to investigate the runtimes for varying shapes of rectangular data sets, we truncated
the larger dimension of our dataset in steps of 2 000. As Figure 1 shows, libNMF

libNMF – A Library for Nonnegative Matrix Factorization 219

libNMF alspg
libNMF pg
libNMF neals
libNMF mu
libNMF als

First dimension m of A (A ∈ R
m×5408)

S
p
e
e
d
u
p

12000100008000600040002000

1.8

1.6

1.4

1.2

1

Fig. 1. Speedup over Matlab 2010a – k = 50

libNMF alspg
libNMF pg
libNMF neals
libNMF mu
libNMF als

First dimension m of A (A ∈ R
m×5408)

S
p
e
e
d
u
p

12000100008000600040002000

3

2.8

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

Fig. 2. Speedup over Matlab 2010a – k = 10

220 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

routines are always faster than corresponding Matlab routines – overall, a speedup
of about 1.4 over Matlab 2010 could be achieved. It is interesting to note the higher
speedup of LIBNMF/nmf alspg with lower rank k in Figure 2, which differs from the
behavior of the other algorithms. For rank k = 10, LIBNMF/nmf alspg is on average
more than twice as fast as the Matlab implementation.

For computing the NNDSVD initialization (cf. Section 3.2.6, not shown in Fi-
gures 1 and 2) libNMF achieved an impressive speedup of 24 over Matlab 2010a.
However, this speedup needs to be considered carefully since Matlab’s svds routine
only utilized one core in our experiments.

libNMF mu
libNMF als
libNMF neals
C++ mu
ML bayesNMF
ML fastNMF

libNMF alspg
PY fnmai sparse
ML alsOBJ
PY fnmai
libNMF pg
PY rri

||A−W H||F

R
u
n
ti
m
e
[s
e
c.
]

< 0.0450 < 0.0425 < 0.0400 < 0.0375 < 0.0350 < 0.0325 < 0.0300

1000

100

10

1

Fig. 3. Runtime for fixed accuracy (NNDSVD) – k = 25

Runtime for fixed accuracy. Figure 3 shows a runtime comparison of several
implementations of NMF algorithms from a user’s point-of-view for a 12 000× 5 408
subset of the training set mentioned in Section 4.1. The runtime needed to achieve
a given approximation accuracy (measured in the Frobenius norm) is plotted along
the y-axis (log10 scale). Curves which do not continue indicate that the correspond-
ing algorithm is not able to achieve a specific accuracy. The runtimes of the five
libNMF algorithms are plotted together with the seven “best” NMF implementa-
tions found in the literature. All algorithms from [8, 14, 16, 20, 30, 31] that are not
present in Figure 3 needed considerably longer time to reach a specific approxima-
tion accuracy. The runtimes are shown for pre-initialized factors W and H (using
NNDSVD) and k = 25.

libNMF – A Library for Nonnegative Matrix Factorization 221

Figure 3 can be interpreted as follows: a fast and rough approximation (ap-
proximation error < 0.0450) can be achieved in about two seconds with the lib-
NMF algorithms LIBNMF/nmf mu, LIBNMF/nmf als, or LIBNMF/nmf neals, but only
LIBNMF/nmf mu is able to achieve even an approximation error < 0.0400 in the
same time. If a better approximation is desired, other algorithms are faster than
LIBNMF/nmf mu. It turns out that the fastNMF and bayesNMF algorithms from [30],
and the alsOBJ algorithm from [14] are the fastest ones for computing a close ap-
proximation of A – even faster than the best libNMF algorithm LIBNMF/nmf alspg.
Since algorithms implemented in libNMF are almost always faster than identical
algorithms implemented in Matlab, we are currently working on integrating the
algorithms from [14, 30] into libNMF.

5 CONCLUSION AND FUTURE WORK

We introduced a new library for computing nonnegative matrix factorization (NMF)
called libNMF, which implements several computationally efficient NMF routines.
libNMF is a modularly structured, open source library written in C which calls
computationally efficient external libraries, such as BLAS, LAPack and ARPack.
Runtime comparisons with Matlab version 2010a and other NMF codes found in
the literature showed that libNMF achieves significant speedups over other imple-
mentations of identical algorithms.

Our experiments also revealed that some algorithms which are not yet integrated
into libNMF achieve high approximation accuracy in shorter time. We are currently
working on improvements and extensions of libNMF. Beside additional algorithms,
such as fastNMF and bayesNMF from [30] or quasi-Newton algorithms, we plan
to implement sparseness constraints [16], different error measures (such as the ones
mentioned in Section 2), and support for other initialization strategies (e.g., [18]).
Moreover, we plan to extend our library with NMF variants optimized for graphic
processing units (GPUs). libNMF is available at http://rlcta.univie.ac.at/

software.

Acknowledgments

This work was supported by the CPAMMS-Project (grant No. FS397001) in the
research focus area “Computational Science” of the University of Vienna, and by
the project S10608 in the NFN SISE of the Austrian science fund FWF.

REFERENCES

[1] Anderson, E.—Bai, Z.—Bischof, C. et al.: LAPACK Users’ Guide. Society for
Industrial and Applied Mathematics. Philadelphia, PA, third edition, 1999.

222 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

[2] Battenberg, E.—Wessel, D.: Accelerating Non-Negative Matrix Factorization

for Audio Source Separation on Multi-Core and Many-Core Architectures. In Proc.
of 10th Int. Society for Music Information Retrieval Conf., 2009, pp. 501–506.

[3] Berry, M.W.—Browne, M.—Langville, A.N.—Pauca, P.V.—Plemmons,

R. J.: Algorithms and Applications for Approximate Nonnegative Matrix Factoriza-
tion. Computational Statistics &Data Analysis, Vol. 52, 2007, No. 1, pp. 155–173.

[4] Boutsidis, C.—Gallopoulos, E.: SVD Based Initialization: A Head Start
for Nonnegative Matrix Factorization. Pattern Recogn., Vol. 41, 2008, No. 4,
pp. 1350–1362.

[5] Cemgil, A.T.: Bayesian Inference for Nonnegative Matrix Factorisation Models.
Intell. Neuroscience, 2009, pp. 1–17.

[6] Cichocki, A.—Zdunek, R.—Amari, S.: Csiszr’s Divergences for Non-Negative
Matrix Factorization: Family of New Algorithms. LNCS, Vol. 3889, 2006, No. 1,
pp. 32–39.

[7] Cichocki, A.—Zdunek, R.—Phan, A.H.—Amari, S.: Nonnegative Matrix and
Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and
Blind Source Separation. Wiley 2009.

[8] Dhillon, I. S.—Sra, S.: Generalized Nonnegative Matrix Approximations with
Bregman Divergences. Advances in Neural Information Processing Systems, Vol. 18,
2005, pp. 283–290.

[9] Ding, C.—He, X.—Simon, H.D.: On the Equivalence of Nonnegative Matrix

Factorization and Spectral Clustering. In Proc. SIAM Data Mining Conf. 2005,
pp. 606–610.

[10] Gaujoux, R.: Package NMF. 2010, http://cran.r-project.org/web/packages/
NMF.

[11] Gonzales, E.—Zhang, Y.: Accelerating the Lee-Seung Algorithm for Nonnegative
Matrix Factorization. Technical report, Department of Computational and Applied
Mathematics, Rice University, 2005.

[12] Goto, K.—van de Geijn, R.A.: High-Performance Implementation of the Level-3
BLAS. ACM Trans. Math. Softw., Vol. 35, 2008, No. 1, pp. 1–18.

[13] Greene, D.—Cagney, D.—Krogan, N.—Cunningham, P.: Ensemble Non-
Negative Matrix Factorization Methods for Clustering Protein-Protein Interactions.
Bioinformatics, Vol. 24, 2008, No. 15, pp. 1722–1728.

[14] Hansen, L.K.: NMF: DTU Toolbox. 2006, http://isp.imm.dtu.dk/toolbox/

nmf/index.html.

[15] Hassibi, B.—Stork, D.—Wolff, G.: Optimal Brain Surgeon and General Net-
work Pruning. In IEEE International Conference on Neural Networks, pp. 293–299,
1993.

[16] Hoyer, P. O.: Non-Negative Matrix Factorization With Sparseness Constraints.
Journal of Machine Learning Research, Vol. 5, pp. 1457–1469, 2004.

[17] Janecek, A.G.K.—Gansterer, W.N.: E-Mail Classification Based on NMF. In
9th SIAM International Conference on Data Mining 2009, Proceedings in Applied
Mathematics, 3, SIAM, pp. 1345–1354, 2009.

libNMF – A Library for Nonnegative Matrix Factorization 223

[18] Janecek, A.G.K.—Gansterer, W.N.: Utilizing Nonnegative Matrix Factoriza-

tion for E-Mail Classification Problems. In M.W. Berry and J. Kogan (Eds.): Survey
of Text Mining III: Application and Theory, Wiley, 2010, pp. 57–80.

[19] Kim, D.—Sra, S.—Dhillon, I. S.: Fast Newton-Type Methods for the Least
Squares Nonnegative Matrix Approximation Problem. In Proc. SIAM Data Mining
Conf., pp. 343–354, 2007.

[20] Kim, H.—Park, H.: Nonnegative Matrix Factorization Based on Alternating Non-
negativity Constrained Least Squares and Active Set Method. SIAM J. Matrix Anal.
Appl., Vol. 30, 2008, No. 2, pp. 713–730.

[21] Langville, A.N.—Meyer, C.D.—Albright, R.: Initializations for the Nonneg-
ative Matrix Factorization. In SIGKDD ’06: Proceedings of the 12th ACM Interna-
tional Conference on Knowledge Discovery and Data Mining, 2006.

[22] Lee, D.D.—Seung, H. S.: Learning Parts of Objects by Nonnegative Matrix Fac-
torization. Nature, Vol. 401, 1999, No. 6755, pp. 788–791.

[23] Lee, D.D.—Seung, S.H.: Algorithms for Non-Negative Matrix Factorization. Ad-
vances in Neural Information Processing Systems, Vol. 13, 2001, pp. 556–562.

[24] Lehoucq, R.B.—Sorensen, D.C.—Yang, C.: ARPACK Users Guide: Solu-
tion of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods.
SIAM, 1998.

[25] Lin, C. J.: Projected Gradient Methods for Nonnegative Matrix Factorization. Neu-
ral Comput., Vol. 19, 2007, No. 10, pp. 2756–2779.

[26] Liu, S.: Package NMFN. Available on-line: http://cran.r-project.org/web/

packages/NMFN/NMFN.pdf, 2009.

[27] Paatero, P.—Tapper, U.: Positive Matrix Factorization: A Nonnegative Factor
Model With Optimal Utilization of Error Estimates of Data Values. Environmetrics,
Vol. 5, 1994, No. 2, pp. 111–126.

[28] Pathak, S.—Haynor, D.—Lau, C.—Hawrylycz, M.: Non-Negative Matrix
Factorization Framework for Dimensionality Reduction and Unsupervised Cluster-
ing. The Insight Journal (open-source), http://hdl.handle.net/1926/502, 2007.

[29] Piper, J.—Pauca, V.P.—Plemmons, R. J.—Giffin, M.: Object Characteriza-
tion from Spectral Data Using Nonnegative Factorization and Information Theory.
In Proc. of Amos Technical Conf., pp. 591–600, 2004.

[30] Schmidt, M.N.—Laurberg, H.: Non-Negative Matrix Factorization With Gaus-
sian Process Priors. Comp. Intelligence and Neuroscience, 2008, No. 1, pp. 1–10.

[31] Schmitt, U.: NNMA Toolbox. http://www.procoders.net/?p=409, 2008.

[32] The Mathworks. Matlab release notes. Available on-line, 2010.

[33] The Mathworks. Matlab statistics toolbox. Available on-line, 2010. http://www.
mathworks.com/products/statistics.

[34] Wang, G.—Kossenkov, A.V.—Ochs, M.F.: LS-NMF: A Modified Non-
Negative Matrix Factorization Algorithm Utilizing Uncertainty Estimates. BMC

Bioinformatics, Vol. 7, 2006, No. 175, pp. 1–10.

[35] Whaley, R.C.—Petitet, A.: Minimizing Development and Maintenance Costs
in Supporting Persistently Optimized BLAS. Software: Practice and Experience,
Vol. 35, 2005, No. 2, pp. 101–121.

224 A. Janecek, S. Schulze Grotthoff, W.N. Gansterer

[36] Wild, S.M.: Seeding Non-Negative Matrix Factorization With the Spherical

k-Means Clustering. Master’s thesis, University of Colorado, 2002.

[37] Wild, S.M.—Curry, J.H.—Dougherty, A.: Improving Non-Negative Matrix
Factorizations Through Structured Initialization. Pattern Recog., Vol. 37, 2004,

No. 11, pp. 2217–2232.

[38] Xue, Y.—Tong, C. S.—Zhang, W.: Survey of Distance Measures for nmf-Based
Face Recognition. In International Conference on Computational Intelligence and

Security, pp. 1039–1049, 2007.

Andreas Janeek received his Ph.D. degree in Computer
Science in 2010, and his M. Sc. degree in Business Informatics in
2005, both from the University of Vienna, Austria. His research
activities include data mining and machine learning algorithms,
with a focus on high performance and distributed computing as-
pects of these techniques, and computational intelligence such as
population based algorithms and evolutionary computing. He is
currently a post-doctoral researcher at the School of Electronic
Engineering and Computer Science, Beijing University, China.

Stefan Schulze Grotthoff is currently studying Computer
Science in the Bachelor program at the University of Vienna,
Austria. His research activities revolve around nonnegative ma-
trix factorizations and their application for data classification.

Wilfried N. Gansterer is an Assistant Professor of Com-
puter Science at the University of Vienna, Austria. He received
a Ph.D. degree in Scientific Computing from Vienna University
of Technology, Austria, in 2000, a Master’s degree in Scientific
Computing/Computational Mathematics from Stanford Univer-
sity, USA, in 1996, and a Master’s degree in Mathematics from
Vienna University of Technology in1994. His research interests
are in scientific and high performance computing, parallel and
distributed computing, data mining and machine learning algo-
rithms, and in related application problems in computational life
sciences and internet security.

