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Abstract. The present paper deals with the estimation of the solution error of
the boundary value problems of mechanics science. The well-known ideas of error
estimators are presented, as well as new original ones, which use the concept of
the improved HO reference solution, obtained using the Meshless Finite Difference
Method analysis. Such HO estimators may be applied not only in the MFDM, but
also in the Finite Element Method error analysis. This issue is presented here for
the first time ever. The approach is tested on chosen 2D benchmark problems. The
results are very encouraging.
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1 INTRODUCTION

This paper is devoted to the estimation of a-posteriori solution error of the boundary
value problems of mechanics. Nowadays, precise solution error estimation is one of
the fundamental tasks in each numerical analysis [1, 23, 25, 29]. In most cases, it is
a complex and very time consuming process when a high quality reference solution is
required. In each analysis, it replaces the true analytical solution that is known for
the benchmark problems only. The broad range of solution error estimators [1, 29]
was introduced, defined and tested for the Finite Element Method (FEM, [28]).
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However, there may be still a need for development of new ones. Following this idea
a-posteriori error approach based on the concept of the Meshless Finite Difference
Method is developed (MFDM, [13, 14]). It is based here on a new Higher Order
(HO) reference solution of especially high quality.

Therefore in the present work the outlines, exemplary applications and recent
developments of the Meshless Finite Difference Method are presented first. This
is a meshless solution approach fully competitive to the FEM. As opposite to the
FEM analysis, only nodes, without any pre-imposed structure, are required in the
MFDM. Consequently, local approximation of the unknown function is prescribed
in terms of nodes only.

A simple and effective concept of the so called Higher Order (HO) MFD solution
mentioned above is briefly presented as well. This type of an improved MFD solution
requires only double solution of simultaneous algebraic equations, with the same
left hand side. Only the right hand side of those equations is modified, by means
of the appropriate HO correction, resulting from the Taylor series expansion of the
standard MFD operator.

Among many applications, the HO MFD solution may be successfully applied in
solution as well as in residual error estimations. For results of the MFDM analysis,
such solution provides the best quality estimation, when compared with the other
estimators. It is also expected to be more precise than the other commonly used
estimators for the FEM analysis.

The proposed approach is tested on several 2D benchmark examples. Solution
estimations obtained using HO estimators are compared with those obtained using
standard estimators, for the MFDM and FEM analysis separately. The results are
very encouraging.

2 DESCRIPTION OF A PROBLEM SOLUTION

The boundary problems of mechanics may be posed in various formulations, in-
cluding the local one, when the set of differential equations involving the unknown
function u is given at arbitrary point P of the domain Ω by point together with the
proper boundary conditions

{

Lu = f

Gu = g
u = u(P )

{

P ∈ Ω
P ∈ ∂Ω

(1)

where L,G denote differential operators inside the domain Ω and on its boundary
∂Ω, respectively. Other type of b.v.p. formulation is the global one, in which the
energy functional

I(u)=
1

2
b(u, u) − l(u) (2)

should be minimised or the variational principle

b(u, v) = l(v) for v ∈ Vadm (3)
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satisfied, both prescribed to the whole domain Ω at once. Here b(u, v) and l(v)
are bilinear and linear functionals, respectively. Test function v comes from the
admissible space Vadm.

Mixed types of the b.v.p. formulations are also possible, for instance in the
local-global formulations variational principle is satisfied only locally, on the local
subdomains, prescribed to selected points (e.g. to nodes). Here, discusion about pos-
sible b.v.p. formulations is limited to several most commonly applied ones. However,
more details about this matter may be found in [2, 3, 14].

In most cases, the above problems have to be solved using appropriate discretiza-
tion tools, like the FEM or the MFDM. In such methods, both domain and function
have to be discretized, providing the mesh size h and approximation order p. As the
result, one obtains the numerical solution u, which differs from the exact analytical
one u(T ). The solution error may be measured as follows:

e =
∥

∥

∥u(T ) − u
∥

∥

∥ . (4)

Here ‖·‖ denotes the appropriate norm, involving integration, either over the whole
domain or over a chosen local subdomain only. This type of error evaluation is called
the global one. Two types of such global norms, namely the energetic and mean
ones, are commonly applied in calculations.

ηE =
√

b(e, e) , ηL2
=

√

√

√

√

1

Ω

∫

Ω

(e)2 dΩ (5)

The global error evaluation is more frequently used in the FEM, where the domain
discretization is based on the elements. Appropriate error estimation [1, 9, 14, 25]
requires high quality reference solution ū ≈ u(T ) replacing in (4) the exact analytical
solution u(T ). Therefore, one obtains the global estimate

η = ‖ū− u‖ . (6)

Its quality depends on the accuracy of the ū. In the present paper, we deal with se-
veral types of such global error estimates, namely hierarchic, smoothing and residual
ones. They are common for the FEM analysis [1, 28, 29]. However, all of them may
also be applied in the MFDM.

In the standard hierarchic estimators, new mesh has to be generated (h-type) or
approximation order needs to be raised (p-type). Therefore, solution of completely
new discrete problem is required. In the case of smoothing estimators, the solution
error is estimated using the difference between a rough u′ and smoothed ū′ solution
derivatives.

η = ‖ū− u‖ ∼ ‖ū′ − u′‖ (7)

The most common smoothing estimator used in the FEM is the Zienkiewicz-Zhue
one [29].
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The last type of estimators considered here is based on the distribution of the
exact residual error which is defined as

r = Lû− f (8)

where û is a continued nodal solution. In the residual estimator of explicit type one
has

η =

√

h2 ‖r‖2
L2

+
1

2
h ‖J‖2

L2
(9)

where J denotes jump term of the solution u(T ) on the (sub)domain boundary. The
implicit type requires solution of the b.v.p. with the residuum (8) used as the right
hand side

b(e, v) = l(v) for v ∈ Vadm. (10)

Eventually, the solution error is obtained after solving a discrete form of the Equa-
tion (10).

Our goal is to prove that the HO MFD reference solution may be applied in
both the FEM and MFDM error solution analysis, producing the best estimation,
when compared to the estimators outlined above. Moreover, as it will be shown,
it uses the same discretized problem as for the estimated solution, but it does not
need so much computational effort.

3 APPLIED ALGORITHMS AND METHODS

In this section, outlines of the Mehsless Finite Difference Method are presented.
The MFDM [13, 14] is one of the basic discrete solution approaches to analysis
of the boundary value problems of mechanics. It belongs to the wide group of
methods called nowadays the Meshless Methods (MM, [3, 13, 14, 27]. The MM
are contemporary tools for analysis of boundary value problems. In the meshless
methods, approximation of a sought function is described in terms of nodes, rather
than by means of any imposed structure like elements, regular meshes etc. Therefore,
the MFDM, using arbitrarily irregular clouds of nodes, and the Moving Weighted
Least Squares (MWLS, [11, 14]) approximation falls into the category of the MM,
being in fact the oldest [14], and possibly the most developed one of them.

The basic MFDM solution approach consists of the following steps:

• generation of the cloud of nodes,

• cloud of nodes topology determination,

• MFD star determination,

• function discretization (selection of degrees of freedom) and Moving Weighted
Least Squares approximation,

• generation of the MFD operators,

• numerical integration (for the global formulations only),
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• generation of the MFD equations,

• discretization of the boundary conditions,

• solution of the S(L)AE, obtained from the above,

• appropriate postprocessing.

The bases and the recent state of the art in the research on the MFDM, as well
as several possible directions of its development are briefly presented in [14, 25].
Here only some general remarks are given concerning especially cloud of nodes
generation, local function approximation, numerical integration and boundary con-
ditions discretization. They are of essential importance to the HO MWLS ap-
proximation and improved a-posteriori error analysis. Although the MFDM is
the oldest, and therefore the most developed meshless method, its solution ap-
proach is still being currently developed. The latest MFDM extensions include
the higher order approximation based on correction terms, multipoint approach,
a-posteriori error estimation as well as an adaptation approach, and are presented
in [15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 25].

The MFDM may deal with boundary value problems posed in every formula-
tion [14, 25], where the differential operator value at each required point may be
replaced by a relevant difference operator involving a combination of searched un-
knowns of the method. Thus any formulation mentioned in the previous section
may be used here. However, independently of the bvp formulation type applied, one
always starts from the generation of a cloud of nodes, that may be irregularly scat-
tered, but usually are without any imposed structure on them, like finite element or
regular mesh, and have no mapping restrictions to the regularized stencil. In such
a cloud of nodes, some additional ones may be easily added, removed or shifted, if
necessary, causing only small changes in nodes structure.

Basically any nodes generator might be applied. However, it is very convenient
to use a nodes generator specially designed for the MFDM, e.g. the Liszka type [12,
13, 18], that is based on the nodes density control. Nodes are ‘sieved out’ from the
regular very dense background mesh, according to a prescribed density. Although
such a generator provides arbitrarily irregular cloud of nodes, it is useful to determine
its topology afterwards. This includes generation of the subdomains prescribed to
nodes – i.e. Voronoi polygons (in 2D or polyhedrons in 3D), and (in 2D) the Delaunay
triangles – placed between nodes. The topology information may be applied for star
generation and/or for integration purposes.

Once the nodes for MFD stars are selected (e.g. using topology oriented criteria
like Voronoi neighbours), the local approximation of the unknown function is per-
formed at every point of interest (node, Gauss point). It is done using the Taylor
series expansion, and the MWLS approximation [11, 14]. It is crucial to the method
that the MFD star may consist of more nodes (m) than the minimum required
to provide the approximation order (p). Evaluation of the MWLS approximation
requires the minimisation of the weighted error functional

J = (q −PDu)tW 2(q −PDu) (11)
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where P – interpolants matrix, Du – derivatives vector (up to the pth order), q –
MFD star nodal values vector, and W – diagonal weights matrix. Weighting func-
tions are singular for the central node of the MFD equations. In this way, interpo-
lation is enforced there. As a consequence, the essential boundary conditions are
satisfied without any additional techniques.

After minimisation of (11), one obtains the complete set of derivatives, up to
the pth order

Du = K q , K = (P tW 2P)−1P tW 2 (12)

which are, in fact, the coefficients of the local approximation. Moreover, the approx-
imation error may be easily estimated, by considering several additional terms of the
Taylor series expansion. It is worth stressing that other meshless methods often use
equivalent polynomials for the function approximation [3], instead of the truncated
Taylor series. However, although the results of the approximation are the same, the
polynomial approach does not provide at once so much valuable information (e.g.
about local errors and derivatives).

Some extensions of the MWLS approximation, like use of the generalised degrees
of freedom or local constrains are presented in [14].

In the case of global formulations integration is required. The following tech-
niques may be used:

• integration around nodes over the Voronoi polygons, which is the best solution
for the even order differential operators,

• integration between the nodes over the Delaunay triangles (2D), which produces
the most accurate results for the odd order differential operators,

• integration on a background mesh, independent of the nodes distribution,

• integration over the zones of influence of the weighting functions of the MWLS
approximation,

• integration over the local subdomains (MLPG, [2]).

Generation of the MFD operators which appears in formulations (1)÷(3) is done
using the MWLS approximation, and appropriate formulae composition. Genera-
tion of the MFD equations depends on the formulation type. In the case of local
formulation (1) one may use the collocation technique, whereas in the case of global
formulations (2) and (3) one has to minimise the energy functional or to use the
relevant variational principle.

The essential boundary conditions are automatically satisfied by using singu-
lar weights in the MWLS approximation. However, discretization of the natural
or mixed boundary conditions usually requires additional MFD approximation on
the boundary. Such approximation may use only internal nodes from the domain,
but it is of poor quality then. Introducing additional, external, fictitious nodes or
generalised degrees of freedom may raise the approximation quality on the boundary.

The MFDM solution approach requires analysis of the S(L)AE. It is most con-
venient to use a solver which takes advantages of the method’s nature, like the
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multigrid approach [5, 16]. Finally, the postprocessing of the numerical results is
performed using the MWLS approximation once again.

There are many extensions of the basic MFDM solution approach. Among them
one may mention:

• cloud of nodes adaptation [18, 23, 24, 25],

• various MWLS extensions [14],

• higher order approximation [15, 16, 17, 19, 20, 21, 22, 23, 24, 25],

• a-posteriori error analysis [1, 9, 23, 24, 25],

• multigrid solution approach [5, 18],

• MFDM in various bvp formulations, including the MFDM/MLPG combina-
tions [2, 26],

• MFDM on the differential manifold,

• MFDM/FEM combinations [10],

• experimental and numerical data smoothing [8].

Here, higher order approximation will be discussed in a more detailed manner.
The solution quality may be improved by increasing the number of nodes or

by raising the order of local approximation. This may be done using HO MFD
operators [4, 7], generalised degrees of freedom [14], multipoint approach [8, 15, 16,
17] or Higher Order Approximation (HOA, [19, 20, 21, 22, 23, 24, 25]), based on
correction terms. The last approach will be discussed here.

Instead of introducing new nodes or degrees of freedom into the simple MFD
operator, some additional terms are considered. They result from the Taylor series
expansions of the simple MFD operator coefficients. Beside the HO derivatives
Du(H), they may also contain the singularity ctS or discontinuity terms e tJ . HO
derivatives may be calculated by means of using appropriate formulae composition
and use of the basic MFD solution, corresponding to the simple (not improved)
MFD operator.

The HOA concept is based on splitting the MWLS approximation terms into
two parts, namely the low (L) and higher order (H) ones

P tDu(L) +
(

P (H)
)t

Du(H) − ctS − e tJ = q . (13)

These additional HO terms are treated as known values. In such a way, the final
results (derivatives up to the pth order) depend on the nodal values, and on the
correction terms ∆ mentioned above:

Du(L) = Kq − ∆, ∆ = K

[

(

P (H)
)

t

Du(H) − ctS − e tJ

]

. (14)

It is assumed here that the approximation order is raised to 2pth. The HO derivatives
are calculated in the most accurate manner then.
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The HO MFD solution is obtained in two steps. In the first step, only the
low order part of (13) is taken into account and the basic, low order solution u (L)

is obtained then. Afterwards, the implicit postprocessing values of the correction
terms (14) are calculated, using formulae composition of the low order solution.
They modify the right hand sides of the MFD equations, leaving the coefficient
matrix unchanged. The new improved HO solution u (H) is exact within the approx-
imation order assumed (2pth) and, in general, does not depend on the quality of the
MFD operator.

HO solution may be applied in many aspects of the MFDM approach, especially
for improving

• solution quality inside the domain [19],

• solution quality on the boundary [20],

• the a-posteriori error analysis [21, 22, 23, 24, 25],

• the adaptation process [23, 24, 15],

• and for modification of the multigrid solution approach [5, 18, 23, 24, 25].

Let us return to the development of the HO global error estimates. HO solution
is applied here as the superior quality reference solution for several types of outlined
estimators, namely hierarchic, smoothing and residual ones. HO reference solution
provides error estimation of the 2pth order (as opposed to the classic p+1 order of
the improved, reference solution), where p denotes the basic approximation order
considered, and as the opposite to the well-known standard estimators, it does not
need so much computational effort.

The concept of the hierarchic estimators deals with an additional solution of the
MFD equations, producing high quality HO solution. In that case, only the right
hand side of those equations is modified whereas the numbers of nodes in both the
cloud and MFD operator remain unchanged. In the case of smoothing estimators,
one may use correction terms explicitly for improved estimation of the rough deriva-
tives, since smoothing is built into the MWLS approximation and HO derivatives
composition. Therefore, any additional smoothing technique is not needed. More-
over, improved estimation of the residual error may be applied in estimators of the
residual type, in both the explicit (simpler but less accurate) and implicit forms.

In the present paper, we also propose to apply such technique in the analysis
carried out by FEM. The correction terms may be found using the standard FEM
solution, and Taylor series expansion of the simplest MFD operator required to solve
a given b.v. problem. They are applied in order to obtain a FEM/MFDM reference
solution, which may be used for a-posteriori error estimation. It is worth stressing
that this approach does not need any additional topology information. It uses only
the one which was generated a priori for the FEM analysis.

Series of 1D and 2D tests done clearly showed that the HO reference MFDM
solutions may provide much better error estimation than the ones obtained from the
classic estimators commonly applied in the FEM.
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4 NUMERICAL RESULTS

Fig. 1. Hierarchic estimators (h-type, p-type, HO-type) for the MFDM solution error

In this section exemplary numerical results for the typical 2D Poisson benchmark
problem are presented with analytical solution exhibiting large amounts of gradient.
Calculations were made for the mesh with 400 nodes subjected to the domain of the
quadratic shape. Results of

• the exact solution error,

• h – hierarchic estimation,

• p – hierarchic estimation,

• HO – hierarchic estimation,

• ZZ – smoothing estimation,

• HO – smoothing estimation,

• residual estimation of explicit type,

• residual estimation of implicit type.

are presented for both the MFDM (Figures 1 and 2) and the FEM (Figures 3 and 4)
analysis.

Both shape and effectiveness index

i = 1 +
|e− η|

|e|
(15)
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Fig. 2. Smoothing (ZZ-type, HO-type) and residual (explicit, implicit) estimators for the
MFDM solution error

Fig. 3. Hierarchic estimators (h-type, p-type, HO-type) for the FEM solution error
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Fig. 4. Smoothing (ZZ-type, HO-type) and residual (explicit, implicit) estimators for the
FEM solution error

values are taken into account and may be compared here. For the MFDM solu-
tion error estimation, the best results were obtained when using the HO-hierarchic
estimator (i = 1.03) and HO-smoothing estimator (i = 1.23). For the FEM
solution error estimation, the same precision (i = 1.01) was reached when us-
ing hierarchic estimators, of HO- and p-type. However, the HO-estimator does
not require providing any new unknowns into the algebraic system whereas the
p-estimator needs re-building the mesh with HO finite elements with additional
internal nodes.

The analysis done required designing and building the appropriate computer
program. It was written in C++ Visual Studio. In addition, Matlab graphical
environment was used. Calculations for dense meshes and clouds of nodes were
performed using ACK Cyfronet software (Saturn).

5 CONCLUSIONS

Simple and effective way of solution error estimation was proposed and tested here.
It uses a concept of the Higher Order reference solution which may be applied in
both the Meshless Finite Difference Method and, for the first time, in the Finite
Element Method. It is based on additional correction terms which come from the
Taylor series expansion of the unknown function in the MFDM analysis. Those terms
consist of HO derivatives as well as singularity or discontinuity terms. They modify
the right hand side of the MFD equations, providing high quality MFD solution
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without the necessity of providing new nodes into the simple MFD operator or new
unknowns into the algebraic equation system.

HO estimates were compared to those which are commonly applied in other
discrete methods, especially in the FEM. This includes hierarchical, smoothing and
residual estimators. All of them need high quality reference solution as the equiv-
alent of the unknown analytical solution. HO MFD solution may be applied here,
giving the estimation of 2p order quality, where p is a basic approximation order.
It provided better results for less computational effort, when compared to the high
costs of other hierarchic estimators.

Series of preliminary 1D, and 2D benchmark problems solved demonstrated the
potential quality and power of these error estimation concepts. However, many more
tests are needed, especially non-linear ones and 3D problems. Several chosen true
engineering applications are planned as well.
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[27] Schweitzer, M.A.: Meshfree Methods for Partial Differential Equations. Computer

Methods in Mechanics (CMM), June 19–22, 2007, Spa la,  Lódź, Poland.
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