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Abstract. The concept vector model generalizes standard representations of si-
milarity concept in terms of tree-like structure. In the model, each concept node
in the hierarchical tree has ancestor and descendent concept nodes composing its
relevancy nodes, thus a concept node is represented as a concept vector according
to its relevancy nodes’ density and the similarity of the two concepts is obtained
by computing cosine similarity between their vectors. In addition, the model is
adjusted in terms of local density and multiple descendents problem. The model
contains structure information inherent and hidden in the tree. We show that this
measure compares favorably to other measures, and it is flexible in that it can make
comparisons between any two concepts in a hierarchical tree without relying on
additional dictionary or corpus information.
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1 INTRODUCTION

Semantic similarity between concepts is becoming a generic problem for many ap-
plications of computational linguistics and artificial intelligence. The notion of simi-
larity is to identify concepts having common “characteristics”. Humans can judge
relatedness between concepts even if they do not know how to define that related-
ness formally. For example, even a small child can tell that “apple” and “orange”
have more to do with each other than “apple” and “toothpaste”. Formally, the
way in which these pairs of concepts are related to each is called an “is-a” hier-
archy. However, even dissimilar entities may be semantically related in some way.
For example, “apple” and “orange” have some similarity, while “glass” and “wa-
ter,” “tree” and “shade,” or “gym” and “weights” have no formal similarity but
are still related in some way. Semantic similarity is a type of semantic relatedness.
In this paper, we focus on semantic similarity. The similarity measures that make
use of hierarchical structure can be grouped into three categories, including edge
based: Rada’s [7], Wu and Palmer’s [11]; information content based: Resnik’s [6];
edge and information content based: Leacock and Chodorow’s [1], Lin’s [2], Jiang
and Conrath’s [5] distance measure; feature based measure including Banerjee and
Pedersen’s extended gloss overlap (lesk) [8], Patwardhan context vectors [9]. In this
paper, we propose a novel vector based method to compute concept similarity in
a hierarchical taxonomy by cosine similarity.

2 NEED FOR A NEW MEASURE

Edge counting based methods that consider the position of the concepts in the
hierarchy is better than plain path length methods. The simple edge counting based
method is sensitive to the problem of varying link distances [6], which cause nodes
in richly structured parts of ontology to be consistently judged less similar to one
another than in sketchily structured parts of hierarchy. Overall, all these edge based
methods only make use of a few structure information of the hierarchy, so it can not
make fine grained distinctions for any two concepts in similarity computing.

Information content based methods need an additional large text corpus to com-
pute word frequency. In addition, they ignore the structure of the taxonomy, so they
normally generate a coarse result for comparison of concepts. In particular, they do
not differentiate the similarity values of any pairs of concepts in a sub-hierarchy as
long as their lowest common subsumer is the same [5].

The feature based methods rely on the WordNet gloss of the compared words,
but the glosses can be very short and do not provide sufficient vocabulary [8], so
the listed measures expand the glosses of words through hyper/hyponym or other
relations in the hierarchy to include glosses of concepts that are known to be related
to the concept being compared.

Given an appropriate corpus, the edge and information content based hybrid
methods usually have better performance than those of edge based or information
content based approaches, but such a large corpus is usually available only in text
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retrieval applications: the collection of documents that is going to be indexed can
be used to extract keyword frequency information.

However, in many domain specific applications, a large text corpus can not be
expected to be readily available, and in many applications that rely on a relational
database also does not carry the same information as in text collections. In these
cases, the similarities between these concepts have to be extracted from the existing
concept hierarchy only. Thus, in this paper, we focus on the challenge of learning
concept similarities which make use of full structure information inherent and hidden
in a given hierarchy.

3 CONTRIBUTIONS OF THIS PAPER

In this paper, we propose a way of mining similarities of concepts without relying
on any corpus information: if each concept node in a given hierarchy could be
represented as a concept vector, then these vectors could be compared to compute
concept similarity. Essentially, such concept vectors would capture the semantic
information (necessary for similarity computation), otherwise inherent but hidden
within the structure of the hierarchy. Based on this observation, we propose a model
which leverages the semantic relationships between concept nodes (implied by the
structure of the concept hierarchy) to annotate each concept node with a concept
vector. The concept vectors are then used for similarity computations. The main
contributions of our work are as follows:

1. A method for identifying a node’s relevancy nodes in a concept hierarchical tree
is defined.

2. A method for quantifying the density of a concept node relative to another
concept node in the hierarchy is defined.

3. A novel concept vector representation of concept nodes in a concept hierarchical
tree is proposed. Thus a method for computing the similarity of two concepts
through their concept vectors is presented.

4 RELEVANCY NODES BASED CONCEPT VECTOR MODEL

We propose a Relevancy Nodes based Concept Vector Model (RNCVM) in which
we map concept nodes in a hierarchy into a concept vector, and then we propose
a method for similarity computation based on this model. First we define our concept
hierarchical model, which is a presupposition of our method; secondly we elaborate
on the origin and challenge of this model; and then we propose the RNCVM based
similarity computation method; finally, we test our method with experiments and
compare it with related methods.
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4.1 Concept Hierarchical Model Definition

Definition 1 (Concept hierarchical model). Denote H(N,E) to be a rooted tree
where N is the set of concept nodes (corresponding to the concepts) in the tree
and E is the set of edges between the parent/child pairs inH. The semantic coverage
of the child concept nodes is the partition of the semantic coverage of their parent
concept node.

Target node

Ancestor node

Descendant node

Sibling node

Fig. 1. The concept node types illustration

A concept node is a parent of another concept node if it is one step higher in
the hierarchy and closer to the root concept node. Each concept node in a tree has
zero or more child concept nodes, which are one step below their parent concept
node in the hierarchy. Sibling concept nodes share the same parent concept node.
A concept node has at most one parent concept node. Concept nodes that do not
have any children are called leaf concept nodes. The topmost concept node in the
hierarchy is called the root concept node. Being the topmost concept node, the root
concept node will not have parents, and it is the symbol of the universe. All concept
nodes (except root concept node) can be reached from the root concept node by
following edges and concept nodes on the path, and all these concept nodes on the
path composed of the ancestor concept nodes of that concept node. All concept
nodes below a particular concept node are called descendents of that concept node.
Figure 1 above illustrated the concept node types.

The concept hierarchical model is the premise of our method, and our similari-
ty computation is from cosine similarity which is based on the orthogonality of its
components, so the semantic coverage of the concept nodes should be independent.
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So we limit the semantic coverage of the child concept nodes are the partition (in-
stead of covering) of the semantic coverage of their parent concept node. That is,
the concepts subsumed by sibling concept nodes are usually non-overlapping; the
relationship between two siblings is captured only through their ancestor concept
nodes.

4.2 Ground Truths for Concept Hierarchical Model

From human intuition and literature work, the following judgments can be inferred
in the concept hierarchical model.

Density and similarity

With regard to the tree density, it can be observed that the densities in different part
of the hierarchy are different. The greater the density, the closer the distance between
the nodes [5, 10]. For example, the ‘plant’ section of the knowledge base is very
dense, individual node having up to three and four hundreds children, collections
of generally unpronounceable plant species; it can argue that the distance between
nodes in such a section of structure should be very small relative to other less dense
regions. That is in Figure 2, the similarity value of the left part should be less than
the similarity value of the right part of the hierarchy.

Fig. 2. Local density effect

Depth and similarity

The deeper the depth of the nodes located, the higher the similarity of them. The
foundation is that the distance shrinks as one descends the hierarchy, since differ-
entiation is based on finer and finer details [5]. That is in figure 3, the value of
sim (C1, C2) should be less than the value of sim (C3, C4).
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C0

C1 C2

C3 C4

Fig. 3. Depth effect

Path length and similarity

Semantic network includes concepts (usually nouns or noun phrases) that are linked
to one another by named relations, for example, hyper/hyponym relation (‘is-a’ re-
lation) and hol/meronym relation (‘part-of’ relation). If the semantic network is
linked only by taxonomic ‘is-a’ relation, it is generally called ‘is-a’ semantic net-
work or ‘is-a’ taxonomy. In this kind of semantic network, parent concept is more
generalized than child concept, while child ‘is a kind of’ its parent concept.

Rada et al. pointed out that the assessment of similarity in a semantic network
can be in fact thought of as involving just taxonomic ‘is-a’ relation, and the simplest
form of determining the distance between two elemental concept nodes, A and B,
is the shortest path that links A and B, i.e. the minimum number of edges that
separate A and B [7]. However, Jiang and Conrath then pointed out in a more
realistic scenario, the distances between any two adjacent nodes are not necessarily
equal. It is therefore necessary to consider that the edge connecting the two nodes
should be weighted. To determine the edge weight automatically, certain aspects
should be considered in the implementation. Most of these are typically related to
the structural characteristics of a hierarchical network. Some conceivable features
are: local network density (the number of child links that span out from a parent
node), depth of a node in the hierarchy, type of link, and finally, perhaps the most
important of all, the strength of an edge link [5]. From Rada et al. and Jiang and
Conrath, at least we can state that if the shorter path is contained within the longer

path in an ‘is-a’ taxonomy, the concept nodes pair with shorter path between them

has greater concept similarity than that of with longer path between them. That is
in Figure 4, the value of sim (C0, C3) should be less than the value of sim (C0, C1).

4.3 Concept Vector and Semantic Similarity

Concept vectors provide a mechanism through which similarity between concepts
can be measured.
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C0

C1 C2

C3 C4

Fig. 4. Path length effect

Definition 2 (Concept vector). Given a concept hierarchy model, H(N,E), with
n concept nodes, the concept vector of a concept node Ci in this hierarchy has n di-
mensions. The concept node Ci’s concept vector denoted as

−→
Ci = (vi,1, vi,2, . . . , vi,n),

vi,1, vi,2, . . ., vi,n(i = 1, 2, . . . , n) are the dimension values corresponding concepts
C1, C2, . . . , Cn relative to concept Ci.

Given two concept nodes, and their concept vectors,
−→
Ci,

−→
Cj, then their similarity

is computed by help of Equation (1):

sim(Ci, Cj) =

−→
Ci •

−→
Cj

∥

∥

∥

−→
Ci

∥

∥

∥

∥

∥

∥

−→
Cj

∥

∥

∥

. (1)

4.4 Identifying the Concept Vectors for the Concept Nodes

in the Hierarchy

As mentioned above, in the traditional corpus based method, the weight of concepts
(the frequency of the concept) is derived from a large text corpus. We discuss a given
hierarchy without a large corpus for frequency information extraction. Therefore,
we need mechanisms to leverage the weights of concept nodes in the hierarchy.
Essentially, our concept vectors would capture the semantic information inherent
but hidden within the structure of the hierarchy which is the most challenging part
of our work.

Local density as a weighting function

Consider that the document-document similarity computation, documents are rep-
resented as vectors; in the vector each dimension corresponds to a separate term. If
a term occurs in a document, its value in the vector is non-zero. Usually a document
is represented as a vector and the frequencies of a cluster of terms appeared in the
document are used as dimension values. Vector operations can be used to compare
document-document similarity. Here in a concept hierarchy model, the dimension
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values of each concept can be obtained only from the hierarchical structure. From
observation, the density information of each concept node is inherent and hidden in
the hierarchy.

Definition 3 (Local density). The density of a root concept node in a given concept
hierarchy model is equal to 1, the density of other concept nodes equals the number
of sibling concept nodes of that concept node plus 1 (itself).

Definition 3 defines the situation of the uniform concept node local density. If
sibling concept nodes have different density, it can be obtained from a large text
corpus using traditional method as in references [5, 6]. For example, in reference [6],
frequencies of concepts in the WordNet taxonomy were estimated using noun fre-
quencies from the Brown Corpus of American English which is a large (more than
1 000 000 words) collection of text from news articles to science fictions. Each noun
that occurred in the corpus was counted as an occurrence of each taxonomic class
containing it. But, as mentioned above, such text corpuses are usually hard to ob-
tain in many domain specific applications (for example, biology and medicine) and
in applications that rely on relational databases. Even if the large text corpus is
available, these methods are slow due to the huge text statistics work, so we choose
to use uniform density value in Definition 3 to substitute their real distribution val-
ues. Experiment in Section 5.2 shows that our solution has ideal human correlation
values.

C1

d1=1

C4

d4=3

C2

d2=2

C3

d3=2

C5

d5=3

C6

d6=3

Fig. 5. Tree example to show concept density

Figure 5 provides a sample concept hierarchy. It shows how the concepts in the
hierarchy share their local density. The density of root concept node C1 is 1, the
densities of C2 and C3 are 2, and densities of C4, C5, and C6 they are 3.

Consider the vector space model’s approach origins in document-document si-
milarity. The presumption is that, given a certain number of terms, the frequency
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of these terms in a document can be used as vectors to compute query-document
similarity. In the situations we have described, the density information of a given
node’s relevancy nodes were used as vectors to compute internode similarity.

Relevancy nodes based concept vector

In the document-document similarity computation, a cluster of terms appeared in
the document are used as dimension values. Given a concept node in the hierarchy,
its ancestor concept nodes subsume its attributes, and its descendent concept nodes
inherit it; so except the concept node itself, its ancestor and descendent concept
nodes are relevancy to that concept node, which we used as “terms” in our structure.

Definition 4 (Relevancy Nodes). Given a concept node in the hierarchy, the con-
cept node itself, its ancestor and descendent concept nodes compose its relevancy
nodes.

Consider the vector space model’s approach origins in document-document si-
milarity. The presumption is that, given a certain number of terms, the frequency
of these terms in a document was used as vectors to compute the query-document
similarity. In our situations, the density information of a node’s all relevancy nodes
was used as vectors to compute internodes similarity.

Definition 5 (Relevancy nodes based concept vectors for HCT). Given an HCT

with n concept nodes, the concept vector of Ci is denoted as
−→
Ci = (vi,1, vi,2, . . . , vi,n)

and vi,j(i = 1, 2, . . . , n; j = 1, 2, . . . , n) is the dimension value corresponding to all
concept nodes relative to the particular concept node Ci, defined as follows using
Equation (2):

vi,j =











dj if Cj is the relevancy node of concept Ci

dj if i = j

0 otherwise
(2)

dj is the local density of concept node Cj .

For example, for concept node C2 in Figure 5, the concept node C2 itself, its
ancestor concept node C1, and its descendent concept nodes C4, C5, and C6 compose
C2’s relevancy nodes. Their local densities d2, d1, d4, d5, and d6 are used as C2’s
dimension values. C3 is not a relevancy node of C2, so its dimension value for
concept vector

−→
C2 is 0. If we were to list all concept nodes in sequential order of

concept vectors according to the tree’s breadth-first traversal sequence, we would
have C2’s concept vector

−→
C2 = (1, 2, 0, 3, 3, 3). Similarly, C1’s concept vector is

−→
C1 = (1, 2, 2, 3, 3, 3). C3’s concept vector is

−→
C3 = (1, 0, 3, 0, 0, 0), and C4’s concept

vector is
−→
C4 = (1, 2, 0, 3, 0, 0).
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4.5 RNCVM Example

For example, we have hierarchy structure in Figure 6. The concept vectors for each
concept node in the hierarchy are listed as follows.

C1

C4
C5 C6 C7 C8 C9

C10 C11

C2
C3

Fig. 6. Hierarchy taxonomy structure

We list all concept nodes’ dimension values sequential order according to the
structure’s breadth-first traversal sequence as follows:

−→
Ci = (vi,1, vi,2, vi,3, vi,4, vi,5, vi,6, vi,7, vi,8, vi,9, vi,10, vi,11), i = 1, 2, . . . , 11.

Particularly,

−→
C1 = (d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11)
−→
C2 = (d1, d2, 0, d4, d5, 0, 0, 0, 0, d10, d11)
−→
C3 = (d1, 0, d3, 0, 0, d6, d7, d8, d9, 0, 0)
−→
C4 = (d1, d2, 0, d4, 0, 0, 0, 0, 0, d10, d11)
−→
C5 = (d1, d2, 0, 0, d5, 0, 0, 0, 0, 0, 0)
−→
C6 = (d1, 0, d3, 0, 0, d6, 0, 0, 0, 0, 0)
−→
C7 = (d1, 0, d3, 0, 0, 0, d7, 0, 0, 0, 0)
−→
C8 = (d1, 0, d3, 0, 0, 0, 0, d8, 0, 0, 0)
−→
C9 = (d1, 0, d3, 0, 0, 0, 0, 0, d9, 0, 0)
−→
C10 = (d1, d2, 0, d4, 0, 0, 0, 0, 0, d10, 0)
−→
C11 = (d1, d2, 0, d4, 0, 0, 0, 0, 0, 0, d11)

di is local density of concept node Ci(i = 1, 2, . . .11).
Substitute the symbol with concrete values:

−→
C1 = (1, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2)
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−→
C2 = (1, 2, 0, 2, 2, 0, 0, 0, 0, 2, 2)
−→
C3 = (1, 0, 2, 0, 0, 4, 4, 4, 4, 0, 0)
−→
C4 = (1, 2, 0, 2, 0, 0, 0, 0, 0, 2, 2)
−→
C5 = (1, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0)
−→
C6 = (1, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0)
−→
C7 = (1, 0, 2, 0, 0, 0, 4, 0, 0, 0, 0)
−→
C8 = (1, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0)
−→
C9 = (1, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0)
−→
C10 = (1, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0)
−→
C11 = (1, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2)

The similarity between any pair of words can be computed; for example, if we
compute similarity values between

−→
C10,

−→
C11, their similarity values can be computed

as follows:

sim(C10, C11) =

−→
C10 •

−→
C11

∥

∥

∥

−→
C10

∥

∥

∥

∥

∥

∥

−→
C11

∥

∥

∥

≈ 0.69.

4.6 Adjustments on RNCVM with Big Structure

Local density problem

According to the statement in Section 4.2, concerning density and similarity, the
denser the structure of the concept nodes located, and the higher their similarity,
but our measurement does not give perfect results. We explain it in the following.

In Figure 7, we derive our local density information from how many sibling
concept nodes a concept node has; if a concept node has 1 sibling concept node, it
has density 2, and if a concept node has 3 sibling concept nodes, it has density 4,
while in the sparse part (left oval part) and dense part (right oval part) of Figure 7,
the values of this measure for C1, C2, C3, C4 do not reflect our expectations that the
tree with relatively denser representation of the concepts scored higher than other
ones with sparser representation in situation, while the values of C7, C8, C9, C10 of
this measure do reflect the expectations.

In Figure 7, with the increase of the local density, if we do not expect the simi-
larity value of C3, C4, C5, C6 decrease very fast or if we do not expect the similarity
value of C9, C10 increase very fast, we have a measure to balance that.

Our solution to balance this problem is shown in Figure 8. In our method, each
additional sibling concept node of concept node C1 contributes. Our balance measure
is to let each additional sibling concept node contribute less; let β(0 < β < 1) be the
adjustment factor, we multiply β, β2, β3, . . . , βn−1 to each additional sibling concept
nodes. So local density of concept nodes C1, C2, . . . , Cn is (1 + β + β2 + . . .+ βn−1)
instead of n, (1+β+β2+. . .+βn−1) decreased compared to n, and the decreased local
density will generate increased similarity values between any two of these concept
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C1 C2 C3 C4
C6C5

C7
C8 C9 C10

Fig. 7. Illustrating the local density problem

nodes. With the adjustment of C1, C2, . . . , Cn, the similarity value of any word
pair of C1, C2, . . . , Cn will increase and the similarity value of word pair from the
descendent nodes of C1, C2, . . . , Cn will decrease.

C3C2
C1 CnC4

(1) (ß) (ß2) (ß3) (ßn-1)

d1=d2= =dn=(1+ß+ß
2
+ +ß

n-1
)

...

...

Fig. 8. The balanced measure for local density problem

Multiple descendent concept nodes problem

Our concept vector approach is a consequence of its origins in document-document
similarity. Different feature terms may have different weights according to its im-
portance for ranking the target text. There is similar problem for our internodes
similarity computing. Different relevancy nodes may have different effect on simi-
larity computing. Next we will elaborate on it.
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Consider that we form our concept vector from a concept node’s relevancy nodes.
Observe the following structure in Figure 9; concept nodes C3, C4 have the same
ancestor concept nodes in left and right trees, but left C4 has none or few descendent
concept nodes, while right C4 has multiple descendent concept nodes, sim (C3, C4) of
right tree is dramatically decreased compared to sim (C3, C4) of left tree when C4’s
descendents increase. We know that C3, C4 inherit from the same ancestors C1, C2,
they should have similar concept similarity in left and right. The only difference
between the left and right parts of Figure 9 is that C4 of the right part has multiple
descendents.

The descendent concept nodes do have effect on similarity computation, but they
should not have effect as much as their ancestor concept nodes. The main problem
brought here is that, if the subtree of one concept node is richly represented where
the subtree of the other concept node is sketchily represented, similarity comparison
within the two parts will be incommensurable. According to our intuition, we al-
lowed each additional layer of descendent concept nodes to contribute less, let it be
dLi

∗ α, dLi
is the local density of the ith descendent layer and (DLi)(i = 1, 2 . . . n).

α is the adjustment factor. This has the effect of trying to raise the cosine similarity
between C3 and C4, but experiments have shown that with the increase of layer(i) –
the linear decrease of α is not strong enough to overcome the increase of layer (i).
Intuitively, the reason for this behavior is that the upper layer overlaps the lower
layer, as i increases the magnitude of the “overlap” prorogated; so, as shown in
Figure 10, we established α(0 < α < 1) as our multiple-descendent-problem adjust-
ment factor and multiplied α, α2, α3 by each additional descendent layer. If C4 has
n layers of descendent concept nodes, the local densities of each layer of C4’s descen-
dent nodes were adjusted as values dL1

∗ α, dL2
∗ α2, dL3

∗ α3 . . . dLn
∗ αn illustrated

in Figure 10. The decreased local densities of dL1
∗ α, dL2

∗ α2, dL3
∗ α3 . . . dLn

∗ αn

brought increased value of sim (C3, C4). We also made an experiment to let each
layer of C4’s descendent nodes decline faster than dL1

, dL2
∗α, dL3

∗α2 . . . dLn
∗αn−1,

but empirical data show that they decline too fast, so that C4’s descendent nodes
have little effect on the computation of similarity.

5 COMPARISON WITH RELATED WORK

Sufficient experiments are implemented to test RNCVM. First all the related me-
thods and RNCVM are tested and analyzed with computer sciences department
taxonomy, and then RNCVM is applied onWordNet and compared with all WordNet
implemented methods.

5.1 Experiment 1: Computing Concept Similarity

for Computer Science Department Taxonomy

Figure 11 is computer science department taxonomy, the edges are ‘is-a’ relations;
in the real scenario, an assistant professor may take some Ph.D. courses, then there
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C1

C3
C4

C2

n layers

C1

C2

C3 C4

Fig. 9. The problem with multiple descendent concept nodes

should have a non ‘is-a’ edge between ‘Assistant Professor’ and ‘Ph. D. Courses’,
but in this experiment we compute word similarity which involves only ‘is-a’ kind
of relations according to Rada et al. [7]. So we omitted edges beside ‘is-a’ relations.

The only kind of methods which can be applied to the structure in the related
work are the edge based (Rada et al.’s and Wu and Palmer’s) methods.

The following Table 1 lists the comparison result.

Comparison A B C

Rada et al. no no yes

Wu and Palmer no yes yes

RNCVM yes
(part)

yes yes

Resnik

Jiang and Conrath CANNOT BE APPLIED
Lin WITHOUT A TEXT CORPUS
Leacock and Chodorow

Banerjee and Pedersen CANNOT BE APPLIED
Patwardhan WITHOUT DICTIONARY GLOSSES

Table 1. Comparison result
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Fig. 10. The balanced measure for multiple descendent concept nodes problem

CS Dept

UnderGrad

Courses

Courses People

Faculty staff

Professor
Assistant

Professor
Associate

Professor

PhD 

courses
Grad

Courses

Fig. 11. Computer sciences department taxonomy
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Note:

A: The denser the structure, the greater the similarity.

B: The deeper the depth, the greater the similarity.

C: The shorter the path, the greater the similarity.

Details are described in Section 4.2.

“yes” in the table symbolizes the measures computed by that approach coinciding
with the ground truth,

“no” in the table symbolizes the measures computed by that approach contradict-
ing with the ground truth.

This set of experiments shows that most of the existing method can not apply to
the computer science department taxonomy in Figure 11, compared to Rada et al.
and Wu and Palmer’s methods, our method can give best expression to tree structure
information.

5.2 Experiment 2: Testing RNCVM on WordNet

In order to fully evaluate our method, all WordNet implemented methods includ-
ing Rada et al.’s [7], Leacock and Chodorow [1], Jiang and Conrath [5], Resnik [6],
Lin [2], Hirst and St-Onge [3], Wu and Palmer [11], Banerjee and Pedersen’s ex-
tended gloss overlap (lesk) [8], Patwardhan context vectors [9] are conducted to
compare with our work. WordNet version 2.0 [13] was used. WordNet is organized
by semantic relations, since a semantic relation is a relation between meanings, and
meanings can be represented by synsets, it is natural to think of semantic relations as
pointers between synsets. Given one word pair in WordNet, each word has multiple
meanings; we choose the max similarity value of all meaning pairs as the similarity
value of the word pair.

There are kinds of relations between WordNet nouns, hyper/hyponym (‘is-a’
link) and hol/meronym (‘part-of’ relation), and syn/antonym relations, etc. Hy-
per/hyponym relation is a main relation in WordNet, and it accounts for nearly
80 percent of all link types. We focus on the noun synsets and the hyper/hyponym
relations.

A WordNet 2.0 noun has 25 unique beginners, which is abstracted into 10 hie-
rarchies further. If the two words are in one synset, they have the same concept
vectors, so their similarity (relatedness) value is 1.

Commonly used ground truth data to evaluate methods for computing the se-
mantic similarity between words comes from an experiment carried by Miller and
Charles [4]. The authors did a user study where assessors were given 30 pairs of
words and asked to rate these words for similarity in meaning on a scale from 0
(dissimilar) to 4 (highly similar).

Table 2 is the similarity result with different β, α and their correlation to human’s
judgments. Experiments show that the RNCVM gets the best correlation value 0.906
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with human judgments when β = 1, α = 0.5. From β = 1, we learn that the local
density problem does not need to adjust for WordNet similarity computation. This
experiment result of β, α value can be generalized to solve this kind of problem with
our method.

Correlation β = 1 β = 0.75 β = 0.5 β = 0.25 β = 0

α = 1 0.876 0.722 0.721 0.717 0.71

α = 0.75 0.887 0.735 0.733 0.728 0.721

α = 0.5 0.906 0.745 0.743 0.739 0.733

α = 0.25 0.879 0.738 0.756 0.714 0.759

α = 0 0.863 0.765 0.767 0.769 0.771

Table 2. Corellation with different β, α

Table 3 lists the Miller’s human judgements of 30 pairs of concepts similarity
values and our similarity values with β = 1, α = 0.5.

In order to make fair comparisons, an independent software package that would
compute similarity values using previously established strategies while allowing the
use of WordNet 2.0 was used. One freely available package is that of Siddharth
Patwardhan and Ted Pederson [12]. Table 4 is Pearson’s correlation coefficient from
different approaches against the user studies.

This set of experiments shows that RNCVM performs best.

6 CONCLUSION

In this paper, a vector representation for concept nodes in a hierarchical taxonomy
is proposed. Each concept node in the hierarchy has its density information, and
each concept node has its ancestor and descendent nodes composing its relevancy
nodes. A concept is then represented as a concept vector according to its relevancy
nodes’ density, and the similarity is computed with cosine similarity measure. The
concept vector model contains full taxonomy structure information inherent and
hidden in the tree. The method is adjustable in term of multiple sibling concept
nodes and descendent concept nodes. Two sets of experiments were conducted, one
is to apply the proposed method and related methods to a given domain taxonomy
structure without additional dictionary and corpus information, and another expe-
riment is to apply the proposed method to compute similarity for WordNet noun
pairs. Experiment shows that our method performs best in the given structure, and
provides improvement in the WordNet experiment result when compared with re-
lated methods. All of these experiments provide a strong validation for the proposed
approach.
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Word pair Human RNCVM
judgments (β = 1, α = 0.5)

car-automobile 3.92 1

gem-jewel 3.84 1

journal-voyage 3.84 0.89638

boy-lad 3.76 0.99873

coast-shore 3.7 0.99288

asylum-madhouse 3.61 0.99998

magician-wizard 3.5 1

midday-noon 3.42 1

furnace-stove 3.11 0.38562

food-fruit 3.08 0.56182

bird-cock 3.05 0.67782

bird-crane 2.97 0.66437

tool-implement 2.95 0.69087

brother-monk 2.82 0.99969

crane-implement 1.68 0.01411

lad-brother 1.66 0.19865

journey-car 1.16 0.0002

monk-oracle 1.1 0.01405

cemetery-woodland 0.95 0.01072

food-rooster 0.89 0.00972

coast-hill 0.87 0.68446

forest-graveyard 0.84 0.01071

shore-woodland 0.63 0.08009

monk-slave 0.55 0.01408

coast-forest 0.42 0.07916

lad-wizard 0.42 0.01412

chord-smile 0.13 0.0588

glass-magician 0.11 0.00949

noon-string 0.08 0.00023

rooster-voyage 0.08 0.00099

Table 3. Human judgements’ result and ours
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Similarity measure Correlation

Jiang and Conrath 0.695

Hirst St. Onge 0.689

Leacoke and Chodorow 0.821

Resnik 0.775

Wu and Palmer 0.803

Lin 0.823

Banerjee and Pedersen 0.685

Patwardhan and Pedersen 0.778

RNCVM 0.906

Table 4. Pearson’s correlation coefficient from different approaches against the user studies
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