
Computing and Informatics, Vol. 30, 2010, 943–963

PIT: A FRAMEWORK FOR EFFECTIVELY
COMPOSING HIGH-LEVEL LOOP
TRANSFORMATIONS

Pingjing Lu, Bao Li, Yonggang Che, Zhenghua Wang

School of Computer

National University of Defense Technology

Changsha 410073, China

e-mail: pingjinglu@gmail.com

Communicated by Ján Kollár

Abstract. The increasing complexity of modern architectures and memory models
challenges the design of optimizing compilers. It is mandatory to perform several

optimizing transformations of the original program to exploit the machine to its
best, especially for scientific, computational-intensive codes. Aiming at investigat-
ing the best transformation sequence and the best transformation parameters simul-
taneously, this paper presents a novel loop transformation framework, which inte-
grates the advantages of polyhedral model and model-guided iterative compilation
to create a powerful framework that is capable of fully automated non-parametric
transformations and model-guided parametric transformations as well as automatic
parameter search. The framework employs polyhedral model to facilitate the search
of non-parametric code transformation composition, and designs a transformation
model based on hardware performance counters to guide when, where and in what
order to apply transformations to get the most benefit, finally uses Nelder-Mead
simplex algorithm to find the optimal parameters. The framework is demonstrated
on three typical computational kernels for code transformations to achieve perfor-
mance that greatly exceeds the native compiler, and is significantly better than
state-of-the-art polyhedral model based loop transformations and iterative compi-
lation, generating efficient code on complex loop nests.

Keywords: Program optimization, loop transformation, polyhedral model, itera-
tive compilation

Mathematics Subject Classification 2000: 68N20, 68T05, 62H10

944 P. Lu, B. Li, Y. Che, Z. Wang

1 INTRODUCTION

Although loop transformations have been applied by compilers for many years, cer-
tain problems with the application of transformations have yet to be addressed,
including when, where and in what order to apply transformations to get the most
benefit, as well as the selection of optimal transformation parameters.

Existing compilers are ill-equipped to address these challenges, because of im-
proper program representations and inappropriate conditioning of the search space
structure. They are based on static analysis and a hardwired compilation strategy;
therefore they only uncover a fraction of the peak performance on typical bench-
marks. Iterative compilation [1, 2, 3, 4] is a maturing framework to address these
limitations, but so far, it was not successfully applied because present day iterative
compilation approaches select the optimal transformation parameters at a prede-
fined transformation sequence, and because of the high cost due to multiple, costly
“runs” and the combinatorics of the optimization space. The ability to perform
numerous compositions of program transformations is key to the extension of iter-
ative optimizations to finding the appropriate program transformations instead of
just the appropriate program transformation parameters. The polyhedral model is
a well studied, powerful mathematical framework to represent loop nests and their
transformations [5, 6, 7, 8, 9], facilitating compilers to compose complex loop trans-
formations in a mathematically rigorous way to insure code correctness. However,
existing polyhedral frameworks are often too limited in supporting a wide array
of loop transformations required to achieve high performance on today’s computer
architecture, and they do not allow exploring jointly the best sequence of transfor-
mations and the best value of transformation parameters. Usually, the community
tries to find the “best” parameter combination when the transformation sequence is
fixed [10]. Clearly, there is a need for the infrastructure that can apply long com-
positions of transformations and find the best transformation parameters in a rich,
structured search space.

This paper presents a loop transformation framework PIT (combining Polyhe-
dral model and ITerative compilation for loop transformations, PIT) to simulta-
neously explore the best sequence of transformations and the best value of trans-
formation parameters. It integrates polyhedral model and model-guided iterative
compilation to create a powerful framework that is capable of fully automated non-
parametric code transformations and model-guided parametric transformations as
well as automatic parameter search. Experimental results show that compared with
present day loop transformation frameworks, PIT can optimize applications more
efficiently.

2 FORMAL DESCRIPTION

Let P be the source program, τ an arbitrary performance evaluation function
(not limited to program execution time, it can be cache miss rate etc.), Ψ a fi-
nite set of loop transformations, including l parametric transformation modules

PIT for Composing High-Level Loop Transformations 945

ϕi ∈ Ψ(i = 1, 2, . . . , l). Denote ◦ the transformation joint symbol, then apply-
ing a finite sequence ϕ1, . . . , ϕn of transformation modules to P can be repre-
sented as φ = ϕn ◦ ϕn−1 ◦ . . . ◦ ϕ1, and all the sequences form optimization se-
quence space Φ. Parametric module ϕi contains mi transformation parameters:
pik ∈ Z(k = 1, 2, . . . , mi), and its upper bound upik ∈ Z and lower bound lowik ∈ Z

can be achieved based on domain-specific information. Denote v =
l
∑

i=1
mi, then

the optimization parameters (p11, . . . , p1m1
, . . . , pl1, . . . , plml

) of all parametric trans-

formation modules constitute optimization parameter vector
−→
K ∈ Zv. Applying

transformation sequence φ to P and adopting optimization parameter vector
−→
K re-

sults in the program P ′ = φ(P,
−→
K), and the corresponding test result is τ(P, φ,

−→
K).

Then the optimal loop transformations problem converts to a combinational opti-
mization problem: having a program P and a set of loop transformation modules
Ψ, how to select the optimal transformation sequence φ∗ and the optimal parameter
vector

−→
K , such that the performance of the final generated program P ∗ is “optimal”,

i.e.
(φ∗,

−→
K

∗

) = argmin τ (P, φ,
−→
K)

subject to

{

φ ∈ Φ
−→
K ∈ Zv

(1)

where argmin means that (φ∗,
−→
K

∗

) are the optimal values of parameters φ and
−→
K

that minimize the object function τ(P, φ,
−→
K), and subject to introduces the re-

quirements that φ and
−→
K have to satisfy.

3 POLYHEDRAL MODEL

for (i = 0; i <= M; i++) {

for (j = 0; j <= M; j++) {

S1: C[i][j] = 0;

for (k = 0; k <= M; k++) {

S2: C[i][j]=C[i][j]+A[i][k]* B[k][j];}}}

Fig. 1. Code for matrix multiplication program

The polyhedral model is a unified mathematical framework to represent loop
nests and their transformations. It represents the code through the iteration domain,
affine schedules, and array access functions [11, 6, 7]. We will briefly introduce
polyhedral model through matrix multiplication program.

3.1 Iteration Domain

Iteration domain is a geometrical abstraction of loop bounds and strides shaping
loop structures. The loop control statements surrounding statement S form itera-

946 P. Lu, B. Li, Y. Che, Z. Wang

tion domain DS . It can be defined through a set of affine inequalities, which form
the parametric polyhedra. Each point in the polyhedra stands for one execution
instance. Iteration domain depends on surrounding loop counters and global pa-
rameters (e.g. loop bounds). For example, in Figue 1, surrounding loop counters of
statement S2 is i, j and k, and the scope of loop is bounded by (M,M,M); there-
fore, the iteration domain of S2 can be represented as Equation (2), where (i, j, k)
is called an iteration vector, and (M) is called a global parameter.

DS2 =

1 0 0 0 0
−1 0 0 1 0
0 1 0 0 0
0 −1 0 1 0
0 0 1 0 0
0 0 −1 1 0

i

j

k

M

1

≥
−→
0 (2)

where
−→
0 is a vector, and in Formulae (2)

−→
0 = (0, 0, 0, 0, 0)t.

3.2 Array Access Functions

Array access functions capture the data locations on which a statement operates. In
polyhedral model, memory accesses are performed through array references (a vari-
able being a particular case of an array). We restrict ourselves to subscripts of the
form of affine expressions which may depend on surrounding loop counters (e.g., i, j
and k for statement S2) and global parameters. Each array access function is linked
to an array that represents a read or a write access.

LS and RS are sets of polyhedral representations of array references, describing
array references written by S (left-hand side) or read by S (right-hand side), re-
spectively; it is a set of pairs (A, f) where A is an array variable and f is the access
function mapping iterations in DS to locations in A. For example, in Figure 1,
S2 reads A[i][k], B[k][j] and C[i][j], and writes the result to C[i][j], so the array
access functions of S2 are:

RS2 =

{(

A,

[

10000
00100

])

,

(

B,

[

00100
01000

])

,

(

C,

[

10000
01000

])}

(3)

LS2 =

{(

C,

[

10000
01000

])}

. (4)

3.3 Affine Scheduling

Iteration domains define exactly the set of dynamic instances for each statement.
However, this algebraic structure does not describe the order in which each instance
has to be executed with respect to other instances. Of course, we do not want to
rely on the inductive semantics of the sequence and loop iteration for this purpose,
as it would break the algebraic reasoning about loop nests. A convenient way to

PIT for Composing High-Level Loop Transformations 947

express the execution order is to give each instance an execution date [7, 8]. It is
obviously impractical to define all of them one by one since the number of instances
may be either very large or unknown at compile time. An appropriate solution is to
define, for each statement, a scheduling function that specifies the execution date
for each instance of a corresponding statement. This work deals with multidimen-
sional schedules: multidimensional dates can be seen as clocks: the first dimension
corresponds to days (most significant), the next one is hours (less significant), the
third to minutes, and so on.

θS is the affine schedule of S; it is another geometrical abstraction of the ordering
of iterations and statements which maps iterations in DS to multidimensional time
stamps, i.e., logical execution dates. Multidimensional time stamps are compared
through the lexicographic ordering over vectors, denoted by ≪: iteration

−→
i of S is

executed before iteration
−→
i
′

of S ′ if and only if θS(
−→
i) ≪ θS

′

(
−→
i
′

). In Figure 1 the
affine schedules of S1 and S2 are θS1(

−→
i) = (0, i, 0, j, 0), θS2(

−→
i) = (0, i, 0, j, 1, k, 0).

θS1(
−→
i) ≪ θS2(

−→
i), therefore, S1 executes before S2.

Assume the loop nest includes d statements, the schedule dimension is s, the
iteration vector is −→x , the global parameter is −→n ; then each program version can be
represented as one point in the optimization space through schedule matrix Θ [7]:

Θ−→x =

−→
i
1

1 . . .
−→
i

1

d
−→p 1

1 . . .
−→p 1

dc
1
1 . . . c

1
d

...
...

−→
i
s

1 . . .
−→
i

s

d
−→p s

1 . . .
−→p s

dc
s
1 . . . c

s
d

−→x 1
...

−→x d
−→n 1
...

−→n d

1
...
1

(5)

We can see that in polyhedral model each loop transformation corresponds to
a set of matrix operations. An arbitrary complex loop transformation sequence
can be applied within one step. Searching the compositions of transformations is
equivalent to searching the matrix parameters; therefore, polyhedral model avoids
the typical code complexity explosion of long compositions of program transforma-
tions [7, 8], facilitating the composition of complex loop transformations in a math-
ematically rigorous way.

4 PIT: COMBINING POLYHEDRAL MODEL AND ITERATIVE

COMPILATION FOR LOOP TRANSFORMATIONS

This paper presents a novel loop transformation framework PIT to search the best
transformation sequence and best transformation parameters. The framework in-
cludes three phases as illustrated in Figure 2, which are described in Section 4.1,

948 P. Lu, B. Li, Y. Che, Z. Wang

Source

Code

Source

Code

Phase Performance model to guide parametric loop transformations

Phase Non-parametric loop transformations based on polyhedral model

Hardware performance

monitoring tools

Performance-critical

metrics computation

Dependence

test & analysis

Space

exploration
Polyhedral

code generation

C compliable

code

Polyhedral

representation

Compilation Run

Phase Transformation parameter search based on Nelder-Mead simplex algorithm

Feedback from hardware counters

A search space encompassing legal

and different program versions

Parameterized

code

Best code for

non-parametric

transformations

Parameters

constraints model

Transformation

model POTraM
Parametric

transformations

Final code

Run

Parameter file

Hardware performance

monitoring support

Feedback

Search

engine

Fig. 2. Overview of three-phase loop transformation optimization framework PIT

Section 4.2, and Section 4.3, respectively. Phase 1 utilizes polyhedral model to find
the optimal sequence of non-parametric transformations. We introduce LeTSeE (the
LEgal Transformation SpacE Explorator) [7] to find the optimal sequence of non-
parametric transformations in the first phase as described in Section 4.1. Phase 2
first utilizes hardware performance counters to collect the accurate information on
the program behavior, and achieve a transformation model POTraM (Program Op-
timization Transformation Model based on Hardware Performance Counters, PO-
TraM) [12] as described in Section 4.2. The program transformation model POTraM
in Section 4.2.1 is inherited and extended from my previous work [12]. Section 4.2.2
is initially presented and added to our optimization framework. Phase 3 employs
Nelder-Mead simplex method to select the optimal transformation parameters [13],
and finally achieves the best transformation parameters in the best transformation
sequence, which is inherited from my previous work [13]. The combination of these
three phases enables PIT to simultaneously explore the best sequence of transforma-
tions and the best value of transformations parameters, creating a powerful frame-
work that is capable of fully automated nonparametric code transformations and
model-guided parametric transformations as well as automatic parameter search.

4.1 Phase 1: Non-Parametric Loop Transformations

Polyhedral model can analyze the dependence exactly, facilitating the legality check
of loop transformations; therefore, it is utilized to find the optimal sequence of
non-parametric loop transformations in the first phase of PIT. This paper makes

PIT for Composing High-Level Loop Transformations 949

use of polyhedral transformation tools LeTSeE to apply iterative compilation based
on polyhedral model and to find the best non-parametric transformation sequence.
LeTSeE first builds a search space encompassing legal and distinct program versions,
thanks to its algebraic representation, and then traverses the search space, where
each point represents a different program version. For each tested point in the search
space, it

1. generates the kernel C code with CLooG [9],

2. then integrates this kernel in the original benchmark along with instrumentation
to measure running time,

3. compiles this code with the native compiler and appropriate options,

4. finally runs the program on the target architecture and gathers performance
results, using the information collected to drive the exploration according to
user objectives.

The transformations implemented in LeTSeE include statement reordering, loop re-
versal, loop skewing, loop interchange, loop peeling, index-set splitting, loop pipelin-
ing/shifting, loop fusion and loop distribution. LeTSeE will generate the best non-
parametric transformation sequence.

4.2 Phase 2: Models for Parametric Transformations

Our models include program transformation model POTraM and constraints on
transformation parameters.

4.2.1 Program Transformation Model POTraM

Name Meaning

PAPI L1 DCA L1 data cache accesses

PAPI L1 DCM L1 data cache misses

PAPI L1 TCM L1 total cache misses

PAPI L2 TCA L2 total cache accesses

PAPI L2 TCM L2 total cache misses

PAPI FP INS Floating-point instructions

Table 1. Performance counters used

Performance counters are a special set of registers that allow for measuring
performance counter events with no disruption to the running program. The infor-
mation obtained from them is a compact summary of a program’s dynamic beha-
vior. Performance counters have been extensively used for performance analysis in
explaining program behavior. This paper uses PAPI (Performance Application Pro-
gramming Interface) [14] to access performance counters. The performance counters
used in this study are shown in Table 1. Next we will illustrate how POTraM is
achieved based on the characterization of important properties of programs.

950 P. Lu, B. Li, Y. Che, Z. Wang

1. L1 data cache miss rate:

MSRL1D = PAPI L1 DCM/PAPI L1 DCA. (6)

2. Program Balance and Machine Balance. Steve Carr [15] utilized Loop Balance
(BL) and Machine Balance (BM) of floating-point applications to guide pro-
gram optimization. They defined if BL > BM , then the loop needs data at
a higher rate than the machine provides, and idle computational cycles exist.
Such a loop is called memory bound and its performance can be improved by
lowering BL through memory optimization. BL and BM are designed for spe-
cific memory hierarchy. Because our test platform has two cache levels, there
exist 3 levels’ balance: CPU to L1 data cache (i.e. Hierarchy 1), L1 data cache
to L2 data cache (i.e. Hierarchy 2), and L2 data cache to main memory (i.e.
Hierarchy 3). Let w1,w2,w3 be L1 data cache bus width, L1 data cache line
size and L2 data cache line size, respectively; then BL can be computed as
follows:

BL1 = (PAPI L1 DCA ∗w1)/PAPI FP INS (7)

BL2 = (PAPI L1 DCM ∗w2)/PAPI FP INS (8)

BL3 = (PAPI L2 DCM ∗w3)/PAPI FP INS (9)

3. Performance influence ratio. In modern processors, the memory and instruc-
tion pipeline utilization of programs influences performance most. Mo et al. [16]
present the concepts of Influence Ratio for Memory Reference (ηm) and Influ-
ence Ratio for Pipeline (ηpl) to quantify the impact of memory and pipeline
operations. ηm quantifies the impact of cache miss to performance. The lower
the cache miss rate, the less ηm will be. ηpl quantifies the impact of instruction
level parallelization to performance. The higher reuse ratio of the operators
in the register, the less ηpl will be. ηfp describes the utilization ratio of peak
performance on single processors, which depends on ηm and ηpl. Let C1 and C2

be the cost of L1 cache and L2 cache miss (in cycles), F the main frequency
(in Hz), G peak performance (in Mflops), T program running time (in seconds),
and Tm the total cost of cache miss (in seconds); then ηm, ηpl and ηfp can be
achieved as follows:

Tm = (PAPI L1 TCM ∗C1 + PAPI L2 TCM ∗C2)/F (10)

ηm = Tm/T (11)

ηpl = 1− PAPI FP INS/(G ∗(T − Tm)) (12)

ηfp = PAPI FP INS/(G ∗T). (13)

4. POTraM. Based on these characterization data, transformation model POTraM,
as described in Figure 3, is proposed to provide source-code level feedback about
when, where and in what order to apply transformations to get the most benefit,

PIT for Composing High-Level Loop Transformations 951

ExtractTransformationModel (src)

Input: src, which is the source of program to be tuned

Output: X, which is a vector of transformation parameters, and src, which is the transformed code of source program

1. Initialization.

N the number of dimensions of the loop, assuming the loops are l1, l2,…, lN;

X ;

Run, collect and compute hardware performance information of src, get MSRL1D, BMi, BPi (i=1,2,3), m, pl and fp;

2. Program optimization based on Cache miss rate and program balance

if (MSRL1D>5%)||(1, 2,3()i i! " (BPi>BMi)) {

src ApplyLoopExtrange (src);}

 3. Program optimization based on performance influence ratio

if (m > 30%) {

src ApplyLoopTiling (src);

src ApplyArrayPadding (src);

X (t1, t2,…, tN, p1, p2,…, pN), where t1, t2,…, tN and p1, p2,…, pN are factors of loop tiling and array padding respectively;}

else if (m > 20%) {

src ApplyLoopTiling (src);

X (t1, t2,…, tN) ;}

if (pl > 80%) {

src ApplyInnermostLoopUnrolling (src);

X X (u), where denotes the symbol of function combination (concatenation), and u is inner most loop unrolling factor;}

 4. Terminate.

 src* src.

Fig. 3. Algorithm for POTraM

therefore guides the restructuring of program loops to achieve high performance
on specific target architectures. To optimize a program src, first run the pro-
gram and collect the aforementioned hardware performance information using
hardware performance counters. Then decide the type of transformation to op-
timize src based on these characterization data. If L1 data cache miss rate is
greater than 5%, or the Loop Balance is greater than Machine Balance, such
a loop is called memory bound and its performance can be improved by loop
exchange transformation. If Influence Ratio for Memory Reference is greater
than 30%, which indicates that the memory performance is quite poor and
there may be cache conflict misses, then src needs array optimization and data
layout transformation, so loop tiling and array padding are applied to src; if
Influence Ratio for Memory Reference is greater than 20% but less than 30%,
then only apply loop tiling to src. Further, if Influence Ratio for Pipeline is
greater than 80%, it indicates that the impact of instruction level paralleliza-
tion to performance is great, and the operators in the register are not fully
reused; then apply loop unrolling to improve the reuse ratio of the operators

952 P. Lu, B. Li, Y. Che, Z. Wang

in the register. Up to now, the transformation set is achieved, and in the next
phase apply the search algorithm to find the optimal value for the transformation
set.

4.2.2 Optimization Parameter Constraints Model

Based on empirical knowledge about architecture and programs, a set of constraint
information about transformation parameters can be achieved. The parametric
transformations considered in this paper are loop tiling, loop unrolling and array
padding, and the parameter constraints are given in the following.

Loop unrolling factors are mainly restricted by registers. Too small unrolling
factors cannot fully utilize registers, but too large ones may generate many spills
to memory and decrease performance. Denote U1, U2, . . . , Un loop unrolling factors,
n the depth of loop nest, NR the number of registers, and ai the register number
occupied by the data in loop Li, which is a program-specific constant; then the
constraints on unrolling factors can be summarized as follows:

{

a1U1 ∗ a2U2 ∗ . . . ∗ anUn ≤ NR

1 ≤ Ui ≤ NR (Ui ∈ Z, i = 1, . . . , n).
(14)

Loop tiling factors are mainly restricted by cache size, because the working sets
after tiling should fit in the cache. Choosing too large or too small tiling factors
increases the L1 cache miss ratio and leads to inefficient cache utilization. We set
the lower bound of tiling factors as 16. Denote T1, T2, . . . , Tn tiling factors, and C

L1 cache size, then constraints on tiling factors can be summarized as follows:

{

T1 ∗ T2 ∗ . . . ∗ Tn ≤ C

16 ≤ Ti ≤ C (Ti ∈ Z, i = 1, . . . , n).
(15)

Array padding scheme is to remove cache conflict misses; however, it will lead
to additional memory cost, and too big padding factors will increase TLB miss. It is
pointed out that small padding factors are more liable to achieve high performance
in [17]. Therefore, we limit the range of padding factors as 4 ∼ 64, which means the
upper limit that padding factors can value is 64, and the lower limit that padding
factors can value is 4, and they cannot exceed the range.

The Nelder-Mead simplex method [18, 19] is a classical and powerful direct
search method for optimization. It is probably the most widely used optimization
method. A “simplex” is a geometrical figure consisting of n+1 points in n-dimen-
sions, e.g. a 2-dimension simplex is a triangle. Through a sequence of geometric
transformations, the initial simplex moves towards minimum. It appears to be
a good fit to the problem of finding optimization parameters to minimize program
runtime. First, the optimization space is too large to search completely when several
optimizations are applied. Second, our objective function is discrete and nonlinear,
making the problem difficult to address with classical combinatorial optimization
techniques. Third, simplex method is useful for training parameters, especially for

PIT for Composing High-Level Loop Transformations 953

searching minima of multi-dimensional functions when dimension is less than 20.
Finally, the amount of time spent by simplex method is flexible. More computation
time may result in better solutions, but the algorithm can be interrupted any time
and return the best solution found. Thus the simplex method is used to solve the
problem of optimization parameters selection.

We first list some notations in the simplex method.

• S(k): The simplex in the kth iteration, and S(k) = (xk
0, x

k
1, . . . , x

k
n);

• xk
h: The highest (worst) point, i.e. f(xk

h) = max{f(xk
i)|i = 0, 1, . . . , n};

• xk
inf h: The second highest point, i.e. f(xk

inf h) = max{f(xk
i)|i = 0, 1, . . . , n, and

i 6= h};

• xk
l : The lowest (best) point, i.e. f(xk

l) = min{f(xk
i)|i = 0, 1, . . . , n};

• x̄k: Average of all points excluding the worst point;

• max iter: The maximum iterations;

• ε: The precision requirement;

• α, β, γ, ω: The coefficients of reflection, contraction, expansion, and shrink.

The Nelder-Mead simplex based parameter selection algorithm is shown in Fig-
ure 4.

4.3 Phase 3: Search for Optimal Parameters

Note that the most time-consuming part of the algorithm is the measuring of the
execution time. At least the set of parameters with the minimum execution time
remains unchanged from one generation to the next, so there is no need to recalculate
its execution time. To improve the running performance of the algorithm, we keep
record of the parameters and execution time of previously executed points in a list.
When measuring execution time, we check the list to see if the execution time for
that set of parameters is already available. If so, there is no need to recalcula-
te it.

5 PERFORMANCE EVALUATION

5.1 Environmental Setup

We test three typical numerical compute-intensive kernels: the matrix multiplication
program (mm) with matrix sizes 512 and 1 024, DSP kernel fir [20] abstracted
from UTDSP benchmark suit with size 10 000 and 20 000, and kernel mvt which
includes two matrix vector multiplication statements and these two matrices are
transpose of each other with size 1 024 and 2 048. For brevity we name the program
with small size as the name of program followed by 1, and that with large size are
followed by 2. For example, programs mm with size 512 and 1 024 are named as

954 P. Lu, B. Li, Y. Che, Z. Wang

NMSimplex (testFile, n)

Input: testFile, which is the source of program to be tuned, and n, the number of optimization parameters;

Output: x
*
, the optimal optimization parameter vector, and T(x

*
), the minimum running time of the program.

1.Initialization. For each parameter, we define an empirical range . Randomly generate a non-degenerate

initial simplex (0)S that belongs to R on
nZ , then do a measurement at each point. Set parameters:

max iter , , , , , ! " , and set 1k .

2. Find k

hx ,
inf

k

hx , k

lx , and calculate kx .

3. Reflection. (1)k k k

rx x x ! " # where 0 . If any parameter of k

rx outreaches the range , then

randomly regenerate a new one that belongs to it.

3.1 if () ()k k

r lf x f x { go to 4}

3.2 else if
inf() () ()k k k

l r hf x f x f x {replace k

nx with k

rx , and go to 7}

3.3 else if
inf

() ()
k k

r h
f x f x { go to 7}

4. Expansion. (1)k k k

e rx x x ! " # , where 1 , if any parameter of k

ex outreaches the range , then

randomly regenerate a new one that belongs to it.

4.1 if () ()k k

e rf x f x { replace k

nx with k

ex , and go to 7;}

4.2 else { replace k

nx with k

rx , and go to 7.}

5. Contraction.

5.1 if () ()k k

r nf x f x

{ (1)k k k

c rx x x ! " # , where 0 1 , if any parameter of k

cx outreaches the range , then randomly

regenerate a new one that belongs to it. }

5.1.1 if () ()k k

c rf x f x { replace k

nx with k

cx , and go to 7; }

5.1.2 else {go to 6. }

5.2 else { (1)k k k

c nx x x ! " # , where 0 1 , if any parameter of k

cx outreaches the range , then

randomly regenerate a new one that belongs to it. }

5.2.1 if () ()k k

c nf x f x {replace k

nx with k

cx , and go to 7; }

5.2.2 else { go to 6.}

6.Shrink. All the points in the simplex except the lowest point are shrunk, i.e.
0 0()k k k k

i ix x x x ! " # , where

0 1 , 0,1, , ,i n i l !! " .

7. Stop criterion check.

7.1 if maxk iter or 2 1 2

0

1
((() ()))

1

n
k k

i

i

f x f x
n

!

" #
$
%

{ stop. k

lx is the final solution, and ()k

lf x is the optimal object function. }

7.2 else { 1k k ! , go to 2.}

Fig. 4. The Nelder-Mead simplex based parameter selection algorithm

mm1 and mm2, respectively. Experiments are performed on Intel Pentium D 820
platform described in Table 2. BMi (i = 1, 2, 3), Ci (i = 1, 2) and bus speed of
L1 cache, L2 cache and memory are calculated using the method presented by Jack
Dongarra in [21]. Parameter settings for simplex are as follows: MaxIter = 10,
ε = 0.0001. Recommended values of α, β, γ, ω are α = 1.0, β = 0.5, γ = 2.0,
ω = 0.5 [18].

PIT for Composing High-Level Loop Transformations 955

CPU Intel Pentium D 820 2.8GHz

L1Data cache 2× 16 (KB)

L1 Instruction cache 2× 12 (KB)

L2 cache 2× 1 024 (KB)

Memory DDR2 1G

OS Ubuntu kernel 2.6.15-23-386

Compiler gcc 4.2.1 -O3 -Dtest malloc -lm

BM1/BM2/BM3 16/32/2.3

Bus speed of L1 cache 44.8 (GB/s)

Bus speed of L2 cache 89.6 (GB/s)

Bus speed of Memory 6.4 (GB/s)

C1/C2 4/31 (cycles)

Table 2. Experimental platform

5.2 Experimental Results

5.2.1 Effectiveness Verification of POTraM

We have tested programs’ behavior. The experimental results and responding trans-
formations (transfo) based on POTraM are listed in Table 3. T , P and U stand for
loop tiling, array padding and loop unrolling, respectively. We can see that POTraM
applies different transformations to the programs according to their characteristics.
Before adopting POTraM, all programs will apply transformations (T, P, U); after
adopting the model, the transformations applied to mm remain (T, P, U), but those
applied to mvt and fir have been reduced; thus the optimization space is reduced
because the search space grows as a function of the number of transformations.

mm1 mm2 mvt1 mvt2 fir1 fir2

MSRL1D (%) 18.4 31.5 20.8 22.7 18.8 22.7

BL1 206 108 89 85 49 36

BL2 87 94 75 81 38 30

BL3 3.1 3.9 4.8 5.8 1.5 2.4

ηm (%) 32.2 35.7 17.0 17.0 13.5 13.9

ηpl (%) 90.2 91.1 90.0 9.0 68.9 37.7

ηfp (%) 6.6 5.7 8.5 8.0 26.9 27.8

Transfo (T, P, U) (T, P, U) (T, U) (T, U) (T) (T)

Table 3. Performance data of original programs and corresponding transformations based
on POTraM

To compare the quality of reduced set of loop transformations, we test the
programs’ performance with parameters searched under the original and reduced
set of loop transformations. We also test the performance when max iter = 150
and max iter = 300. The original loop transformation sets of all programs with

956 P. Lu, B. Li, Y. Che, Z. Wang

no using of POTraM model are all (T, P, U), and we notate this method as no-
POTraM for the simplicity of description. When max iter = 150, the reduced set of
transformations will enable search algorithm to explore more values of performance-
critical transformation parameters; therefore, they concentrate on more profitable
transformations, and bring performance boost. When max iter = 300 the search
space has been doubled, thus more points in the optimization space will be searched.
We want to verify how much performance will be lost by the reduced set under this
circumstance. Figure 4 shows the speedup over no-POTraM in these two search
spaces, where Same search space and Expanded search space stand for the results of
max iter = 150 and max iter = 300, respectively.

0.99

1

1.01

1.02

1.03

mm1 mm2 mvt1 mvt2 fir1 fir2

Same search space Expanded search space

Fig. 5. Speedup over no-POTraM

From Figure 4, we can see that by adopting POTraM, the performance will be
improved by 2% when max iter = 150, and when max iter = 300, the performance
loss is about 0.5%; however, the search cost is almost doubled. The results indicate
that the omitted transformations have minor impact on programs performance, and
the performance gained with them is insignificant compared with the cost. Consid-
ering the tradeoff between the cost and the performance benefit, we decide not to
apply them to the program. Results show that POTraM focuses the set of transfor-
mations on performance-critical ones, and the reduced set drastically narrows down
the search space and yet achieves most of the performance benefit. With the PO-
TraM model, higher quality code is achieved in less time than what is possible with
full transformations.

5.2.2 Comparison with Related Work

We apply the following three strategies to test programs:

1. LeTSeE (represented with Poly), a non-parametric transformation system based
on polyhedral model;

2. traditional parametric iterative compilation (represented with IC);

3. PIT, we compare their performance with that of original programs (represented
with Orig).

PIT for Composing High-Level Loop Transformations 957

We test programs’ characteristics listed in Section 4.2.1, and compare the perfor-
mance of three different optimization methods.

0

0.1

0.2

0.3

0.4

mm1 mm2 mvt1 mvt2 fir1 fir2

Orig Poly IC PIT

0

0.2

0.4

0.6

0.8

1

mm1 mm2 mvt1 mvt2 fir1 fir2

Orig Poly IC PIT

(a) Influence ratio for memory reference (b) Influence ratio for pipeline

0

0.1

0.2

0.3

0.4

0.5

0.6

mm1 mm2 mvt1 mvt2 fir1 fir2

Orig Poly IC PIT

0

1

2

3

4

5

6

mm1 mm2 mvt1 mvt2 fir1 fir2

Poly IC PIT

(c) Performance influence ratio (d) Speedup

Fig. 6. Comparison of different optimization methods over state-of-the-art research

Figure 6 a) illustrates the influence ratio for memory reference of the programs.
Three optimization methods all reduce ηm, therefore, programs’ memory perfor-
mance has increased greatly. The influence ratio for memory reference of program
mm improves most, and IC improves more than Poly, because mm has high ratio
of floating-point operations to memory operations, and loop tiling can effectively
improve performance. The original ηm of mm are greater than 30%, demonstrat-
ing that the memory utilization of programs is very low, which will influence pro-
grams performance. In Section 5.2.1 we have achieved the transformation set of
mm based on POTraM, which includes loop tiling and array padding. Loop tiling
and array padding improve the memory performance greatly. The improvement
of memory performance will result in the boost of program floating-point perfor-
mance (Figure 6 d)). Figure 6 b) shows the performance influence ratio for pipeline
of the programs. ηpl of mm and mvt are greater than 80%, demonstrating that
the pipeline and registers utilization of programs is very low; therefore, loop un-
rolling transformation is carried out on them. Meanwhile, ηpl of fir are lower than
80% (68.9 and 37.7); therefore, loop unrolling transformation is not carried out
on them. The improvement of memory performance and pipeline will result in
the boost of program floating-point performance (Figue 6 c)). The figure shows
the performance influence ratio for floating-point operation of the programs. The
original ηfp of all test programs except fir are less than 10%, after optimization,

958 P. Lu, B. Li, Y. Che, Z. Wang

ηfp of programs improved up to 60%. Figue 6 d) illustrates the benefits of PIT –
the reduction of program execution time. Because the execution time of different
programs varies greatly and it is hard to integrate all these programs’ informa-
tion in one graph, we normalize them as the speedup relative to original program,
which equals the running time of original program divided by that of optimized
program.

In Figue 6, we can see that program mm improves most, and IC improves more
than Poly, because mm has high ratio of floating-point operations to memory ope-
rations, loop tiling can effectively improve performance. As to mvt, the loop body
will access matrices in different lines and columns, tiling and unrolling will not bring
significant improvements, while Poly can compose the transformations of loop skew-
ing, loop distribution etc. Therefore, Poly improves programs’ performance more
effectively than IC. fir includes branch statements, so it is difficult to apply tiling,
unrolling and padding to it, but polyhedral model based non-parametric transfor-
mations can effectively apply various transformations due to exact dependence test
and analysis, more effectively optimizing programs. Figure 5 d) shows that although
Poly and IC adapt to different programs, PIT – the combination of them improves
performance most.

The results show that PIT can effectively improve programs’ floating-point per-
formance, reducing programs’ runtime; therefore, it lessens the performance gap for
high-performance applications. Meanwhile the optimization space has been reduced
using performance model POTraM. Experiments validate that through the combi-
nation of Polyhedral model and iterative compilation for loop transformations, PIT
can simultaneously explore the best sequence of transformations and the best value
of transformations parameters, creating a powerful framework that is capable of
fully automated nonparametric code transformations and model-guided paramet-
ric transformations as well as automatic parameter search. Experimental results
show that compared with present day loop transformation frameworks, PIT can
optimize applications more efficiently; therefore, it can be a practical and portable
means to implement architecture-aware optimizations for high-performance appli-
cations.

6 RELATED WORK AND CONCLUSIONS

There are several ongoing research projects in iterative compilation. In [22] itera-
tive high level optimizations are applied to several embedded processors using two
probabilistic algorithms. Good speedups are obtained at the expense of very large
number of evaluations. [23] combines static models and empirical search to reduce
the search space of optimizations. This method is more restrictive than ours as it
considers only tiling and unrolling, excluding array padding, and its model is not
based on dynamic characteristics of the programs.

There are also many researches on exploring search heuristics in iterative com-
pilation; however, there has been no suitable search strategy for exploring the large

PIT for Composing High-Level Loop Transformations 959

and complex search space. Previous researches show that genetic algorithm (GA) is
successful to find the best sequence of compiler passes [24]; however, [25] finds that
simple techniques, when allowed running over multiple iterations, can often outper-
form complex techniques such as GA. [26] also shows that in finding transformation
parameters, random search performs as well as other sophisticated techniques such
as GA and simulated annealing. Apan Qasem et al. [27] find that direct search can
be an effective technique for finding good values for transformation parameters in
a reasonable time. Haihang You et al. [28] apply simplex method to replace the
search heuristics of ATLAS (Automatically Tuned Linear Algebra Software) [29],
and find that simplex search scheme can produce parameters with better perfor-
mance.

This paper describes a general and robust framework for composing loop trans-
formations for program optimization. We demonstrate the effectiveness of this
framework for well-known computational kernels that require complex transforma-
tions to achieve high performance. As we are developing a framework that sup-
ports composition of transformations, the research most closely related to ours is
Petit [31], WRaP-IT [9], Pluto [32], CHiLL [30] and LeTSeE. These frameworks
all use a polyhedral representation. The main difference of our framework with
them is that our work considers a much broader range of loop transformations,
and allows exploring the best transformation sequence and best parameter values;
what is more, in our framework a hardware performance counters based model is
presented to reduce the set of transformation. By applying this framework to well-
known computational kernels that require complex transformations to achieve high
performance, we demonstrate that the resulting code quality is quite high than tra-
ditional iterative compilation and polyhedral model. These results show that, with
a systematic framework, it has now become feasible for compiler-generated code
to achieve performance comparable to manually-tuned ones, even for more complex
code constructs than have been previously demonstrated. Experimental results show
that the transformation model can effectively narrow down the parameter space; our
PIT framework improves performance most, which makes it a practical and portable
means to implement architecture-aware optimizations for high-performance appli-
cations.

In future, we plan to improve our strategy by adding more architectural and
program information to the model, to better guide the application of program trans-
formations, and use training data sets during the tuning process to cut down the
program execution time.

Acknowledgments

This work was partially supported by the National Natural Science Foundation
of China under Grant No. 61103014, the National Grand Fundamental Research
973 Program of China under Grant No. G2009CB723803 and the National High
Technology Development 863 Program of China under Grant No. 2008AA01A202.

960 P. Lu, B. Li, Y. Che, Z. Wang

REFERENCES

[1] Fursin, G.: Iterative Compilation and Performance Prediction for Numerical Appli-
cations. Ph.D. Thesis, School of Informatics, The University of Edinburgh, Boston,
Massachusetts, June 2005, pp. 67–82.

[2] Kisuki, T.—Knijnenburg, P.M.W.—O’Boyle, M.F. P.: Combined Selection
of Tile Sizes and Unroll Factors Using Iterative Compilation. SuperComputing,
Vol. 24, 2003, No. 1, pp. 43–67.

[3] Kisuki, T.—Knijnenburg, P.M.W.–O’Boyle, M.F. P.—WIJSHOFF,

H.A.G.: Iterative Compilation in Program Optimization. Proceedings of Work-

shops on Compilers for Parallel Computers, Aussois, France, January 2000,
pp. 35–44.

[4] Bodin, F.: Compilers in the Manycore Era. Proceedings of HiPEAK 2009, Paphos,
Cyprus, LNCS 5409, Springer 2009, pp. 2–3.

[5] Tiwari, A.—Chen, C. et al.: Scalable Autotuning Framework for Compiler Opti-
mization. Proceedings of the IEEE IPDPS ’09, Rome, Italy, May 2009.

[6] Feautrier, P.: The Polytope ModelPast, Present, Future. Proceedings of the 22nd

International Workshop on Languages and Compilers for Parallel Computing, Octo-
ber 8–10, 2009, LNCS 5234, Springer-Verlag 2009, pp. 4–5.

[7] Pouchet, L.-N.—Bastoul, C.—Cohen, A.—Vasilache, N.: Iterative Opti-
mization in the Polyhedral Model: Part I – One-Dimensional Time. Proceedings
of ACM Conf. on Code Generation and Optimization, San Jose, California 2007,
pp. 144–156.

[8] Pouchet, L.-N.—Bastoul, C.—Cohen, A.—Vasilache, N.: Iterative Opti-
mization in the Polyhedral Model: Part II – Multidimensional Time. Proceedings of
ACM SIGPLAN Conference on Programming Language Design and Implementation,
Tucson, Arizona 2008, pp. 90–100.

[9] Girbal, S.–Vasilache, N.—Bastoul, C.—Cohen, A.—Parello, D.—

Sigler, M.—Temam, O.: Semi-Automatic Composition of Loop Transformations
for Deep Parallelism and Memory Hierarchies. Int. J. of Parallel Programming,
Vol. 34, 2006, No. 3, pp. 261–317.

[10] Touati, S.—Barthou, D.: : On the Decidability of Phase Ordering Problem in
Optimizing Compilation. Proceedings of the International Conference on Computing
Frontiers, Ischia, Italy, May 2006, pp. 147–156.

[11] Feautrier, P.: Some Efficient Solutions to the Affine Scheduling Problem: Part II –
Multidimensional Time. Int. J. of Parallel Programming, Vol. 21, 1992, No. 5,
pp. 315–348.

[12] Lu, P.—Che, Y.—WANG, Z.: A Framework for Effective Memory Optimization of
High Performance Computing Applications. Proceedings of 11th IEEE International

Conference on High Performance Computing and Communications, Seoul, Korea,
June 2009, pp. 95–102.

[13] Lu, P.—Che, Y.—Wang, Z.: An Effective Iterative Compilation Search Algorithm
for High Performance Computing Applications. In: 10th IEEE International Confer-
ence on High Performance Computing and Communications, 2008, pp. 368–373.

PIT for Composing High-Level Loop Transformations 961

[14] Browne, S.—Dongarra, J. et al.: A Portable Programming Interface for Perfor-

mance Evaluation on Modern Processors. International Journal of High Performance
Computing Applications, Vol. 14, 2000, No. 3, pp. 189–204.

[15] Carr, S.: Combining Optimization for Cache and Instruction – Level Parallelism.
Proceedings of 1996 Conference on Parallel Architectures and Compilation Tech-
niques, Boston, Massachusetts, October 20–23, pp. 238–247.

[16] Zeyao, M.: Realistic Performance Analysis Methods for Parallel Codes. Journal of
Numerical Computing and Computer Applications, Vol. 21, 2000, No. 4, pp. 266–275.

[17] Li, Z.—Song, Y.: Automatic Tiling of Iterative Stencil Loops. ACM Transactions
on Programming Language and Systems, Vol. 26, 2004, No. 6, pp. 975–1028.

[18] Nelder, J. A.—MEAD, R.: A Simplex Method for Function Minimization. The
Computer Journal, Vol. 7, 1965, No. 4, pp. 308–313.

[19] Spendley, W.—Hext, G. R.—Himsworth, F.R.: Sequential Application of Sim-
plex Designs in Optimization and Evolutionary Operation. Technometrics, 1962,
No. 4, pp. 441–461.

[20] Wiegand, T.—Sullivan, G.—Luthra, A.: Itu-t rec. h.264-iso/iec 14496-10 avc.
Technical report, Joint Video Team of ISO/IEC MPEG and ITU-T VCEG, May
2003.

[21] Dongarra, J.: Performance Optimization for Cluster Computing. Proceedings of
the Myrinet Users Group Conference, Vienna, Austria, 2002, available at http://

www.netlib.org/utk/people/JackDongarra/SLIDES/mug-0502.pdf.

[22] Franke, B.—O’Boyle, M. et al.: Probabilistic Source-Level Optimization of Em-
bedded Programs. Proceedings of ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems (LCTES ’05), Chicago, Illinois,
USA, June 15–17, 2005, pp. 78–86.

[23] Chen, C.—Chame, J.—Hall, M.W.: Combining Models and Guided Empiri-
cal Search to Optimize for Multiple Levels of the Memory Hierarchy. International
Symposium on Code Generation and Optimization, San José, CA, March 2005,
pp. 111–122.

[24] Knijnenburg, P.—Kisuki, T.—O’Boyle, M.: Iterative Compilation. Embed-
ded Processor Design Challenges System Architecture, Modeling and Simulation
(SAMOS), Samos, Greece 2002, LNCS 2268, Springer Verlag, pp. 171–187.

[25] Knijnenburg, P.M.W. et al.: The Effect of Cache Models on Iterative Compilation
for Combined Tiling and Unrolling. Concurrency and Computation: Practice and
Experience, Vol. 16, 2004, No. 2-3, pp. 247–270.

[26] Yotov, K.—Pingali, K.—Stodghill, P.: Think Globally, Search Locally. Pro-
ceedings of the 19th Annual International Conference on Supercomputing (ICS 2005),
Cambridge, Massachusetts, USA, ACM Press, June 20–22, 2005, pp. 141–150.

[27] Qasem, A.—Kennedy, K.—Mellor-Crummey, J.: Automatic Tuning of Whole
Applications Using Direct Search and a Performance-Based Transformation System.

The Journal of Supercomputing, Vol. 36, 2006, No. 2, pp. 183–196.

[28] You, H.—Seymour, K.—Dongarra, J.: An Effective Empirical Search Method
for Automatic Software Tuning. UTK CS Technical Report, ICL-UT-05-02, Computer
Science Department, University of Tennessee, May 2005, pp. 1–8.

962 P. Lu, B. Li, Y. Che, Z. Wang

[29] Whaley, R.C.—Petitet, a.—Dongarra, J.: Automated Empirical Optimiza-

tion of Software and the ATLAS Project. Parallel Computing, Vol. 27, 2001, No. 1-2,
pp. 3–35.

[30] Chen, C.—Chame, J.—HALL, M.: CHiLL: A Framework for Composing High-

Level Loop Transformations. Technical report, University of Southern California 2008.

[31] Kelly, W.—Pugh, W.: A Framework for Unifying Reordering Transformations.
Technical report, College Park, MD, USA, CS-TR-2995, 1993, pp. 1–23.

[32] Bondhugula, U.—Hartono, A.—Ramanujam, J.—Sadayappan, P.: A Prac-
tical Automatic Polyhedral Program Optimization System. Proceedings of the 2008
ACM SIGPLAN Conference on Programming Language Design and Implementation,
Tucson, AZ, USA, ACM, June 2008, pp. 101–113.

Pingjing Lu received her B. Sc. degree, M. Sc. degree and Ph.D.
degree in Computer Science at the National University of De-
fense Technology in China in 2004, 2006 and 2010, respectively.
Since 2010 she has been an Assistant Professor of computer
science at the National University of Defense Technology. Her
current research interests include iterative compilation and adap-
tive optimization.

Bao Li received his B. Sc. degree and M.S degree in Computer
Science at the Ocean University of China and National Univer-
sity of Defense Technology in China in 2004 and 2006, respec-
tively. Since 2011 he has been an Assistant Professor of computer
science at the National University of Defense Technology. His
current research interests include computer graphics and visu-
alization in scientific Ccmputing.

Yonggang Che received his B. Sc. degree, M. Sc. degree and
Ph.D. degree in Computer Science at the National University of
Defense Technology in China in 1997, 1999, and 2004, respec-
tively. Since 2006 he has been an Associate Professor of com-
puter science at the National University of Defense Technology.
His current research interests include computer architecture and
iterative compilation.

PIT for Composing High-Level Loop Transformations 963

Zhenghua Wang received his B. Sc. degree, M. Sc. degree and

Ph.D. degree at the National University of Defense Technology
in China in 1983, 1986, and 1991, respectively. He has been
a Professor of Computer Science at the National University of
Defense Technology since 2000. His research interests are in com-
puter systems performance evaluation and compiler optimiza-
tion.

