
Computing and Informatics, Vol. 30, 2011, 1225–1246

A SECURE GROUP-ORIENTED FRAMEWORK
FOR INTELLIGENT VIRTUAL ENVIRONMENTS

Jose M. Such, Juan M. Alberola
Antonio Barella, Ana Garcia-Fornes

Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València
Camı́ de Vera s/n. 46022, València
e-mail: {jsuch, jalberola, tbarella, agarcia}@dsic.upv.es

Communicated by Jacek Kitowski

Abstract. In this paper a multiagent system for intelligent virtual environments
using the Magentix Multiagent Platform is presented. It is based on a previous
framework which has been improved with agent groups, security and efficiency

concerns. Therefore, the framework presented can be used in common Intelligent
Virtual Environment domains such as education, commercial games and simulation.

Keywords: Intelligent virtual environments, multiagent systems

1 INTRODUCTION

As stated in [10], Multiagent Systems (MAS) provide strong models for representing
complex and dynamic real-world environments. Typical application areas include
the simulation of economies, societies, biological environments, medical diagnosis
systems and city traffic management, etc. (refer for example to [13] and [6]). On
the MAS research scene there are methodologies that aim to structure agent develop-
ment but it may be difficult to implement theoretical designs. Hence, it is important
to stress the significance of applying theoretical development improvements in real
scenarios (applications).

Lastly, a new field has emerged for simulating a physical (or real) world in-
habited by autonomous intelligent entities, called Intelligent Virtual Environments
(IVEs) [9]. These entities have to interact in/with the virtual environment as if they

1226 J.M. Such, J.M. Alberola, A. Barella, A. Garcia-Fornes

were real entities in the real world. In addition, entities and the virtual environment
have to be displayed to users in an appropriate way.

JGOMAS (Game Oriented Multiagent System based on Jade [5]) is a frame-
work for IVEs which provides an environment for developing and running intelligent
agents over simulated 3D worlds [3]. JGOMAS allows agents to be run by differ-
ent teams that compete with each other to achieve their own objectives as well
as team objectives. One of its applications, such as the one currently being used,
is the Capture the Flag (CTF) game, where agents are grouped into two teams
(allies and axis). The allies must go to the axis base, capture the flag, and take
it to their base, in order to win the game. The axis agents must defend their
flag against the allies and, if the flag is captured, they must return it to their
base.

JGOMAS has been successfully proven in an educational environment to teach
Artificial Intelligence (AI) [4]. The main reason for its success is not only due to
it being a suitable framework for teaching AI techniques, but also because it is
an appealing 3D simulated world for the students where they are able to watch the
behavior of the agents based on the AI techniques they are using.

Although JGOMAS makes intensive use of agent groups (teams), there is no
explicit definition of agent groups in the JGOMAS design. Moreover, the JGO-
MAS architecture does not provide any support for agent groups and so JGOMAS
programmers have to implement ad-hoc mechanisms in order to achieve this func-
tionality. Also, JGOMAS is supposed to be a large system composed of thou-
sands of agents, so a way to structure and coordinate the agents in the system is
needed.

What is more, IVEs are commonly used in other domains beside education,
such as commercial games or simulation. In this sense, JGOMAS currently lacks
some concerns which arise in such domains, i.e., security (in the case of commer-
cial games) and efficiency (in both commercial games and simulation domains).
On the one hand, security is a key issue since an agent’s incorrect or inappro-
priate behavior may cause non-desired effects such as money and data loss. On
the other hand, efficiency is needed when building complex, open and large-scale
applications with a huge number of agents with a lot of interactions with each
other.

In this paper, we propose a framework for IVEs. The framework is called MGO-
MAS (Game Oriented Multiagent System based on Magentix) and it extends JGO-
MAS taking into account agent groups, security and efficiency.

The rest of the article is organized as follows. Section 2 shows an overview of
JGOMAS and points out its limitations and main drawbacks. Section 3 introduces
MGOMAS. Section 4 describes an example of the Capture the Flag game with MGO-
MAS. Section 5 presents a performance evaluation of JGOMAS versus MGOMAS.
Finally, in Section 6 we present some concluding remarks and some improvements
we could make as future work.

A Secure Group-Oriented Framework for Intelligent Virtual Environments 1227

2 JGOMAS: DESIGN AND LIMITATIONS

This section presents JGOMAS, a framework that integrates a MAS and a virtual
reality system as a scalable solution for IVEs. After presenting JGOMAS, we also
analyze the limitations of the JGOMAS design and its main drawbacks.

2.1 JGOMAS Framework

The architecture of JGOMAS, as shown in Figure 1, is composed of three subsys-
tems:

A Multiagent System (MAS). There are two kinds of agents: simulation con-
troller and inhabitant agents. Simulation controller is in charge of keeping the
virtual environment’s data, maintaining the consistency at any given time, while
the inhabitant agents simulate beings (humans, animals, etc.) situated in the
virtual world. These agents move, look, listen, etc. in the virtual scenario. Fur-
thermore, they can communicate with each other to achieve their goals. Thus,
an inhabitant agent interacts with other inhabitant agents and with the sce-
nario. As a result, the virtual world can be changed. The simulation controller
generates events for inhabitant agents involved in world’s changes.

A Visualization Module (VM). One of the JGOMAS’ main goals is for artifi-
cial intelligence and virtual reality systems to work independently. In fact, it
is possible to run the JGOMAS MAS even if there are no graphic viewers con-
nected. In order to make things easier for IVE designers, a basic graphic viewer
displaying the 3D agents, objects, and the scenario in JGOMAS has been im-
plemented. This viewer is composed of renders which are in charge of displaying
the information of the JGOMAS world.

A Multiagent Platform (MAP). This simplifies the implementation of MASs
through a middleware, so that an IVE designer only has to implement the in-
telligence of his/her agents, thus not wasting time on low-level technical issues,
such as inter-agent communication. Jade [5] is the MAP of JGOMAS.

2.2 Limitations of JGOMAS

The JGOMASMAS subsystem only takes into account individual agents (simulation
controller and inhabitant agents). There is no means to somehow organize the
agents. JGOMAS is supposed to be a large system composed of thousands of agents,
so a way to structure and coordinate the agents in the system is needed. Indeed,
JGOMAS applications, like CTF, implicitly use the concept of agent groups to
organize the inhabitant agents into two troops (allies and axis) but there is no
definition of any kind of agent organizations in the JGOMASMAS subsystem design.

1228 J.M. Such, J.M. Alberola, A. Barella, A. Garcia-Fornes

Fig. 1. Architecture of the JGOMAS framework

Apart from including the agent group concept in the MAS subsystem, some
support for managing agent groups at runtime is required. This support should
be provided by the MAP subsystem, which is the infrastructure that allows the
execution of the MAS subsystem.

Moreover, there are other concerns regarding the MAP subsystem so that the
framework can be used in other domains apart from education. In such domains,
like commercial games or simulation there is a need to achieve some levels of security
and efficiency.

Security is a key issue since an agent’s incorrect or inappropriate behavior may
cause non-desired effects such as money and data loss. Assuring the identity of the
agents (authentication), preserving the integrity and confidentiality of the messages
they exchange, as well as controlling access control to resources are requirements
needed to prevent such non-desired effects [8]. In JGOMAS, a cheating agent can
impersonate the simulation controller thereby sending messages to the rest of the
agents containing incorrect or biased information about the 3D virtual world. This
is actually a major drawback in online commercial games, where a cheating agent
would exploit this to cheat other agents to win the game. Therefore, the new frame-
work must include agent authentication and authorization as well as secure message
exchange.

As stated in [2], agent technology demands efficiency when building complex,
open and large-scale applications (such as commercial games, simulation, etc.). In

A Secure Group-Oriented Framework for Intelligent Virtual Environments 1229

these environments the scalability, efficiency and robustness of the multiagent plat-
form (MAP) which executes these applications become essential features.

Finally, the simulation controller agent is in charge of the 3D virtual world while
the inhabitant agents simulate beings (humans, animals, etc.) situated in the virtual
3D world. All of the inhabitant agents ask the simulation controller about the world
or ask it to modify their position in the world. Moreover, all of the visualization
modules attach themselves to the unique simulation controller. This makes the
simulation controller a single point of failure (SPOF) regarding reliability as well as
a clear bottleneck regarding efficiency.

In the following section, we present a new framework, called MGOMAS, which
is an evolution of JGOMAS that incorporates new functionalities in oder to address
the limitations stated above. Thus, it provides the agent group abstraction, security
and efficiency.

3 MGOMAS

This section presents MGOMAS that is a framework for IVEs. Figure 2 shows the
architecture of the MGOMAS framework. MGOMAS is composed of two subsys-
tems which are explained in the following sections: the Multiagent System (MAS)
subsystem and the Multiagent Platform (MAP) subsystem.

Multi-Agent Platform

Multi-Agent System

Simulation

Controllers
Inhabitant Agents

MAGENTIX

Visualization Agents

Controller

1

Controller

m

Group 1

Agent

i

Agent

1

Group L

Agent

z

Agent

i+x

Group Q

Render

Agent

n

Group P

Render

Agent

1

Render

Agent

2

Fig. 2. Architecture of the MGOMAS Framework

1230 J.M. Such, J.M. Alberola, A. Barella, A. Garcia-Fornes

3.1 MGOMAS MAS subsystem

The MGOMAS MAS subsystem extends the JGOMAS MAS subsystem by includ-
ing the concept of agent group (from this moment on, group). In this sense, the
MGOMAS MAS subsystem is made of two concepts, i.e., agents and groups. As
stated in Section 2, there are two kinds of agents: simulation controller and inhabi-
tant agents. With MGOMAS we add the possibility of organizing these agents into
groups. Moreover, visualization agents are added to the MGOMAS MAS to display
the information of the 3D world.

3.1.1 Inhabitant Agents

Inhabitant agents have a set of basic predefined behaviors regarding their physical
model and intelligence. The developer of applications using MGOMAS is in charge of
modifying these behaviors or adding new ones in order to implement her application.
Therefore, in MGOMAS there is always a set of inhabitant agents IA that is defined
as follows:

IA = {a1, . . . , an}.
The number N of inhabitant agents is defined by the developer who also pro-

grams the inhabitant agent’s behavior to fit the final application.
The MGOMAS MAS subsystem allows agents to organize themselves into agent

groups. These groups can be both static and dynamic, i.e., they can be specified
before running the application (by the developer) and they can also emerge at run-
time when an agent (or a group of agents) decides to create it. Agent groups can
also be composed not only of agents but also of nested groups. Therefore, a group
G is defined as:

G ⊆ IA ∪ {G1, G2, . . .}
where Gi are groups as well, and IA is the set of inhabitant agents.

Apart from structuring purposes, both agent to group and group to group inter-
actions can be defined. In this sense, an agent group can be seen as a blackbox from
the point of view of agents outside the group, i.e., an agent interacts in a transparent
way with both agents and groups. To achieve this functionality, an agent group G

has a set of representative agents denoted as RG that is defined as:

∀x ∈ RG, x ∈ G ∧ x ∈ IA.

Therefore, agents defined as representative (members of RG) must be members
of the group (G) which they are representative agents of and must be inhabitant
agents (members of IA). A group cannot be defined as representative of other
groups.

Representative agents can receive the messages addressed to the group and can
send messages on behalf of the group. RG can also be empty if the agent group does
not need to interact with agents (or groups) from outside G.

A Secure Group-Oriented Framework for Intelligent Virtual Environments 1231

A
5

A
6

A
7

G
1 A

1

A
2

A
4

G
2

G
3

A
11

A
10

A
9

A
8

A
3

Fig. 3. Federation in the MGOMAS MAS

1232 J.M. Such, J.M. Alberola, A. Barella, A. Garcia-Fornes

By means of defining the structure (the members of the group) and the inter-
actions among agents and groups (the representative agents of the group), agent
groups are shaped as some well-known agent organizations [7], such as teams, coali-
tions, hierarchies, federations, etc.

For example, Figure 3 shows a federation in the MGOMAS MAS subsystem.
A federation is composed of groups of agents which have ceded a certain amount
of autonomy to a single delegate which represents the group. The set of inhabitant
agents in our example is:

IA = {a1, a2, . . . , a11}.
There are three groups (G1, G2, G3) which compose the federation Gfed so that

each group is a federate:

Gfed = {G1, G2, G3}
G1 = {a1, a2, a3, a4}
G2 = {a5, a6, a7}
G3 = {a8, a9, a10, a11}.

In each group there is a representative agent which represents the group. The
other members of each group only interact with the representative agent of the
group which acts as an intermediary between the group and the outside world. In
this example, the representative agents are:

RGfed
= ∅

RG1
= {a1}

RG2
= {a5}

RG3
= {a8}.

RGfed
is empty because this group has no interaction with the outside world, so

a representative agent for this group is not needed.

3.1.2 Simulation Controllers

In MGOMAS, we take advantage of the agent group concept presented above. In
this sense, in MGOMAS there are more than one simulation controller agents that
are grouped in a special group: the simulation controller group (SCG). We define
SCG as:

SCG = {c1, . . . , cm}
where ci are simulation controller agents and M is the number of simulation con-
troller agents. Moreover, we define the set of representative agents of SCG, denoted
as RSCG, as RSCG = SCG. Therefore, all of the simulation controller agents ci
that make up the SCG are also representative agents of SCG. As a result, SCG is
shaped as a team of agents where all of the simulation controller agents are equally
important and can act on behalf of SCG.

A Secure Group-Oriented Framework for Intelligent Virtual Environments 1233

The SCG group can be viewed as a wrapper of the virtual environment, because
it translates all of the inhabitant agents’ actions to the virtual world. It ensures
that these actions follow specific rules, maintaining consistency of the virtual world.
It also provides all of the necessary information for the graphic viewers. Both
inhabitant agents and visualization agents interact in a transparent way with this
group when asking/modifying the 3D virtual world. In the end, these requests are
dealt with by the one of the simulation controller agents that make up the simulation
controller group. Therefore, we are distributing the load among the simulation
controller agents, so that efficiency is improved. Moreover, if one of the simulation
controller agents fails, inhabitant agents and visualization agents will not be aware
of that and the application will keep on running seamlessly, so that reliability is also
improved.

The number of simulation controllers M is expected to be chosen by the frame-
work user and is a parameter that must be defined at framework start-up. Depending
on the domain of the final application, M can vary a lot. For instance, M will be
small if we are using MGOMAS to implement an example in a class of AI, but it
will be huge if we are implementing an online commercial game with a huge number
of users playing it.

3.1.3 Visualization Agents

In order to make things easier for IVE designers, a basic graphic viewer displaying
the 3D agents, objects, and the scenario in MGOMAS has been implemented. This
viewer is composed of visualization agents which are in charge of displaying the
information of the MGOMAS world. Visualization agents are render applications
“agentified”, i.e., they are able to communicate with other agents of the MGOMAS
MAS subsystem. Using these communicative skills they can ask the information
about the 3D virtual world to the SCG group. Visualization agents do not have
intelligent capabilities, they only display the 3D virtual world so that the artifical
intelligence and virtual reality systems work independently.

Visualization agents can also group themselves into groups. In this sense, there
is ongoing work to take advantage of this feature. The main idea is, in a nutshell,
to divide the 3D virtual world into sections, each one managed by a simulation
controller agent. Then, several visualization agents (each one acting as a camera),
grouped depending on the section they are displaying, interact with the simulation
controller agent in charge of that section to obtain the information needed. More-
over, other cameras (visualization agents) interact with more than one visualization
controller agents to act as a bird’s-eye view camera.

3.2 MGOMAS MAP subsystem

In some previous studies, we identified a lot of MAPs that have been developed
over the last few years in the agent technology research field. However, each MAP
offers its own set of features for developing and executing MAS. In this way, it is

1234 J.M. Such, J.M. Alberola, A. Barella, A. Garcia-Fornes

necessary to choose from among them a suitable MAP that fulfills the MGOMAS
requirements for this subsystem. We have previous MAP evaluation experience,
in [11] for example, and this has helped us in this study.

All of the requirements for the MGOMAS MAP subsystem are summarized
below:

Communication. The agents must be able to interact with each other by sending
and receiving messages.

Agent Groups. In the design of MGOMAS there are agent groups. In order for
the programmers to use this concept, the MAP subsystem would provide some
support so that the programmers do not have to implement ad-hoc mechanisms
for grouping agents.

Security. In a real scenario, in which multiple players may take part in the game,
a method for avoiding security flaws and cheating agents is required.

Efficiency. In domains such as commercial games or simulation the efficiency of
the resulting application is crucial.

Open Source. MGOMAS is a framework intended to be open source (as JGOMAS
is), so it is important that all of the subsystems are open source as well.

All of the MAPs studied obviously provide some kind of mechanism to allow
agents to communicate with each other by sending and receiving messages.

Regarding agent groups, security and the code openness, Table 1 sums up all of
the MAPs studied and whether they provide these three features (MAPs offering
a feature are marked with

√
while MAPs not offering it are marked with –).

Although there are many MAPs available, only a few of them provide agent
groups, security, and are open source. In this sense, only Magentix [2] and Zeus [12]
are suitable to be the MAP subsystem for MGOMAS.

As MGOMAS is aimed at being used in real scenarios, efficiency and scalability
also become major concerns. As stated in [14], Zeus performs worse when exchanging
messages compared with other MAPs while Magentix is a MAP aimed at being
efficient and scalable, as shown in [2]. Therefore, Magentix MAP is chosen to be the
MAP subsystem for MGOMAS, replacing the Jade MAP used in JGOMAS.

3.2.1 Magentix as the MAP Subsystem

Magentix1 architecture focuses on offering good performance and scalability espe-
cially when running large systems. Apart from being a high-efficient and scalable
MAP, Magentix provides a secure group-oriented model (explained in-depth in [15]).
This model is based on the concept of organizational units and giving identities to
all of the entities in the MAP.

1 Magentix can be downloaded from http://www.dsic.upv.es/users/ia/sma/tools/

Magentix/index.html.

A Secure Group-Oriented Framework for Intelligent Virtual Environments 1235

Platform Agent Groups Security Open Source

3APL – –
√

AAP – –
√

ABLE –

ADK –
√

–

AgentBuilder – –

AgentScape –
√ √

AgentOS –
√

–

Aglets –
√ √

AGlobe – –
√

Ajanta –
√ √

Ara –
√ √

Bond – –
√

CAPA – – –

CapNet –
√

–

Concordia –
√

–

Cougaar –
√ √

CrossBow –
√

Cybele –
√

Decaf –
√

Genie – –
√

Grasshopper –
√

–

Gypsy –
√ √

Hive –
√ √

Jade –
√ √

Jack
√ √

–

Jackal
√

–
√

Jacomma –
√

Jat – –

Mage –
√

MadKit
√

–
√

Magentix
√ √ √

Sage –
√ √

Semoa –
√ √

Spyse –
√

Voyager –
√

–

Zeus
√ √ √

Table 1. Platform functional analysis

1236 J.M. Such, J.M. Alberola, A. Barella, A. Garcia-Fornes

Organizational units are an advanced message routing mechanism. In each unit
there is a manager that creates the unit and decides which agents can join as mem-
bers of that unit. Then, the manager of the unit also decides which of the members
can send and receive messages on behalf of the unit. The agents allowed to commu-
nicate on behalf of the unit are called contact agents. The manager also defines the
routing type of the unit, i.e., the way that contact agents will receive messages sent
to the unit. There are five routing types:

Unicast: The messages addressed to the unit are delivered to a single contact agent.

Multicast: Several contact agents can be appointed to receive messages. When
a message is addressed to the unit, this message is delivered to any contact
agent in the unit.

Round Robin: There can be several contact agents appointed to receive messages.
Each message addressed to the unit is delivered to a different contact agent,
defined according to a circular policy.

Random: Several agents can be defined as contact agents. Each message addressed
to the unit is delivered to a randomly selected contact agent.

Sourcehash: Several agents can be the contact agents. Each message addressed
to the unit is delivered to one of the agents responsible for receiving messages
according to a hash function about a property of the message sender (e.g. the
host where the message sender is situated).

A direct map can be done from agent groups in the MAS subsystem to the
Magentix organizational units in the MAP subsystem. In this sense, the agent
groups can be implemented as organizational units where the set of representative
agents of the MGOMAS MAS can be mapped to contact agents of the organizational
unit. Moreover, the routing type of the organizational unit can be deduced from the
agent organization that the agent group is shaping.

For example, let H = {a1, a2, a3} be an agent group of the MAS subsystem that
is shaping a hierarchy and a1 be the representative agent of the group (RH = {a1}).
Therefore, a1 is the supervisor of the hierarchy (the only one that can act on behalf
of H) while a2 and a3 are subordinates.

We implement H using a Magentix organizational unit as follows. a1 is both the
manager and the unique contact agent of the unit. Moreover, the routing type of
the unit must be unicast. Therefore, a1 controls what agents can join the unit (and
throw them out if they do not act as expected). It is also the unique entity allowed
to act on behalf of the unit when interacting with other agents or units.

Regarding security concerns, with the use of Magentix the fact that any agent
in the system can act on behalf of another is avoided. Magentix provides a security
model that is based on identities that are assigned to all of the different entities that
can be found in a Magentix MAP, i.e., users, agents, services and organizational
units. The Kerberos2 authentication protocol is used to authenticate the identities.

2 http://web.mit.edu/Kerberos/

A Secure Group-Oriented Framework for Intelligent Virtual Environments 1237

Using this model, when an agent receives a message from a unit, this agent does
not have to check which agents are able to send messages using the unit identifier,
because this identity is sure to be used by an authorized agent. For instance, in
the previous example, what prevents a2 from acting on behalf of the a1? It could
impersonate a1 and order a3 to do an action. What is more, what prevents a2 from
acting on behalf of the H group? It could interact with other agents or groups in
the system on behalf of H. All of these actions are avoided by the security model
of Magentix.

The authentication of these identities by any entity of the MAP is the basis for
achieving the other desired features (integrity, confidentiality and authorization).
In this sense, all of the information that the agents exchange by means of messages
is assured by signing (integrity) and ciphering (confidentiality) all of the messages
exchanged. Thus, this information cannot be tampered with or disclosed by unau-
thorized agents. Moreover, the security model allows access to resources (such as
files, databases, and the like) to be granted or denied, depending on the identity of
the entity trying to access the resource by means of access control lists (ACLs).

4 CAPTURE THE FLAG

A Capture the Flag (CTF) game involves agents that are grouped into two teams
(allies and axis). The allies must go to the axis base, capture the flag, and take it to
their base, in order to win the game. The axis agents must defend their flag against
the allies and, if the flag is captured, they must return it to their base. There is
a time limit for the allies to bring the flag to their base. If the time limit expires,
the axis team wins the game.

There are three kinds of agents which provide specific services: Soldiers are the
main agents in the game, Medics heal Soldiers and FieldOps provide Soldiers with
munitions.

Figure 4 shows a screen capture of the MGOMAS framework executing a CTF
game. There are three visualization agents displaying the 3D world. There is also
the GUI of the Magentix MAP which shows the agents and the groups running in
the framework.

In the remainder of this section, we focus on detailing how inhabitant agents in
the CTF game (Soldiers and the like) are grouped using the MGOMAS framework.
To this aim, we detail an example of the CTF game in which the Allies and the Axis
groups are composed of five Soldiers, one Medic and one FieldOps each one.

The Allies group is defined as a two-level hierarchy shown in Figure 5. It is
composed of the agent sold1 and the simple hierarchies Soldiers and Support. The
supervisor (the unique representative agent) of Allies is the agent sold1. Using the
MGOMAS MAS notation for inhabitant agents, we specify the Allies, Soldiers and
Support groups as follows:

Allies = {sold1, Soldiers, Support}
RAllies = {sold1}

1238 J.M. Such, J.M. Alberola, A. Barella, A. Garcia-Fornes

Fig. 4. CTF in the MGOMAS framework

Soldiers = {sold2, sold3, sold4}
RSoldiers = {sold2}
Support = {sold5,med1, field1}
RMedics = {sold5}

As explained in the previous sections, agent groups are directly mapped to
Magentix units in order to carry out their implementation. Therefore, in some point
of the code of agent sold2, it has to create the corresponding Magentix Soldiers group
using the Magentix API for units as follows:

mgx_new_unit("Soldiers",UNICAST);

mgx_new_member("Soldiers","sold2");

mgx_new_member("Soldiers","sold3");

mgx_new_member("Soldiers","sold4");

mgx_new_contact_agent("Soldiers","sold2");

Note that the Soldiers unit is created with the routing type UNICAST and sold2
is defined as the unique contact agent so that sold2 is the unique agent allowed
to interact on behalf of Soldiers. Similar code is needed in agent sold5 in order to
create the Support group. Finally, the code for creating the Allies group is in the
sold1 agent and is as follows:

mgx_new_unit("Allies",UNICAST);

mgx_new_member ("Allies","sold1");

mgx_new_member ("Allies","Soldiers");

A Secure Group-Oriented Framework for Intelligent Virtual Environments 1239

Soldiers

sold1

Support

sold2

Allies

field1med1

sold5

sold3 sold4

Fig. 5. Allies team

mgx_new_member ("Allies","Support");

mgx_new_contact_agent ("Allies", "sold1");

Axis group is defined as a team (Figure 6) so that all of its members are equally
important and can interact with each other. The MGOMAS MAS notation for the
Axis group is:

Axis = {sold6, sold7, sold8, sold9, sold10,med2, field2}
RAxis = {sold6, sold7, sold8, sold9, sold10,med2, field2}

1240 J.M. Such, J.M. Alberola, A. Barella, A. Garcia-Fornes

Axis

Fig. 6. Axis team

In order to carry out the implementation of the Axis group, one of the agents that
make up the group must create the corresponding Magentix unit. In our example,
sold6 is in charge to create the Axis group as follows:

mgx_new_unit("Axis",MULTICAST);

mgx_new_member ("Axis","sold6");

mgx_new_contact_agent ("Axis", "sold6");

.

.

.

mgx_new_member ("Axis","field2");

mgx_new_contact_agent ("Axis", "field2");

Note that Axis is defined with the routing type MULTICAST, and all of the agents
of Axis are also defined as contact agents.

It is worth mentioning that, at runtime, the MGOMAS framework assures the
message exchanges and the identities of both agents and groups. As the agent and

A Secure Group-Oriented Framework for Intelligent Virtual Environments 1241

group identities are assured, an agent can avoid cheating agents that try to act as
members of the allies team but are really members of the axis team. The message
exchanges are also secured, assuring their confidentiality and integrity. In this sense,
MGOMAS avoids that agents from a team (allies/axis) can overhear conversations
of agents from the other team (axis/allies).

By assuring identities and message exchanges, the CTF game implemented on
top of MGOMAS can be used as an online game with multiple players each one acting
as an inhabitant agent (Soldier, Medic or FieldOps) avoiding cheating agents. This
is a key feature for online games, because cheating agents could discredit the game,
discouraging users from playing it.

5 PERFORMANCE EVALUATION

In the previous sections, we present how the agent group concept is incorporated
into the framework and also how security concerns are taken into account. In this
section, we present a performance evaluation in order to assess the fulfillment of the
efficiency requirement. We present a set of tests in order to measure the efficiency
and scalability of both MGOMAS and JGOMAS frameworks. We have previous
experiences in evaluating the efficiency and scalability of MASs (refer to [11] and [1]).

We first check how the frameworks perform when the number of agents in the
system is increased (simulating an on-line game with a big amount of players). In
this sense, we launch the allies and the axis teams with the goal of exchanging
a big amount of messages (a lot of interactions among agents). We increase the
number of agents of each team so that both the number of agents and the messages
exchanged increase. Each agent (being Medic, Soldier or FieldOp) communicates
with the rest of the agents of the group in a sequential way. Each agent sends and
receives m messages. Moreover, if an agent receives a message from other agent, it
answers the message. We measure the time elapsed between the first message is sent
by the first agent and the last message is received by the last agent. We start the
experiment with 100 agents in the system (50 agents in each group) and we increase
this number up to 1 000. The number of messages sent by each agent is specified to
m = 1 000.

In Figure 7 we can see the time of both frameworks. Actually, there is a perfor-
mance degradation as the number of agents (and the message traffic) are increased.
However, MGOMAS performance degrades less than JGOMAS performance. As
an example, we can see that the elapsed time in MGOMAS when the system is
composed of 1000 agents is less than the elapsed time in JGOMAS when the system
is composed of 200 agents. Furthermore, as we increase the number of agents, we
can see that the time difference between both frameworks increases. Therefore, we
can conclude that MGOMAS framework is more scalable than JGOMAS.

Another typical scenario is the massive message sending to a specific agent. In
this second test, we measure the ability of the frameworks when a lot of agents
send messages to a single one. This specific agent could become a bottleneck in

1242 J.M. Such, J.M. Alberola, A. Barella, A. Garcia-Fornes

 0

 200

 400

 600

 800

 1000

 1200

 1400

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

)

Agents

JGOMAS
MGOMAS

Fig. 7. Test 1

the system when multiple messages are addressed to it. This scenario appears, for
example, when soldiers are requesting the same medic agent to heal them. This
agent has to serve every received request. As the number of incoming requests is
increased, the time for processing these requests may also increase.

In order to simulate this situation, we present a test in which a medic agent is
requested by a lot of agents of the same team. In this test, we launch a single medic
agent and n soldier agents whose goal is to send m messages to the medic agent. The
elapsed time between when the Medic agent receives the first message and when she
answer the n×m messages can be seen in Figure 8. In this experiment we launch an
allies team composed by the Medic and one Soldier agent (n = 1) and we increase
the number of Soldier agents up to 6. Each soldier agent sends an amount of 10 000
messages (m = 10 000) to the Medic agent.

We can see that the elapsed time increases in both frameworks as the number of
requests increases. However, as in the previous test, we can see that the performance
degradation is less in the MGOMAS framework. The time difference between both
frameworks gradually increases as we increase the number of agents. Therefore,
MGOMAS framework is also more scalable and efficient than JGOMAS in this
scenario.

With the results provided in these tests, we can conclude MGOMAS improves
efficiency and scalability provided by JGOMAS. In these tests, we have simulated
two typical scenarios in order to check both features in the MGOMAS and the
JGOMAS frameworks. These tests represent critical situations so that we can see
more clearly the degree of performance improvement achieved.

A Secure Group-Oriented Framework for Intelligent Virtual Environments 1243

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 1 2 3 4 5 6

T
im

e
(s

)

Agents

JGOMAS
MGOMAS

Fig. 8. Test 2

6 CONCLUSIONS

In this paper we present a framework called MGOMAS which is a framework for
IVEs. MGOMAS extends JGOMAS taking into account agent groups, security and
efficiency. Design of MGOMAS explicitly defines agent groups which can be used
both at the application and programmer levels. We have shown the benefits of
adding the group perspective into the framework: to simplify the simulation con-
troller functionality, to help programmers structure their battalions, and of course,
for managing the different teams in the game. Authentication, secure message pass-
ing and efficiency are also important features for widening the framework applica-
tion. That is, to prevent inappropriate agent behaviors or cheating agents and to
build large applications.

As far as we are concerned, MGOMAS design and architecture can be used in
a broad range of IVE applications, from educational purposes to simulation and real
scenarios such as commercial games. It can also be suitable to any other domain in
which there is a large and complex system that requires some organization structures
(that simplify the problem) and where security and efficiency also matter.

We also present a performance evaluation comparing MGOMAS and JGOMAS
frameworks. By means of two tests we check the efficiency and scalability of both
frameworks. We conclude that MGOMAS outperforms JGOMAS.

There is ongoing effort in order to also include norms in the MAS subsystem, and
its corresponding support mechanisms in the MAP subsystem, so that the behavior
of the members of a group can be restricted.

1244 J.M. Such, J.M. Alberola, A. Barella, A. Garcia-Fornes

There is also ongoing work in order visualization agents to take advantage of
agents groups when displaying the 3D virtual world.

Acknowledgement

This work has been partially supported by Consolider-Ingenio 2010 under grant
CSD2007-00022, and projects TIN2008-04446 and PROMETEO/2008/051.
Jose M. Such has received a grant from Conselleria d’Empresa, Universitat i Ciència
de la Generalitat Valenciana (BFPI06/096). Juan M. Alberola has received a grant
from Ministerio de Ciencia e Innovación de España (AP2007-00289).

REFERENCES

[1] Alberola, J.M.—Such, J.M.—Espinosa, A.—Garcia-Fornes, A.—

Botti, V.: A Performance Evaluation of Three Multi-Agent Platforms. Artificial
Intelligence Review, Vol. 34, 2010, No. 2, pp. 145–176.

[2] Alberola, J.M.—Such, J.M.—Espinosa, A.—Botti, V.—Garcia-For-

nes, A.: Scalable and Efficient Multi-Agent Platform Closer to the Operating System.
Artificial Intelligence Research and Development, Vol. 184, 2008, pp. 7–15.

[3] Barella, A.—Carrascosa, C.—Botti, V.: Agent Architectures for Intelligent
Virtual Environments. In 2007 IEEE/WIC/ACM International Conference on Intel-
ligent Agent Technology, pp. 532–535, IEEE 2007.

[4] Barella, A.—Valero, S.—Carrascosa, C.: JGOMAS: New Approach to AI
Teaching. IEEE Transactions on Education, 2008.

[5] Bellifemine, F.—Poggi, A.—Rimassa, G.: JADE: A FIPA2000 Compliant
Agent Development Environment. In AGENTS ’01: Proceedings of the fifth interna-
tional conference on autonomous agents, ACM Press 2001, New York, pp. 216–217.

[6] Burguillo, J.-C.—Rodriguez, P. S.—Costa, E.—Gil, F: History-Based Self-
Organizing Traffic Lights. Computing and Informatics, Vol. 28, 2009, No. 2,
pp. 157–168.

[7] Horling, B.—Lesser, V.: A Survey of Multi-Agent Organizational Paradigms.
The Knowledge Engineering Review, Vol. 19, 2004, pp. 281–316.

[8] Longstaff, T.—Ellis, J.—Shawn, H.—Lipson, H.—Mcmillan, R.—

Pesante, H.—Simmel, D.: Security of the Internet. The Froehlich/Kent Ency-
clopedia of Telecommunications, Vol. 15, 1997, pp. 231–255.

[9] Luck, M.—Aylett, R.: Applying Artificial Intelligence to Virtual Reality: In-
telligent Virtual Environments. Applied Artificial Intelligence, Vol. 14, 2000, No. 1,
pp. 3–32.

[10] Luck, M.—Mcburney, P.—Shehory, O.—Willmott, S.: Agent Technology:
Computing as Interaction (A Roadmap for Agent Based Computing). AgentLink,
2005.

[11] Mulet, L.—Such, J.M.—Alberola, J.M.: Performance Evaluation of Open
Source Multiagent Platforms. In Proceedings of the Fifth International Joint

A Secure Group-Oriented Framework for Intelligent Virtual Environments 1245

Conference on Autonomous Agents and Multi-agent Systems (AAMAS06), 2006,

pp. 1107–1109.

[12] Nwana, H. S.—Ndumu, D.T.—Lee, L.C.—Collis, J. C.—Re, I. I.: Zeus:
A Tool-Kit for Building Distributed Multi-Agent Systems. Applied Artificial Intelli-
gence Journal, Vol. 13, 1999, pp. 129–186.

[13] Paunovski, O.—Eleftherakis, G.—Cowling, A.: Disciplined Exploration of

Emergence Using Multi-Agent Simulation Framework. Computing and Informatics,
Vol. 28, 2009, No. 3, pp. 369–391.

[14] Rollo, M.—Pechoucek, M.: A-Globe: Agent Platform with Inaccessibility and
Mobility Support. In Cooperative Information Agents VIII, No. 3191, LNAI, Springer-
Verlag 2004.

[15] Such, J.M.—Alberola, J.M.—Espinosa, A.—Garcia-Fornes, A.: A Group-
Oriented Secure Multiagent Platform. Software: Practice and Experience (to appear).

Jose M. Suh is a Ph.D. candidate at the Departament de
Sistemes Informàtics i Computació of the Universitat Politècnica
de València. His interest areas include privacy, trust, reputation,
and security in multiagent systems as well as multiagent platform
design, benchmarking, and performance evaluation.

Juan M. Alberola is a Ph.D. student at the Departament de
Sistemes Informàtics i Computació of the Universitat Politècnica
de València. His interest areas include organizations and reorga-
nization in multiagent systems, prediction markets, case-based
reasoning and multiagent platforms design.

Antonio Barela is a Ph.D. student at the Departament de Sis-
temes Informàtics i Computació of the Universitat Politècnica de
València. His interest areas include multiagent systems, intelli-
gent virtual environments and 3D simulation. He has collabo-
rated in teaching practical work in various advanced AI subjects
at the UPV.

1246 J.M. Such, J.M. Alberola, A. Barella, A. Garcia-Fornes

Ana Garia-Fornes is a Professor at the Departament de Sis-

temes Informàtics i Computació of the Universitat Politècnica de
València. Her interest areas include: real-time artificial intelli-
gence, real-time systems, development of multiagent infrastruc-
tures, tracing systems, operating systems based on agents and
negotiation strategies.

